Academic literature on the topic 'Limit de detecció (limit of detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Limit de detecció (limit of detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Limit de detecció (limit of detection"
Camero Jiménez, José W., and Víctor A. Huamaní León. "IMPLEMENTACIÓN DE LA TÉCNICA ANALÍTICA BARIO EN AGUA RESIDUAL POR ESPECTROMETRÍA DE ABSORCIÓN ATÓMICA." Revista Cientifica TECNIA 24, no. 1 (February 6, 2017): 21. http://dx.doi.org/10.21754/tecnia.v24i1.28.
Full textVergara, José Gabriel, Daniel Verbel-Vergara, Ana Milena Montesino, Alveiro Pérez-Doria, and Eduar Elías Bejarano. "Estimation of time detection limit for human cytochrome b in females of Lutzomyia evansi." Biomédica 37 (March 29, 2017): 187. http://dx.doi.org/10.7705/biomedica.v37i0.3396.
Full textNoa-Pérez, Mario, Miriam Cortés-Marín, Patricia Landeros-Ramírez, Zoila Gómez-Cruz, Mario Real-Navarro, Ramón Reynoso-Orozco, Teresa de Jesús Jaime Ornelas, and Carlos Juárez-Woo. "LÍMITES DE DETECCIÓN DE ALGUNOS MÉTODOS DE PRUEBA PARA ADULTERANTES E INHIBIDORES EN LECHE." e-CUCBA 15, no. 8 (January 21, 2021): 33–43. http://dx.doi.org/10.32870/e-cucba.v0i15.177.
Full textColina, Marinela, Jennifer Smith, Gilberto Colina, and Brinolfo Montilla. "Desarrollo de un Método para la Especiación de Selenio en Muestras de Cerveza." Revista Bases de la Ciencia. e-ISSN 2588-0764 3, no. 1 (April 30, 2018): 1. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v3i1.1032.
Full textColina, Marinela, Carolina Sthormes, Rodolfo Salas, Jervis Navas, Víctor Granadillo, and Brinolfo Montilla. "Determinación de los Niveles de Mercurio en Sangre y Plasma de Pacientes con Leucemia." Revista Bases de la Ciencia. e-ISSN 2588-0764 3, no. 1 (April 30, 2018): 25. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v3i1.1030.
Full textPeinado Lorca, Manuel. "Población, cambio climático y huella ambiental // Population, Climate Change and Environmental Footprint." Ecozon@: European Journal of Literature, Culture and Environment 9, no. 1 (April 28, 2018): 11–36. http://dx.doi.org/10.37536/ecozona.2018.9.1.2172.
Full textPorter, P. Steven, Robert C. Ward, and Harry F. Bell. "The detection limit." Environmental Science & Technology 22, no. 8 (August 1988): 856–61. http://dx.doi.org/10.1021/es00173a001.
Full textChambless, Donald A., Stephanie S. Dubose, and Edwin L. Sensintaffar. "Detection Limit Concepts." Health Physics 63, no. 3 (September 1992): 338–40. http://dx.doi.org/10.1097/00004032-199209000-00010.
Full textElston, Harry J. "Detection Limit Creep." Chemical Health and Safety 12, no. 4 (July 2005): 4. http://dx.doi.org/10.1016/j.chs.2005.05.004.
Full textDemertzis, Mavroudis A. "Low detection limit spectrophotometry." Analytica Chimica Acta 505, no. 1 (March 2004): 73–76. http://dx.doi.org/10.1016/s0003-2670(03)00512-9.
Full textDissertations / Theses on the topic "Limit de detecció (limit of detection"
Rodríguez, Cuesta Mª José. "Limit of detection for second-order calibration methods." Doctoral thesis, Universitat Rovira i Virgili, 2006. http://hdl.handle.net/10803/9013.
Full textThe lowest quantity of a substance that can be distinguished from the absence of that substance (a blank value) is called the detection limit or limit of detection (LOD). Traditionally, in the context of simple measurements where the instrumental signal only depends on the amount of analyte, a multiple of the blank value is taken to calculate the LOD (traditionally, the blank value plus three times the standard deviation of the measurement). However, the increasing complexity of the data that analytical instruments can provide for incoming samples leads to situations in which the LOD cannot be calculated as reliably as before.
Measurements, instruments and mathematical models can be classified according to the type of data they use. Tensorial theory provides a unified language that is useful for describing the chemical measurements, analytical instruments and calibration methods. Instruments that generate two-dimensional arrays of data are second-order instruments. A typical example is a spectrofluorometer, which provides a set of emission spectra obtained at different excitation wavelengths.
The calibration methods used with each type of data have different features and complexity. In this thesis, the most commonly used calibration methods are reviewed, from zero-order (or univariate) to second-order (or multi-linears) calibration models. Second-order calibration models are treated in details since they have been applied in the thesis.
Concretely, the following methods are described:
- PARAFAC (Parallel Factor Analysis)
- ITTFA (Iterative Target Transformation Analysis)
- MCR-ALS (Multivariate Curve Resolution-Alternating Least Squares)
- N-PLS (Multi-linear Partial Least Squares)
Analytical methods should be validated. The validation process typically starts by defining the scope of the analytical procedure, which includes the matrix, target analyte(s), analytical technique and intended purpose. The next step is to identify the performance characteristics that must be validated, which may depend on the purpose of the procedure, and the experiments for determining them. Finally, validation results should be documented, reviewed and maintained (if not, the procedure should be revalidated) as long as the procedure is applied in routine work.
The figures of merit of a chemical analytical process are 'those quantifiable terms which may indicate the extent of quality of the process. They include those terms that are closely related to the method and to the analyte (sensitivity, selectivity, limit of detection, limit of quantification, ...) and those which are concerned with the final results (traceability, uncertainty and representativity) (Inczédy et al., 1998). The aim of this thesis is to develop theoretical and practical strategies for calculating the limit of detection for complex analytical situations. Specifically, I focus on second-order calibration methods, i.e. when a matrix of data is available for each sample.
The methods most often used for making detection decisions are based on statistical hypothesis testing and involve a choice between two hypotheses about the sample. The first hypothesis is the "null hypothesis": the sample is analyte-free. The second hypothesis is the "alternative hypothesis": the sample is not analyte-free. In the hypothesis test there are two possible types of decision errors. An error of the first type occurs when the signal for an analyte-free sample exceeds the critical value, leading one to conclude incorrectly that the sample contains a positive amount of the analyte. This type of error is sometimes called a "false positive". An error of the second type occurs if one concludes that a sample does not contain the analyte when it actually does and it is known as a "false negative". In zero-order calibration, this hypothesis test is applied to the confidence intervals of the calibration model to estimate the LOD as proposed by Hubaux and Vos (A. Hubaux, G. Vos, Anal. Chem. 42: 849-855, 1970).
One strategy for estimating multivariate limits of detection is to transform the multivariate model into a univariate one. This strategy has been applied in this thesis in three practical applications:
1. LOD for PARAFAC (Parallel Factor Analysis).
2. LOD for ITTFA (Iterative Target Transformation Factor Analysis).
3. LOD for MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares)
In addition, the thesis includes a theoretical contribution with the proposal of a sample-dependent LOD in the context of multivariate (PLS) and multi-linear (N-PLS) Partial Least Squares.
La Química Analítica es pot dividir en dos tipus d'anàlisis, l'anàlisi quantitativa i l'anàlisi qualitativa. La gran part de la química analítica moderna és quantitativa i fins i tot els govern fan ús d'aquesta ciència per establir regulacions que controlen, per exemple, nivells d'exposició a substàncies tòxiques que poden afectar la salut pública. El concepte de mínima quantitat d'un analit o component que es pot detectar apareix en moltes d'aquestes regulacions, en general com una part de la validació dels mètodes per tal de garantir la qualitat i la validesa dels resultats.
La mínima quantitat d'una substància que pot ser diferenciada de l'absència d'aquesta substància (el que es coneix com un blanc) s'anomena límit de detecció (limit of detection, LOD). En procediments on es treballa amb mesures analítiques que són degudes només a la quantitat d'analit present a la mostra (situació d'ordre zero) el LOD es pot calcular com un múltiple de la mesura del blanc (tradicionalment, 3 vegades la desviació d'aquesta mesura). Tanmateix, l'evolució dels instruments analítics i la complexitat creixent de les dades que generen, porta a situacions en les que el LOD no es pot calcular fiablement d'una forma tan senzilla. Les mesures, els instruments i els models de calibratge es poden classificar en funció del tipus de dades que utilitzen. La Teoria Tensorial s'ha utilitzat en aquesta tesi per fer aquesta classificació amb un llenguatge útil i unificat. Els instruments que generen dades en dues dimensions s'anomenen instruments de segon ordre i un exemple típic és l'espectrofluorímetre d'excitació-emissió, que proporciona un conjunt d'espectres d'emissió obtinguts a diferents longituds d'ona d'excitació.
Els mètodes de calibratge emprats amb cada tipus de dades tenen diferents característiques i complexitat. En aquesta tesi, es fa una revisió dels models de calibratge més habituals d'ordre zero (univariants), de primer ordre (multivariants) i de segon ordre (multilinears). Els mètodes de segon ordre estan tractats amb més detall donat que són els que s'han emprat en les aplicacions pràctiques portades a terme.
Concretament es descriuen:
- PARAFAC (Parallel Factor Analysis)
- ITTFA (Iterative Target Transformation Analysis)
- MCR-ALS (Multivariate Curve Resolution-Alternating Least Squares)
- N-PLS (Multi-linear Partial Least Squares)
Com s'ha avançat al principi, els mètodes analítics s'han de validar. El procés de validació inclou la definició dels límits d'aplicació del procediment analític (des del tipus de mostres o matrius fins l'analit o components d'interès, la tècnica analítica i l'objectiu del procediment). La següent etapa consisteix en identificar i estimar els paràmetres de qualitat (figures of merit, FOM) que s'han de validar per, finalment, documentar els resultats de la validació i mantenir-los mentre sigui aplicable el procediment descrit.
Algunes FOM dels processos químics de mesura són: sensibilitat, selectivitat, límit de detecció, exactitud, precisió, etc. L'objectiu principal d'aquesta tesi és desenvolupar estratègies teòriques i pràctiques per calcular el límit de detecció per problemes analítics complexos. Concretament, està centrat en els mètodes de calibratge que treballen amb dades de segon ordre.
Els mètodes més emprats per definir criteris de detecció estan basats en proves d'hipòtesis i impliquen una elecció entre dues hipòtesis sobre la mostra. La primera hipòtesi és la hipòtesi nul·la: a la mostra no hi ha analit. La segona hipòtesis és la hipòtesis alternativa: a la mostra hi ha analit. En aquest context, hi ha dos tipus d'errors en la decisió. L'error de primer tipus té lloc quan es determina que la mostra conté analit quan no en té i la probabilitat de cometre l'error de primer tipus s'anomena fals positiu. L'error de segon tipus té lloc quan es determina que la mostra no conté analit quan en realitat si en conté i la probabilitat d'aquest error s'anomena fals negatiu. En calibratges d'ordre zero, aquesta prova d'hipòtesi s'aplica als intervals de confiança de la recta de calibratge per calcular el LOD mitjançant les fórmules d'Hubaux i Vos (A. Hubaux, G. Vos, Anal. Chem. 42: 849-855, 1970)
Una estratègia per a calcular límits de detecció quan es treballa amb dades de segon ordre es transformar el model multivariant en un model univariant. Aquesta estratègia s'ha fet servir en la tesi en tres aplicacions diferents::
1. LOD per PARAFAC (Parallel Factor Analysis).
2. LOD per ITTFA (Iterative Target Transformation Factor Analysis).
3. LOD per MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares)
A més, la tesi inclou una contribució teòrica amb la proposta d'un LOD que és específic per cada mostra, en el context del mètode multivariant PLS i del multilinear N-PLS.
Rens, Bram Antonius Philomena van. "Detection of magnetic monopoles below the Cherenkov limit." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2006. http://dare.uva.nl/document/23682.
Full textYavrucuk, Ilkay. "Adaptive limit margin detection and limit avoidance." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/12354.
Full textHorn, Joe. "Flight envelope limit detection and avoidance." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/12435.
Full textTallawi, Reham. "FPGA-based Speed Limit Sign Detection." Master's thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-229018.
Full textKirwa, Abraham Tuwei. "Self-referenced evanescent wave sensor for low limit of detection applications." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22475/.
Full textHeaney, S. F. "Development of a low detection limit Cu(II) ISE for complexation studies." Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419362.
Full textDick, Nicole Marie. "Methods for handling missing data due to a limit of detection in longitudinal lognormal data." Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/867.
Full textJin, Yan. "Bayesian Solution to the Analysis of Data with Values below the Limit of Detection (LOD)." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1227293204.
Full textLáznička, Jan. "Analýza spolehlivosti měření látek pomocí biosenzorů - návrh robustní metody stanovení limitu detekce." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217622.
Full textBooks on the topic "Limit de detecció (limit of detection"
Springs, David W. How to outfox the bears: Beating the radar speed trap. Osceola, Wis., USA: Motorbooks International, 1987.
Find full textManraj, A. Shakoor. The law on speeding and speed detection devices. 3rd ed. Markham, Ont: LexisNexis, 2007.
Find full textNational Council on Radiation Protection and Measurements. Radiological health protection issues associated with use of active detection technology systems for detection of radioactive threat materials. Bethesda, Md: National Council on Radiation Protection and Measurements, 2011.
Find full textLehrasab, Nadeem. A generic fault detection and isolation approach for single-throw mechanical equipment. Birmingham: University of Birmingham, 1999.
Find full textThe complete book on speed enforcement: A practical guide to understanding speed enforcement concepts and devices. Springfield, Ill: Charles C. Thomas, 2012.
Find full textNew Jersey. Legislature. Senate. Committee on Law, Public Safety, and Defense. Public hearing before Senate Law, Public Safety, and Defense Committee: To elicit testimony for discussion on the role of local governmental and law enforcement officials on monitoring the transportation of hazardous materials, receiving regular and timely notification when hazardous materials are transported through any municipality and effectively enforcing current laws regulating the transportation of hazardous materials in this state : May 4, 1988, Paramus Borough Hall, Paramus, New Jersey. Trenton, N.J: The Committee, 1988.
Find full textNew Jersey. Legislature. Senate. Committee on Law, Public Safety, and Defense. Public hearing before Senate Law, Public Safety, and Defense Committee: Senate bill 2733 (reduces the blood alcohol content level for driving a commercial motor vehicle under the influence of alcohol to 0.04%), and Senate bill 2741 (prohibits the use or possession of radar detectors in commercial motor vehicles) : February 11, 1987, Council Chambers, Burlington Township Municipal Building, Burlington Township, New Jersey. Trenton, N.J: The Committee, 1987.
Find full textNew, Jersey Legislature Senate Committee on Law Public Safety and Defense, and Jersey Legislature Senate Committee on Law Public Safety and Defense New. Public hearing before Senate Law, Public Safety and Defense Committee: A discussion of issues concerning the restructuring of motor vehicle license plates and the misuse of drivers' licenses : July 21, 1987, New Jersey Institute of Technology, Newark, New Jersey. Trenton, N.J: The Committee, 1987.
Find full textNew Jersey. Legislature. Senate. Committee on Law, Public Safety, and Defense. Public hearing before Senate Law, Public Safety, and Defense Committee: Motor vehicle inspections : February 4, 1991, Room 407, State House Annex, Trenton, New Jersey. Trenton, N.J: The Committee, 1991.
Find full textNew, Jersey Legislature Senate Committee on Law Public Safety and Defense. Public hearing before Senate Law, Public Safety, and Defense Committee: Continuation of February 25, 1991 hearing to receive testimony from individuals and organizations on the recently announced plans to change the standards and procedures for the motor vehicle inspection system administered by the Division of Motor Vehicles (see previous transcript dated 2/25/91) : March 11, 1991, Room 407, State House Annex, Trenton, New Jersey. Trenton, N.J: The Committee, 1991.
Find full textBook chapters on the topic "Limit de detecció (limit of detection"
Gooch, Jan W. "Detection Limit." In Encyclopedic Dictionary of Polymers, 202. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3458.
Full textBzik, Thomas J. "Detecting the Detection Limit." In Detection Limits in Air Quality and Environmental Measurements, 1–15. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2019. http://dx.doi.org/10.1520/stp161820180117.
Full textIsermann, Rolf. "Fault detection with limit checking." In Fault-Diagnosis Systems, 95–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30368-5_7.
Full textJohnson, James E., and Janet A. Johnson. "Radioactivity Analyses and Detection Limit Problems." In ACS Symposium Series, 266–74. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1988-0361.ch014.
Full textOwens, K. G., C. F. Bauer, and C. L. Grant. "Effects of Analytical Calibration Models on Detection Limit Estimates." In ACS Symposium Series, 194–207. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1988-0361.ch010.
Full textZhu, Lei, Chun-Sheng Yang, and Jeng-Shyang Pan. "Detection and Recognition of Speed Limit Sign from Video." In Intelligent Information and Database Systems, 760–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49381-6_73.
Full textAerts, Marc, Martine I. Bakker, Pietro Ferrari, Peter Fuerst, Jessica Tressou, and Philippe J. P. Verger. "Reporting and Modeling of Results Below the Limit of Detection." In Total Diet Studies, 169–77. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-7689-5_16.
Full textHofmann, Siegfried. "Optimizing Certainty and the Detection Limit: Signal-to-Noise Ratio." In Springer Series in Surface Sciences, 259–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27381-0_6.
Full textSemkow, Thomas M., Abdul J. Khan, Traci A. Menia, Xin Li, Liang T. Chu, Miguel A. Torres, and Abdul Bari. "Detection Limit for Ra-228 in Drinking Water by Gamma Spectrometry." In Detection Limits in Air Quality and Environmental Measurements, 146–61. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2019. http://dx.doi.org/10.1520/stp161820180060.
Full textSokalski, Tomasz. "Transmembrane Ion Fluxes for Lowering Detection Limit of Ion-Selective Electrodes." In Electrochemical Processes in Biological Systems, 23–59. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118899076.ch2.
Full textConference papers on the topic "Limit de detecció (limit of detection"
Hodelin, Juan F., Luca Pezze, George Khoury, Augusto Smerzi, and Dirk Bouwmeester. "Phase detection at the quantum limit." In Quantum Electronics Metrology. SPIE, 2008. http://dx.doi.org/10.1117/12.772333.
Full textNordberg, Markus, Ema Ceco, Sara Wallin, and Henric Östmark. "Detection limit of imaging Raman spectroscopy." In SPIE Defense, Security, and Sensing, edited by J. Thomas Broach and John H. Holloway. SPIE, 2012. http://dx.doi.org/10.1117/12.919149.
Full textPanait, Cornel, and George Caruntu. "The detection limit of magnetic microsensors." In SPIE Proceedings, edited by Ovidiu Iancu, Adrian Manea, and Paul Schiopu. SPIE, 2007. http://dx.doi.org/10.1117/12.742075.
Full textPalma-Vargas, Salvador, G. Eduardo Sandoval-Romero, and Angélica Ramírez Ibarra. "Detection limit of a Sagnac interferometer." In Sixth Symposium Optics in Industry, edited by Julio C. Gutiérrez-Vega, Josué Dávila-Rodríguez, and Carlos López-Mariscal. SPIE, 2007. http://dx.doi.org/10.1117/12.742278.
Full textSun, Peng Gang. "Analysis of resolution limit in community detection." In 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2014. http://dx.doi.org/10.1109/fskd.2014.6980932.
Full textLe Thomas, Nicolas. "Fundamental Detection Limit of Integrated Photonic Sensors." In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/laop.2018.tu2a.1.
Full textHuang, Yea-Shuan, and Yun-Shin Lee. "Detection and recognition of speed limit signs." In 2010 International Computer Symposium (ICS 2010). IEEE, 2010. http://dx.doi.org/10.1109/compsym.2010.5685536.
Full textHandojo, Andrianto. "High Spatial Frequency Limit Of Photothermoplastic Materials." In International Topical Meeting on Image Detection and Quality, edited by Lucien F. Guyot. SPIE, 1987. http://dx.doi.org/10.1117/12.966789.
Full textDhingra, Manuj, James Armor, Yedidia Neumeier, and J. V. R. Prasad. "Compressor Surge: A Limit Detection and Avoidance Problem." In AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-6449.
Full textYavrucuk, Ilkay, J. Prasad, and Anthony Calise. "Adaptive limit detection and avoidance for carefree maneuvering." In AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-4003.
Full textReports on the topic "Limit de detecció (limit of detection"
Strobel, R., and J. Kury. Nitromethane K-9 Detection Limit. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/15007320.
Full textWHITE, THOMASL. Reducing the Detection Limit for Tetraphenylborate in Tank 50H Waste. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/826189.
Full textChung, C. F. Statistical treatment of geochemical data with observations below the detection limit. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/120239.
Full textDe Lucia, Jr, and Frank C. Producing Known Quantities Of RDX for LIBS Limit of Detection Study. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada562865.
Full textWESTSIK, G. A. Lower Limit of Detection (LLD) Determination for PFP Residues Segmented Gamma Scan Assay System (SGSAS). Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/808108.
Full textTracy, L., and S. Nasarabadi. Spore Disruption Analysis and Detection Limit Determination at Low Volume Amplifications (2-10 uL) of Bacillus globigii Using eTags. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/919212.
Full textSiegel, Dina Mary, David Abrams, John Hill, Steve Jahn, Phil Smith, and Kayla Thomas. A Practical Guide for Use Of Real Time Detection Systems For Worker Protection And Compliance With Occupational Exposure Limit. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1512716.
Full textCastro, Alonso. Determination of the Limit of Detection of the Turner Biosystems Modulus Fluorimeter for Comparison with the Attolight SOFIA Detector. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1154983.
Full textSonder, E., and A. B. Ahmed. Background radiation accumulation and lower limit of detection in thermoluminescent beta-gamma dosimeters used by the centralized external dosimetry system. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10109602.
Full textSonder, E., and A. B. Ahmed. Background radiation accumulation and lower limit of detection in thermoluminescent beta-gamma dosimeters used by the centralized external dosimetry system. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5948905.
Full text