Journal articles on the topic 'Lignocellulosic inhibitor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lignocellulosic inhibitor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Chenhao. "HOG1 plays a role in regulating tolerance of various inhibitors in Saccharomyces cerevisiae." Advances in Engineering Technology Research 12, no. 1 (2024): 1098. https://doi.org/10.56028/aetr.12.1.1098.2024.
Full textSjulander, Nikki, and Timo Kikas. "Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review." Energies 13, no. 18 (2020): 4751. http://dx.doi.org/10.3390/en13184751.
Full textWang, Yilan, Yuedong Zhang, Qiu Cui, Yingang Feng, and Jinsong Xuan. "Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors." Molecules 29, no. 10 (2024): 2275. http://dx.doi.org/10.3390/molecules29102275.
Full textVanmarcke, Gert, Quinten Deparis, Ward Vanthienen, Arne Peetermans, Maria R. Foulquié-Moreno, and Johan M. Thevelein. "A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors." PLOS Genetics 17, no. 10 (2021): e1009826. http://dx.doi.org/10.1371/journal.pgen.1009826.
Full textPiva, Victor de Freitas, Vanessa Souza Reis Melo, Bruna Vieira Cabral, and Diego Andrade Lemos. "Extraction of furfural inhibitor from biomass hydrolysate of rice husk." Ciência e Natura 44 (April 18, 2022): e15. http://dx.doi.org/10.5902/2179460x68832.
Full textElgharbawy, Amal A. M., Md Zahangir Alam, Muhammad Moniruzzaman, and Hamzah Mohd Salleh. "Hydrolysis Kinetics of Oil Palm Empty Fruit Bunch in Ionic Liquids and Cellulase Integrated System." International Journal of Chemistry 11, no. 2 (2019): 95. http://dx.doi.org/10.5539/ijc.v11n2p95.
Full textRoscini, Luca, Lorenzo Favaro, Laura Corte, et al. "A yeast metabolome-based model for an ecotoxicological approach in the management of lignocellulosic ethanol stillage." Royal Society Open Science 6, no. 1 (2019): 180718. http://dx.doi.org/10.1098/rsos.180718.
Full textWestman, Johan O., Valeria Mapelli, Mohammad J. Taherzadeh, and Carl Johan Franzén. "Flocculation Causes Inhibitor Tolerance in Saccharomyces cerevisiae for Second-Generation Bioethanol Production." Applied and Environmental Microbiology 80, no. 22 (2014): 6908–18. http://dx.doi.org/10.1128/aem.01906-14.
Full textPadmapriya, G., V. Dhivya, M. Vishal, Y. A. J. Roshni, T. Akila, and S. Ramalingam. "Development of tolerance to aldehyde-based inhibitors of pretreated lignocellulosic biomass sugars in E. coli MG1655 by sequential batch adaptive evolution." Journal of Environmental Biology 42, no. 5 (2021): 1239–48. http://dx.doi.org/10.22438/jeb/42/5/mrn-1812.
Full textKennedy, Gregory J., Michael J. Bowman, Kim L. Ascherl, Nancy N. Nichols, and Badal C. Saha. "Biomass Demineralization and Pretreatment Strategies to Reduce Inhibitor Concentrations in Itaconic Acid Fermentation by Aspergillus terreus." Biomass 4, no. 4 (2024): 1122–41. http://dx.doi.org/10.3390/biomass4040062.
Full textZhao, Jianzhi, Yuping Zhao, Longhao Wu, et al. "Development of a Robust Saccharomyces cerevisiae Strain for Efficient Co-Fermentation of Mixed Sugars and Enhanced Inhibitor Tolerance through Protoplast Fusion." Microorganisms 12, no. 8 (2024): 1526. http://dx.doi.org/10.3390/microorganisms12081526.
Full textChanda, Kakoli, Atifa Begum Mozumder, Ringhoilal Chorei, Ridip Kumar Gogoi, and Himanshu Kishore Prasad. "A Lignocellulolytic Colletotrichum sp. OH with Broad-Spectrum Tolerance to Lignocellulosic Pretreatment Compounds and Derivatives and the Efficiency to Produce Hydrogen Peroxide and 5-Hydroxymethylfurfural Tolerant Cellulases." Journal of Fungi 7, no. 10 (2021): 785. http://dx.doi.org/10.3390/jof7100785.
Full textGreetham, Darren, Abdelrahman Saleh Zaky, and Chenyu Du. "Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production." Sustainable Energy & Fuels 3, no. 6 (2019): 1545–53. http://dx.doi.org/10.1039/c9se00029a.
Full textLam, Felix H., Burcu Turanlı-Yıldız, Dany Liu, Michael G. Resch, Gerald R. Fink, and Gregory Stephanopoulos. "Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks." Science Advances 7, no. 26 (2021): eabf7613. http://dx.doi.org/10.1126/sciadv.abf7613.
Full textYang, Yong-Qiang, Xu Li, Zhi-Fei Wang, et al. "Whole Genome Sequencing of Kodamaea ohmeri SSK and Its Characterization for Degradation of Inhibitors from Lignocellulosic Biomass." Biology 14, no. 5 (2025): 458. https://doi.org/10.3390/biology14050458.
Full textZhang, Hongsen, Jiahui Jiang, Conghui Quan, et al. "Identification of a Novel Dehydrogenase from Gluconobacter oxydans for Degradation of Inhibitors Derived from Lignocellulosic Biomass." Fermentation 9, no. 3 (2023): 286. http://dx.doi.org/10.3390/fermentation9030286.
Full textMa, Kedong, Mingxiong He, Huiyan You, et al. "Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis." RSC Advances 7, no. 50 (2017): 31180–88. http://dx.doi.org/10.1039/c7ra04049k.
Full textWu, Yilu, Changsheng Su, Gege Zhang, et al. "High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance." Fermentation 9, no. 10 (2023): 906. http://dx.doi.org/10.3390/fermentation9100906.
Full textBertini, Alessandro, Mattia Gelosia, Gianluca Cavalaglio, et al. "Production of Carbohydrates from Cardoon Pre-Treated by Acid-Catalyzed Steam Explosion and Enzymatic Hydrolysis." Energies 12, no. 22 (2019): 4288. http://dx.doi.org/10.3390/en12224288.
Full textBhatt, Sheelendra M., and Shilpa. "Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – a review." Biofuels 5, no. 6 (2014): 633–49. http://dx.doi.org/10.1080/17597269.2014.1003702.
Full textHuang, Yu-Ying, Pei Wu, Xing-Ci Wu та ін. "Characterization of a Thermophilic and Inhibitor-Tolerant GH1 β-Glucosidase Present in a Hot Spring". Water 15, № 19 (2023): 3389. http://dx.doi.org/10.3390/w15193389.
Full textThontowi, Ahmad. "Evaluation of Non-Saccharomyces Cerevisiae Strains Isolated from Sea Water Against Inhibitory Compounds for Ethanol Production." Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology 12, no. 2 (2017): 57. http://dx.doi.org/10.15578/squalen.v12i2.284.
Full textAbrha, Getachew Tafere, Qian Li, Xiaolin Kuang, et al. "Contribution of YPRO15C Overexpression to the Resistance of Saccharomyces cerevisiae BY4742 Strain to Furfural Inhibitor." Polish Journal of Microbiology 72, no. 2 (2023): 177–86. http://dx.doi.org/10.33073/pjm-2023-019.
Full textLiu, Zonglin Lewis, Jaewoong Moon, and Mingzhou Joe Song. "Genomic mechanisms of inhibitor-detoxification for low-cost lignocellulosic bioethanol conversion." Journal of Biotechnology 136 (October 2008): S218. http://dx.doi.org/10.1016/j.jbiotec.2008.07.460.
Full textRiyanti, Eny Ida, and Edy Listanto. "INHIBITION OF THE GROWTH OF TOLERANT YEAST Saccharomyces cerevisiae STRAIN I136 BY A MIXTURE OF SYNTHETIC INHIBITORS." Indonesian Journal of Agricultural Science 18, no. 1 (2017): 17. http://dx.doi.org/10.21082/ijas.v18n1.2017.p17-24.
Full textGupta, Vikas Chandra, Meenu Singh, Shiv Prasad, and Bhartendu Nath Mishra. "Minimization of Inhibitor Generation in Rice Straw Hydrolysate Using RSM Optimization Technique." Agriculture 13, no. 7 (2023): 1431. http://dx.doi.org/10.3390/agriculture13071431.
Full textYin, Jinbao, Chen Wang, Yilian Li, et al. "Biological Detoxification of the Inhibitors in Corncob Acid Hydrolysate Using Aspergillus niger." Fermentation 9, no. 9 (2023): 854. http://dx.doi.org/10.3390/fermentation9090854.
Full textTeixeira, Vanessa S., Suéllen P. H. Azambuja, Priscila H. Carvalho, et al. "Robustness and Ethanol Production of Industrial Strains of Saccharomyces cerevisiae Using Different Sugarcane Bagasse Hydrolysates." Journal of Applied Biotechnology 7, no. 1 (2019): 23. http://dx.doi.org/10.5296/jab.v7i1.14599.
Full textTesfaw, Asmamaw, and Fassil Assefa. "Current Trends in Bioethanol Production by Saccharomyces cerevisiae: Substrate, Inhibitor Reduction, Growth Variables, Coculture, and Immobilization." International Scholarly Research Notices 2014 (December 8, 2014): 1–11. http://dx.doi.org/10.1155/2014/532852.
Full textWongsurakul, Peerawat, Mutsee Termtanun, Worapon Kiatkittipong, et al. "Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria." Energies 15, no. 9 (2022): 2986. http://dx.doi.org/10.3390/en15092986.
Full textNilsson, Anneli, Marie F. Gorwa-Grauslund, Bärbel Hahn-Hägerdal, and Gunnar Lidén. "Cofactor Dependence in Furan Reduction by Saccharomyces cerevisiae in Fermentation of Acid-Hydrolyzed Lignocellulose." Applied and Environmental Microbiology 71, no. 12 (2005): 7866–71. http://dx.doi.org/10.1128/aem.71.12.7866-7871.2005.
Full textYan, Xiongying, Xia Wang, Yongfu Yang, et al. "Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production." Bioresource Technology 349 (April 2022): 126878. http://dx.doi.org/10.1016/j.biortech.2022.126878.
Full textKlanrit, Preekamol, Sudarat Thanonkeo, Warayutt Pilap, et al. "Optimization of Fermentation Parameters for Enhanced Bioethanol Production by Multistress-Tolerant Saccharomycodes ludwigii APRE2 Using Undetoxified Sugarcane Bagasse Hydrolysate." Energies 18, no. 13 (2025): 3428. https://doi.org/10.3390/en18133428.
Full textZhou, Long, Fabio Santomauro, Jiajun Fan, et al. "Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides." Faraday Discussions 202 (2017): 351–70. http://dx.doi.org/10.1039/c7fd00102a.
Full textJansen, Trudy, Justin Wallace Hoff, Neil Jolly, and Willem Heber van Zyl. "Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance." Folia Microbiologica 63, no. 2 (2017): 155–68. http://dx.doi.org/10.1007/s12223-017-0546-3.
Full textWang, Yanan, Peng Zhan, Lishu Shao, Lin Zhang, and Yan Qing. "Effects of Inhibitors Generated by Dilute Phosphoric Acid Plus Steam-Exploded Poplar on Saccharomyces cerevisiae Growth." Microorganisms 10, no. 7 (2022): 1456. http://dx.doi.org/10.3390/microorganisms10071456.
Full textTu, Wei-Lin, Tien-Yang Ma, Chung-Mao Ou, Gia-Luen Guo, and Yu Chao. "Simultaneous saccharification and co-fermentation with a thermotolerant Saccharomyces cerevisiae to produce ethanol from sugarcane bagasse under high temperature conditions." BioResources 16, no. 1 (2021): 1358–72. http://dx.doi.org/10.15376/biores.16.1.1358-1372.
Full textSinghania, Reeta Rani, Anil Kumar Patel, Tirath Raj, Mei-Ling Tsai, Chiu-Wen Chen, and Cheng-Di Dong. "Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production." Catalysts 12, no. 6 (2022): 615. http://dx.doi.org/10.3390/catal12060615.
Full textCavalaglio, Gianluca, Mattia Gelosia, Tommaso Giannoni, et al. "Acid-catalyzed steam explosion for high enzymatic saccharification and low inhibitor release from lignocellulosic cardoon stalks." Biochemical Engineering Journal 174 (October 2021): 108121. http://dx.doi.org/10.1016/j.bej.2021.108121.
Full textLin, Feng-Ming, Bin Qiao, and Ying-Jin Yuan. "Comparative Proteomic Analysis of Tolerance and Adaptation of Ethanologenic Saccharomyces cerevisiae to Furfural, a Lignocellulosic Inhibitory Compound." Applied and Environmental Microbiology 75, no. 11 (2009): 3765–76. http://dx.doi.org/10.1128/aem.02594-08.
Full textAbdel-Rahman, Mohamed Ali, Saad El-Din Hassan, Amr Fouda, Ahmed A. Radwan, Mohammed G. Barghoth, and Salha G. Desouky. "Evaluating the Effect of Lignocellulose-Derived Microbial Inhibitors on the Growth and Lactic Acid Production by Bacillus coagulans Azu-10." Fermentation 7, no. 1 (2021): 17. http://dx.doi.org/10.3390/fermentation7010017.
Full textLuo, Xingxing, Baiquan Zeng, Yanan Zhong, and Jienan Chen. "Production and detoxification of inhibitors during the destruction of lignocellulose spatial structure." BioResources 17, no. 1 (2021): 1939–61. http://dx.doi.org/10.15376/biores.17.1.luo.
Full textFrancisco, Miguel, Tatiana Q. Aguiar, Gabriel Abreu, Susana Marques, Francisco Gírio, and Lucília Domingues. "Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate." Fermentation 9, no. 9 (2023): 791. http://dx.doi.org/10.3390/fermentation9090791.
Full textWang, X., E. N. Miller, L. P. Yomano, X. Zhang, K. T. Shanmugam, and L. O. Ingram. "Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate." Applied and Environmental Microbiology 77, no. 15 (2011): 5132–40. http://dx.doi.org/10.1128/aem.05008-11.
Full textShinde, Dasharath B., and Ram Kulkarni. "Harnessing lignocellulosic resources in bacteria: An evolutionary and metabolic perspective on sugar utilization, inhibitor tolerance, and bioconversion." Biocatalysis and Agricultural Biotechnology 53 (October 2023): 102852. http://dx.doi.org/10.1016/j.bcab.2023.102852.
Full textForsberg, Kevin J., Sanket Patel, Evan Witt, Bin Wang, Tyler D. Ellison, and Gautam Dantas. "Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes." Applied and Environmental Microbiology 82, no. 2 (2015): 528–37. http://dx.doi.org/10.1128/aem.02838-15.
Full textSemencenko, Valentina, Ljiljana Mojovic, Slobodan Petrovic, and Ozren Ocic. "Recent trends in bioethanol production." Chemical Industry 65, no. 2 (2011): 103–14. http://dx.doi.org/10.2298/hemind100913068s.
Full textSárvári Horváth, Ilona, Carl Johan Franzén, Mohammad J. Taherzadeh, Claes Niklasson, and Gunnar Lidén. "Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats." Applied and Environmental Microbiology 69, no. 7 (2003): 4076–86. http://dx.doi.org/10.1128/aem.69.7.4076-4086.2003.
Full textChen, Kun, Long Jun Xu, and Jun Yi. "Bioconversion of Lignocellulose to Ethanol: A Review of Production Process." Advanced Materials Research 280 (July 2011): 246–49. http://dx.doi.org/10.4028/www.scientific.net/amr.280.246.
Full textLong, Tingting, Peng Zhang, Jingze Yu, Yushan Gao, Xiaoqin Ran та Yonghao Li. "Regulation of β-Disaccharide Accumulation by β-Glucosidase Inhibitors to Enhance Cellulase Production in Trichoderma reesei". Fermentation 8, № 5 (2022): 232. http://dx.doi.org/10.3390/fermentation8050232.
Full text