To see the other types of publications on this topic, follow the link: Limite atterberg.

Journal articles on the topic 'Limite atterberg'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Limite atterberg.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hernández-Sánchez, Jazmín María de los Dolores, Benjamín Figueroa-Sandoval, and Mario R. Martínez Menes. "Propiedades físicas del suelo y su relación con la plasticidad en un sistema bajo labranza tradicional y no labranza." Revista Mexicana de Ciencias Agrícolas, no. 22 (April 2, 2019): 53–61. http://dx.doi.org/10.29312/remexca.v0i22.1858.

Full text
Abstract:
Los sistemas de labranza generan cambios sobre las propiedades del suelo, como la distribución del tamaño de partículas (DTP), estructura y contenido de materia orgánica (MO), lo que a su vez altera la plasticidad (límites de Atterberg), propiedad que brinda información sobre el comportamiento mecánico del suelo. El objetivo de este trabajo fue evaluar las relaciones entre los límites de Atterberg, la DTP y el contenido de MO en un suelo bajo labranza tradicional (LT) y no labranza (NL). Las muestras fueron tomadas de la capa superficial del suelo. Para ambas parcelas se determinó el limite liquido (LL), limite plástico (LP), índice de plasticidad (IP), contenido de MO y DTP. La NL presentó una mayor proporción de macroagregados con respecto a microagregados en comparación con la LT (89.16 y 85.59% respectivamente). No hubo diferencias significativas (p< 0.05) en el contenido de MO entre tratamientos, siendo mayor para LT (4.2%) con respecto a NL (4.1%), como resultado de que bajo el sistema de NL existe una rotación de cultivos que disminuye el residuo superficial, mientras que bajo la LT se realiza la incorporación de los residuos de cosecha. El LL e IP presento correlación con el contenido de arcilla (0.6 y 0.4 respectivamente), pero no para el contenido de MO y contrario a lo que indica la literatura. Se concluye que el contendido de MO por sí mismo, no es un indicador suficiente de los límites de Atterberg, por lo que se recomienda que para próximas investigaciones se determine el grado de descomposición, calidad y disposición de la MO respecto a las partículas minerales de la matriz del suelo.
APA, Harvard, Vancouver, ISO, and other styles
2

Rezende, Caroline, Leandro Olivio Nervis, and Mauricio Cruz Zaikoski. "Avaliação de dois solos residuais do município de Encruzilhada do Sul-RS para emprego como camada de revestimento primário de estradas de terra." Tecno-Lógica 23, no. 2 (2019): 125–32. http://dx.doi.org/10.17058/tecnolog.v23i2.12134.

Full text
Abstract:
Atualmente, os critérios para definição do material para ser utilizado no revestimento primário implicam muito mais a experiência de quem executa do que conhecimentos geotécnicos. No presente trabalho, foi realizado um estudo experimental com o objetivo de analisar dois tipos de solos com diferentes características para o possível emprego em revestimento primário. Foram realizadas coletas de amostras do subleito de uma estrada (solo 1), que é um solo residual de gnaisse, e de um solo de área de empréstimo (solo 2), residual de granito, ambas no município de Encruzilhada do Sul-RS, Brasil. Foram realizados ensaios de laboratório, tais como análise granulométrica, Limites de Atterberg (Limite de Liquidez e Limite de Plasticidade), ensaios de compactação, Índice de Suporte Califórnia (ISC), também conhecido como California Bearing Ratio (CBR), e ensaios voltados à classificação MCT (Miniatura, Compactado, Tropical). Os resultados foram analisados e discutidos, e, a partir disso, foi avaliada a aptidão dos materiais para emprego no revestimento primário de estradas de terra. Concluiu-se que o solo 1 não é apto para funcionar como camada final devido a sua baixa capacidade de suporte, demandando, portanto, camada(s) de revestimento primário. O solo 2, por sua vez, é altamente recomendado como reforço do subleito, pois se enquadra no grupo de primeira prioridade com esse fim. Porém, não é recomendado como camada final de revestimento primário devido à deficiência de fração argila.
APA, Harvard, Vancouver, ISO, and other styles
3

Moura Nascimento, Júlia, Juliana Patrocinio Martins, Ana Paula Castello de Lima, et al. "CARACTERIZAÇÃO MICROESTRUTURAL E PROPRIEDADES FÍSICAS E MECÂNICAS DE ARGILAS DA REGIÃO NORTE DO ESPÍRITO SANTO." Revista Ifes Ciência 6, no. 2 (2020): 17–27. http://dx.doi.org/10.36524/ric.v6i2.527.

Full text
Abstract:
O objetivo deste trabalho foi determinar as propriedades mineralógicas, físicas e mecânicas de argilas do norte do Espírito Santo. Foram analisadas duas argilas na forma como recebido (amostras A e B) e dois traços (2A-5B – amostra C; e 3A-4B – amostra D) utilizadas para confecção de tijolos. Para caracterização mineralógica utilizou-se as técnicas de fluorescência de raios X, microscopia eletrônica de varredura, difração de raios X, distribuição granulométrica, análises térmica diferencial e termogravimétrica e limites de Atterberg. Avaliou-se também absorção de água, porosidade aparente, massa específica aparente, retração linear após queima e limite de resistência à compressão de corpos de prova com 12 mm de diâmetro por 24 mm de altura, confeccionados por prensagem uniaxial, secados a 110°C por 24 h e sinterizados a 850°C, 900°C e 950°C, a 5°C/min com permanência por 2h nessas temperaturas. Os resultados das propriedades mineralógicas das amostras A e B apresentaram-se de acordo com a literatura. Os resultados das propriedades físicas e mecânicas apontaram para a utilização da amostra D como matéria prima para fabricação de tijolos.
APA, Harvard, Vancouver, ISO, and other styles
4

Macedo, R. S., R. R. Menezes, G. A. Neves, and H. C. Ferreira. "Influência de aditivos na produção de blocos cerâmicos." Cerâmica 54, no. 331 (2008): 373–81. http://dx.doi.org/10.1590/s0366-69132008000300017.

Full text
Abstract:
A indústria oleira nacional possui uma grande importância econômica e social, movimentando bilhões de reais e empregando milhões de pessoas. No entanto, apresenta uma grande defasagem tecnológica, o que se reflete na produção de peças de baixa qualidade e em uma grande quantidade de perdas na produção. Assim, visando melhorar a qualidade dos blocos cerâmicos esse trabalho tem por objetivo analisar a influência de aditivos no comportamento de plasticidade de massas para produção de blocos cerâmicos e nas propriedades físicas dos corpos produzidos com as massas aditivadas. Foram utilizados cinco massas industriais e dez aditivos durante o estudo. Foi analisada a influência dos aditivos nos limites de Atterberg das massas e selecionados os aditivos que reduziam os limites de plasticidade. Foram preparadas formulações com os aditivos selecionados e conformados corpos de prova por extrusão. Determinou-se o módulo de ruptura à flexão após secagem e queima e a absorção de água após queima desses corpos de prova. Com base nos resultados pode-se concluir que alguns aditivos reduzem o limite de plasticidade das massas e melhoram significativamente o comportamento mecânico após secagem e após queima.
APA, Harvard, Vancouver, ISO, and other styles
5

Luciano, Rodrigo Vieira, Jackson Adriano Albuquerque, André da Costa, Bruno Batistella, and Maria Tereza Warmling. "Atributos físicos relacionados à compactação de solos sob vegetação nativa em região de altitude no Sul do Brasil." Revista Brasileira de Ciência do Solo 36, no. 6 (2012): 1733–44. http://dx.doi.org/10.1590/s0100-06832012000600007.

Full text
Abstract:
A compactação causada por atividades antrópicas altera os atributos físicos do solo, causando redução na produtividade e impactos ao ambiente. Muitos estudos sobre esse tema têm sido realizados em solos agrícolas, porém poucas são as informações em áreas com vegetação nativa, nas quais, geralmente, os teores de matéria orgânica são mais elevados. Assim, é oportuno avaliar a relação entre os atributos físicos relacionados à compactação, nessas condições, a fim de estabelecer valores de referência para projetos de recuperação de áreas degradadas em campos naturais ou matas ciliares. Objetivou-se relacionar densidade máxima (DsMáx), umidade ótima de compactação (UOC) e densidade relativa (DR) com os limites de consistência, granulometria e teor de matéria orgânica de solos predominantes do Planalto Sul do Estado de Santa Catarina sob vegetação nativa de clima temperado. Amostras do horizonte A foram coletadas em dois Nitossolos, dois Neossolos e dois Cambissolos. Foram avaliados: a granulometria, a densidade de partícula, o teor de carbono orgânico total, os limites de liquidez, de plasticidade e de pegajosidade, o índice de plasticidade, a densidade máxima, a umidade ótima de compactação, a densidade do solo e a densidade relativa. A DsMáx aumenta com o teor de areia total e areia fina e reduz com os teores de argila e com os limites de liquidez e de pegajosidade. A UOC diminui nos solos arenosos, especialmente naqueles com predominância de areia fina, e aumenta nos argilosos ou com maior teor de carbono orgânico total e dos limites de Atterberg. A UOC variou entre 0,76 e 1,05 vezes o limite de plasticidade, tendo relação direta com o teor de silte, indicando que a umidade ótima de compactação não pode ser avaliada apenas com a determinação do limite de plasticidade de um solo. Os solos de altitude do Planalto Sul de SC têm relação UOC/LP diferente da de solos de outros locais, como consequência dos elevados teores de matéria orgânica desses solos.
APA, Harvard, Vancouver, ISO, and other styles
6

Silva, Taciano Oliveira da, Carlos Alexandre Braz de Carvalho, Dario Cardoso de Lima, Maria Lúcia Calijuri, Carlos Cardoso Machado, and Tales Moreira de Oliveira. "Avaliação do subleito de rodovias vicinais de baixo volume de tráfego por meio de ensaios geotécnicos." Revista Árvore 35, no. 4 (2011): 825–33. http://dx.doi.org/10.1590/s0100-67622011000500008.

Full text
Abstract:
Este artigo aborda a viabilidade técnica do uso de solos locais, preferencialmente os de comportamento geotécnico laterítico, em camadas de reforço do subleito de rodovias vicinais de baixo volume de tráfego, através de ensaios geotécnicos e da classificação MCT (Miniatura, Compactado, Tropical). Para este propósito, consideraram-se amostras deformadas de solos coletadas no subleito das estradas VCS 493 e VCS 296, pertencente à malha rodoviária vicinal do município de Viçosa-MG, Brasil. O programa de estudo de laboratório envolveu a realização dos seguintes ensaios: (i) granulometria conjunta; (ii) limites de Atterberg (LL e LP); (iii) massa específica dos grãos do solo; (iv) compactação e CBR realizados na energia do Proctor normal; (v) compactação Mini-MCV; e (vi) perda de massa do corpo-de-prova por imersão em água. Os resultados desta pesquisa possibilitaram verificar que os solos de comportamento laterítico foram enquadrados no grupo LG' na classificação MCT e que, mesmo apresentando valores de Limite de liquidez e Índice de plasticidade elevados, quando compactados na energia do Proctor normal e, conseqüentemente, imersos em água, não apresentaram expansão com valor significativo no ensaio de CBR. Por outro lado, as areias saprolíticas apresentam perda de massa por imersão (Pi) difícil de ser previsto na Metodologia MCT, pois podem apresentar valores muito elevados e baixos, conforme a compacidade atingida durante o processo de compactação dos corpos-de-prova, como pode ser notado no resultado da amostra 8.
APA, Harvard, Vancouver, ISO, and other styles
7

Santos, Salem Leandro Moura dos, Eliomar Pereira da Silva Filho, and Isabel Leonor Iza Echeverria Herrera. "Deslizamento em Uma Vertente do Rio Madeira em Porto Velho – RO: Uma Análise Morfomecânica." Revista Brasileira de Geografia Física 12, no. 5 (2019): 1980. http://dx.doi.org/10.26848/rbgf.v12.5.p1980-1995.

Full text
Abstract:
Este estudo tem o objetivo de estabelecer o nível piezométrico que a vertente tinha antes do deslizamento, a morfometria e a causa do movimento de massa. Para isto, foi utilizada equação de Equilíbrio-Limite, com o Fator de segurança em 1,49 para estabelecer o nível piezométrico necessário para causar o colapso da encosta, como também, a determinação de propriedades geomecânicas, como coesão, densidade, ângulo de atrito, tensão de cisalhamento, limites de Atterberg, além da granulometria e da morfometria. A vertente apresentava o formato convexo no topo e côncavo na base, ambos seccionados no meio pelos formatos retilíneo e côncavo. A inclinação média era de 35,17° em uma dimensão de 46,01m. A Equação indicou um nível piezométrico mínimo de 18,53 metros de altura para o colapso. Um aspecto que influenciou o deslizamento foi à erosão superficial causada por uma galeria de água pluvial, que uma vez rompida, erodiu o pacote de material superficial, Argilo Siltoso Mosqueado, que serve de proteção para a vertente, pois possui maior coesão e plasticidade. Após a completa erosão do pacote superior, houve a exposição pontual do pacote inferior, que após sofrer forte precipitação pluvial de 32,20 mm, ocorrida no dia 30/09/2013, ocasionou a elevação do nível piezométrico deste material inferior, Silto Arenoso Tangencial, de menor coesão e plasticidade que saturou, comportando-se de maneira semi-líquida. Devido este material ser todo o alicerce da encosta, o seu colapso causou todo o deslizamento rotacional da vertente. Verifica-se a importância de manter o material superior desta margem do Rio Landslide in The Madeira River Slope in Porto Velho - RO: A Morfomechanical analysis ABSTRACTThe aims this paper is establish the piezometric level that the slope had before sliding, morphometry and the cause of mass movement. For this, the Equilibrium-Limit equation was used, with the Safety Factor at 1.49 to establish the piezometric level necessary for collapse of the slope, as well as the determination of geomechanical properties, such as cohesion, density, friction angle , shear stress, Atterberg boundaries, granulometry and morphometry. The strand had the convex shape at the top and concave at the base, both sectioned in the middle by the rectilinear and concave shapes. The average slope was 35.17° in a dimension of 46.01m. Equation indicated a minimum piezometric level of18.53 metershigh for collapse. One aspect that influenced the sliding was the superficial erosion caused by a gallery of rainwater, which once ruptured, eroded the package of surface material, Silt Clay Mottled, which serves as protection for the slope, as it has greater cohesion and plasticity. After complete erosion of the upper package, there was a punctual exposition of the lower package, which after suffering heavy rainfall of32.20 mm, occurred on 09/30/2013, caused the elevation of the piezometric level of this lower material, Sand Silt Tangential, of lower cohesion and plasticity that saturated, behaving in a semi-liquid way. Because this material is the whole foundation of the slope, its collapse caused all the rotational slip of the slope. It’s important to maintain the superior material of the slope, aiming at the reduction of shear forces and erosions.Keywords: Piezometric Level, morphometry, Break Circle.
APA, Harvard, Vancouver, ISO, and other styles
8

Tong, Ling, Wei Sheng Chen, Xi Lai Zheng, and Mei Li. "Effect of Oil Contamination on Atterberg Limits of Soil." Advanced Materials Research 374-377 (October 2011): 336–38. http://dx.doi.org/10.4028/www.scientific.net/amr.374-377.336.

Full text
Abstract:
Atterberg limit tests were preformed on diesel oil contaminated soil and crude oil contaminated soil. The results show that Atterberg limits reduced with increasing of diesel oil content. When crude oil content changed from 0 to 8%, it has little effect on Atterberg limits. However, it rose from 8% to 16%, plastic limit slightly decreased, but liquid limit increased remarkably. A "pseudo-viscosity" caused by crude oil is the key factor for this phenomenon.
APA, Harvard, Vancouver, ISO, and other styles
9

Fener, Mustafa, Sair Kahraman, Yakup Bay, and Osman Gunaydin. "Correlations between P-wave velocity and Atterberg limits of cohesive soils." Canadian Geotechnical Journal 42, no. 2 (2005): 673–77. http://dx.doi.org/10.1139/t04-102.

Full text
Abstract:
Undisturbed and disturbed samples of cohesive soils were collected from eight different locations to investigate the possibility of estimating the Atterberg limits of cohesive soils from P-wave velocity measurements. Each soil type was classified according to the Unified Soil Classification System, and then Atterberg limits of soils were determined and P-wave velocity measurements carried out on the undisturbed samples of each soil type. P-wave velocity values were correlated with the corresponding values of Atterberg limits. It was found that liquid limit, plastic limit, and plasticity index exhibit good correlations with P-wave velocity. The relations follow a logarithmic function. Liquid limit, plastic limit, and plasticity index decrease with an increase in P-wave velocity. In addition, liquid limit, plastic limit, and plasticity index exhibit very good correlations with the ratio of P-wave velocity to water content. Liquid limit, plastic limit, and plasticity index decrease logarithmically with an increase in the ratio of P-wave velocity to water content. It can be concluded that the Atterberg limits of cohesive soils can be predicted from P-wave velocity measurements for preliminary investigations. The developed equations have some limitations and further study is required in this area.Key words: Atterberg limits, cohesive soils, P-wave velocity, regression analysis.
APA, Harvard, Vancouver, ISO, and other styles
10

O’Kelly, Brendan C. "Briefing: Atterberg limits and peat." Environmental Geotechnics 3, no. 6 (2016): 359–63. http://dx.doi.org/10.1680/envgeo.15.00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Keramatikerman, Mahdi, Amin Chegenizadeh, and Hamid Nikraz. "ATTERBERG LIMIT OF KAOLINITE-LIME." International Journal of Engineering Applied Sciences and Technology 04, no. 11 (2020): 255–58. http://dx.doi.org/10.33564/ijeast.2020.v04i11.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Deng, Yusong, Chongfa Cai, Dong Xia, Shuwen Ding, Jiazhou Chen, and Tianwei Wang. "Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China." Solid Earth 8, no. 2 (2017): 499–513. http://dx.doi.org/10.5194/se-8-499-2017.

Full text
Abstract:
Abstract. Collapsing gullies are one of the most serious soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have been performed on the relationship of soil Atterberg limits with soil profiles of the collapsing gullies. Soil Atterberg limits, which include plastic limit and liquid limit, have been proposed as indicators for soil vulnerability to degradation. Here, the soil Atterberg limits within different weathering profiles and their relationships with soil physicochemical properties were investigated by characterizing four collapsing gullies in four counties in the hilly granitic region of southern China. The results showed that with the fall of weathering degree, there was a sharp decrease in plastic limit, liquid limit, plasticity index, soil organic matter, cation exchange capacity and free iron oxide. Additionally, there was a gradual increase in liquidity index, a sharp increase in particle density and bulk density followed by a slight decline, a decrease in the finer soil particles, a noticeable decline in the clay contents, and a considerable increase in the gravel and sand contents. The plastic limit varied from 19.43 to 35.93 % in TC, 19.51 to 33.82 % in GX, 19.32 to 35.58 % in AX and 18.91 to 36.56 % in WH, while the liquid limit varied from 30.91 to 62.68 % in TC, 30.89 to 57.70 % in GX, 32.48 to 65.71 % in AX and 30.77 to 62.70 % in WH, respectively. The soil Atterberg limits in the sandy soil layers and detritus layers were lower than those in the surface layers and red soil layers, which results in higher vulnerability of the sandy soil layers and detritus layers to erosion and finally the formation of the collapsing gully. The regression analyses showed that soil Atterberg limits had significant and positive correlation with SOM, clay content, cationic exchange capacity and Fed, significant and negative correlation with sand content and no obvious correlation with other properties. The results of this study revealed that soil Atterberg limits are an informative indicator to reflect the weathering degree of different weathering profiles of the collapsing gullies in the hilly granitic region.
APA, Harvard, Vancouver, ISO, and other styles
13

Sherzoy, Mohammad Murtaza. "Atterberg Limits Prediction Comparing SVM with ANFIS Model." Journal of Geoscience, Engineering, Environment, and Technology 2, no. 1 (2017): 20. http://dx.doi.org/10.24273/jgeet.2017.2.1.16.

Full text
Abstract:
Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy inference Systems (ANFIS) both analytical methods are used to predict the values of Atterberg limits, such as the liquid limit, plastic limit and plasticity index. The main objective of this study is to make a comparison between both forecasts (SVM & ANFIS) methods. All data of 54 soil samples are used and taken from the area of Peninsular Malaysian and tested for different parameters containing liquid limit, plastic limit, plasticity index and grain size distribution and were. The input parameter used in for this case are the fraction of grain size distribution which are the percentage of silt, clay and sand. The actual and predicted values of Atterberg limit which obtained from the SVM and ANFIS models are compared by using the correlation coefficient R2 and root mean squared error (RMSE) value. The outcome of the study show that the ANFIS model shows higher accuracy than SVM model for the liquid limit (R2 = 0.987), plastic limit (R2 = 0.949) and plastic index (R2 = 0966). RMSE value that obtained for both methods have shown that the ANFIS model has represent the best performance than SVM model to predict the Atterberg Limits as a whole.
APA, Harvard, Vancouver, ISO, and other styles
14

Adunoye, G. O., A. A. Ojo, A. F. Alasia, and M. O. Olarewaju. "A study on the correlation potential of compaction characteristics and atterberg limits of selected lateritic soils." International Journal of Physical Research 8, no. 1 (2020): 22. http://dx.doi.org/10.14419/ijpr.v8i1.30689.

Full text
Abstract:
The importance of soil compaction for civil engineering construction and application cannot be over-emphasised. To perform soil compaction, numerous number of samples are required, with considerable time and laborious laboratory activities. This has necessitated the need to find models for the prediction of compaction characteristics, using easily determined soil properties. This work therefore undertook a study of the correlation potential of compaction characteristics and Atterberg limits of soils, with a view to modelling compaction characteristics, using Atterberg limits. To achieve this aim, soil samples were obtained from selected locations within Obafemi Awolowo University campus, Ile-Ife, Nigeria. Preliminary, Atterberg limits and compaction tests were conducted on the soil samples, using standard procedure. Using Microsoft Excel and Xuru’s Regression tool, the laboratory test results were used to develop relationships between compaction characteristics (optimum moisture content and maximum dry density) and Atterberg limits (liquid limit and plastic limit). Results showed that the natural moisture content of soil samples ranged between 4.97 % and 19.72 %; liquid limit ranged between 27 % and 68 %; plastic limit ranged between 18.92 % and 63.01 %; and plasticity index ranged between 0.94 % and 14.63 %. The optimum moisture content ranged between 6.7 % and 27 %, while the maximum dry density ranged between 1560 kN/m3 and 2260 kN/m3. The results of regression analysis showed that the combination of liquid limit and plastic limit has a strong correlation with optimum moisture content (R2 = 0.870); while the combination (of liquid limit and plastic limit) showed a weak correlation with maximum dry density (R2 = 0.150). The study concluded that liquid limit and plastic limit could be used to estimate the optimum moisture content of the soils, by applying the developed relationship/equation.
APA, Harvard, Vancouver, ISO, and other styles
15

Gutiérrez, Alvaro. "Determination of Atterberg Limits: Uncertainty and Implications." Journal of Geotechnical and Geoenvironmental Engineering 132, no. 3 (2006): 420–24. http://dx.doi.org/10.1061/(asce)1090-0241(2006)132:3(420).

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Stanchi, S., S. Negri, M. E. D'Amico, E. Raimondo, and E. Bonifacio. "Atterberg limits fail in recognizing fragipan horizons." CATENA 202 (July 2021): 105282. http://dx.doi.org/10.1016/j.catena.2021.105282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

O’Kelly, Brendan C. "Review of Recent Developments and Understanding of Atterberg Limits Determinations." Geotechnics 1, no. 1 (2021): 59–75. http://dx.doi.org/10.3390/geotechnics1010004.

Full text
Abstract:
Among the most commonly specified tests in the geotechnical engineering industry, the liquid limit and plastic limit tests are principally used for (i) deducing useful design parameter values from existing correlations with these consistency limits and (ii) for classifying fine-grained soils, typically employing the Casagrande-style plasticity chart. This updated state-of-the-art review paper gives a comprehensive presentation of salient latest research and understanding of soil consistency limits determinations/measurement, elaborating concisely on the many standardized and proposed experimental testing approaches, their various fundamental aspects and possibly pitfalls, as well as some very recent alternative proposals for consistency limits determinations. Specific attention is given to fall cone testing methods advocated (but totally unsuitable) for plastic limit determination; that is, the water content at the plastic–brittle transition point, as defined using the hand rolling of threads method. A framework (utilizing strength-based fall cone-derived parameters) appropriate for correlating shear strength variation with water content over the conventional plastic range is presented. This paper then describes two new fine-grained soil classification system advancements (charts) that do not rely on the thread-rolling plastic limit test, known to have high operator variability, and concludes by discussing alternative and emerging proposals for consistency limits determinations and fine-grained soil classification.
APA, Harvard, Vancouver, ISO, and other styles
18

JONG, E. DE, D. F. ACTON, and H. B. STONEHOUSE. "ESTIMATING THE ATTERBERG LIMITS OF SOUTHERN SASKATCHEWAN SOILS FROM TEXTURE AND CARBON CONTENTS." Canadian Journal of Soil Science 70, no. 4 (1990): 543–54. http://dx.doi.org/10.4141/cjss90-057.

Full text
Abstract:
The soil water contents at the liquid and plastic limits (the Atterberg limits) are widely used in the classification of soils for engineering purposes. Approximately 500 soil samples (129 Ap horizons and 417 B and C horizons) collected over several years as part of the ongoing soil survey program in Saskatchewan were analyzed for texture and Atterberg limits. On about half of the samples water retention (−33 kPa and −1500 kPa matric potential and air dryness), and organic and inorganic C were also determined. The relationship between the Atterberg limits and soil properties was explored through correlation and regression analysis. Clay and organic matter content explained most of the observed variation in the Atterberg limits of the Ap horizons. Clay was the most important independent variable in the B and C horizons, while inorganic C had only a relatively small impact. Key words: Atterberg limits, texture, organic and inorganic C
APA, Harvard, Vancouver, ISO, and other styles
19

Baskan, O., G. Erpul, and O. Dengiz. "Comparing the efficiency of ordinary kriging and cokriging to estimate the Atterberg limits spatially using some soil physical properties." Clay Minerals 44, no. 2 (2009): 181–93. http://dx.doi.org/10.1180/claymin.2009.044.2.181.

Full text
Abstract:
AbstractThe spatial distribution of the Atterberg limits can be used to distinguish the consistency and behaviour of a soil and its engineering properties, which strongly depends on the water content of the soil and types of silts and clays in the soil. By spatial modeling, and comparing the results of ordinary kriging with the cokriging approach, this study aims to find correlations between the Atterberg limits and the selected physical soil parameters in order to examine how effective they are in generating an understanding of the dynamics of a physical soil system.In 156 soil samples, the Atterberg limits and soil moisture conditions were determined, and auxiliary functions were selected by application of cokriging using correlation analysis and regression equations obtained by the residual maximum likelihood (REML). These techniques were evaluated by the results of the mean absolute error (MAE) and the mean squared error (MSE). Cokriging analysis was found to be more effective at estimating the liquid limit (WLL) and the plastic limit (WPL) than kriging analysis and with smaller error values. On the other hand, the kriging approach, which had smaller MAE and MSE values, was more effective at estimating the plasticity index (WPI) values than the cokriging method. Unlike the REML regression equations, the field capacity (FC) value was the more suitable parameter for the cokriging estimates. When the necessary labour and time were considered for determining the Atterberg limits, both kriging and cokriging were found to be applicable for estimation of these limits.
APA, Harvard, Vancouver, ISO, and other styles
20

O’Kelly, Brendan C. "Atterberg limits are not appropriate for peat soils." Geotechnical Research 2, no. 3 (2015): 123–34. http://dx.doi.org/10.1680/jgere.15.00007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhou, Baochun, and Ning Lu. "Correlation between Atterberg Limits and Soil Adsorptive Water." Journal of Geotechnical and Geoenvironmental Engineering 147, no. 2 (2021): 04020162. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0002463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Polidori, Ennio. "Relationship Between the Atterberg Limits and Clay Content." Soils and Foundations 47, no. 5 (2007): 887–96. http://dx.doi.org/10.3208/sandf.47.887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sahib, Amal Azad, and Retnamony G. Robinson. "Drying and Atterberg limits of Cochin marine clay." International Journal of Geotechnical Engineering 14, no. 8 (2020): 986–93. http://dx.doi.org/10.1080/19386362.2020.1711554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ribeiro, K. D., and L. K. Souza. "LIMITES DE ATTERBERG E SUA CORRELAÇÃO COM A GRANULOMETRIA E MATÉRIA ORGÂNICA DOS SOLOS / CORRELATION BETWEEN GRANULOMETRY AND ORGANIC SOIL MATTERS WITH LIMITS OF ATTERBERG." Revista Brasileira de Engenharia de Biossistemas 12, no. 2 (2018): 185. http://dx.doi.org/10.18011/bioeng2018v12n2p185-196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wesley, L. D. "Residual strength of clays and correlations using Atterberg limits." Géotechnique 53, no. 7 (2003): 669–72. http://dx.doi.org/10.1680/geot.2003.53.7.669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ahmed, Sayed M., and Shehab S. Agaiby. "Strength and stiffness characterization of clays using Atterberg limits." Transportation Geotechnics 25 (December 2020): 100420. http://dx.doi.org/10.1016/j.trgeo.2020.100420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hussain, A., and C. Atalar. "Estimation of compaction characteristics of soils using Atterberg limits." IOP Conference Series: Materials Science and Engineering 800 (May 19, 2020): 012024. http://dx.doi.org/10.1088/1757-899x/800/1/012024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

O'Kelly, Brendan C. "Atterberg Limits and Remolded Shear Strength—Water Content Relationships." Geotechnical Testing Journal 36, no. 6 (2013): 20130012. http://dx.doi.org/10.1520/gtj20130012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Żbik, Marek S., David J. Williams, Yen-Fang Song, and Chun-Chieh Wang. "Smectite clay microstructural behaviour on the Atterberg limits transition." Colloids and Surfaces A: Physicochemical and Engineering Aspects 467 (February 2015): 89–96. http://dx.doi.org/10.1016/j.colsurfa.2014.11.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Arthur, Emmanuel, Hafeez Ur Rehman, Markus Tuller, et al. "Estimating Atterberg limits of soils from hygroscopic water content." Geoderma 381 (January 2021): 114698. http://dx.doi.org/10.1016/j.geoderma.2020.114698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kayabali, Kamil, and Osman Oguz Tufenkci. "Shear strength of remolded soils at consistency limits." Canadian Geotechnical Journal 47, no. 3 (2010): 259–66. http://dx.doi.org/10.1139/t09-095.

Full text
Abstract:
The undrained shear strength of remolded soils is of concern in certain geotechnical engineering applications. Several methods for determining this parameter exist, including the laboratory vane test. This study proposes a new method to estimate the undrained shear strength, particularly at the plastic and liquid limits. For 30 inorganic soil samples of different plasticity levels, we determined the Atterberg limits, then performed a series of reverse extrusion tests at different water contents. The plastic and liquid limits are derived from the linear relationship between the logarithm of the extrusion pressure and water content. The tests show that the average undrained shear strength determined from the extrusion pressures at the plastic limit is about 180 kPa, whereas the average undrained shear strength at the liquid limit is 2.3 kPa. We show that the undrained shear strength of remolded soils at any water content can be estimated from the Atterberg limits alone. Although the laboratory vane test provides a reasonable undrained shear strength value at the plastic limit, it overestimates the undrained shear strength at the liquid limit and thus, care must be taken when the laboratory vane test is used to determine undrained shear strengths at water contents near the liquid limit.
APA, Harvard, Vancouver, ISO, and other styles
32

Sridharan, A., and P. Raghuveer Rao. "Discussion: Residual strength of clays and correlation using Atterberg limits." Géotechnique 54, no. 7 (2004): 503–4. http://dx.doi.org/10.1680/geot.2004.54.7.503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Djokovic, Ksenija, Dragoslav Rakic, and Milenko Ljubojev. "Estimation of soil compaction parameters based on the Atterberg limits." Mining and Metallurgy Engineering Bor, no. 4 (2013): 1–16. http://dx.doi.org/10.5937/mmeb1304001d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

O'Kelly, B. C., P. J. Vardanega, and S. K. Haigh. "Use of fall cones to determine Atterberg limits: a review." Géotechnique 68, no. 10 (2018): 843–56. http://dx.doi.org/10.1680/jgeot.17.r.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

O'Kelly, Brendan C., Paul J. Vardanega, Stuart K. Haigh, Katia Vanessa Bicalho, Jean-Marie Fleureau, and Yu-Jun Cui. "Use of fall cones to determine Atterberg limits: a review." Géotechnique 70, no. 7 (2020): 652–54. http://dx.doi.org/10.1680/jgeot.18.d.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

O'Kelly, Brendan C., Paul J. Vardanega, Stuart K. Haigh, and Graham E. Barnes. "Use of fall cones to determine Atterberg limits: a review." Géotechnique 70, no. 7 (2020): 647–51. http://dx.doi.org/10.1680/jgeot.19.d.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Al-Khafaji, A. N. "Estimation of soil compaction parameters by means of Atterberg limits." Quarterly Journal of Engineering Geology and Hydrogeology 26, no. 4 (1993): 359–68. http://dx.doi.org/10.1144/gsl.qjegh.1993.026.004.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kayabali, Kamil, Ozgur Akturk, Mustafa Fener, et al. "Determination of Atterberg limits using newly devised mud press machine." Journal of African Earth Sciences 116 (April 2016): 127–33. http://dx.doi.org/10.1016/j.jafrearsci.2016.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nagaraj, H. B., A. Sridharan, and H. M. Mallikarjuna. "Re-examination of Undrained Strength at Atterberg Limits Water Contents." Geotechnical and Geological Engineering 30, no. 4 (2012): 727–36. http://dx.doi.org/10.1007/s10706-011-9489-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mousavi, Fatemeh, Ehsan Abdi, Abbas Ghalandarzadeh, Hossein Ali Bahrami, Baris Majnounian, and Noura Ziadi. "Diffuse reflectance spectroscopy for rapid estimation of soil Atterberg limits." Geoderma 361 (March 2020): 114083. http://dx.doi.org/10.1016/j.geoderma.2019.114083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Djurdjevac-Ignjatovic, Lidija, Dragan Ignjatovic, and Ivana Jovanovic. "Statistical processing the results of interlaboratory testing the consistency of soil - the Atterberg limits (liquid, plasticity and shrinkage limit)." Mining and Metallurgy Engineering Bor, no. 2 (2013): 219–30. http://dx.doi.org/10.5937/mmeb1302219d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gupta, Abhinav, Bhabani Sankar Das, Ashish Kumar, Poulamee Chakraborty, and Biswajita Mohanty. "Rapid and Noninvasive Assessment of Atterberg Limits Using Diffuse Reflectance Spectroscopy." Soil Science Society of America Journal 80, no. 5 (2016): 1283–95. http://dx.doi.org/10.2136/sssaj2015.11.0402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Dolinar, Bojana, Miha Miŝiĉ, and Ludvik Trauner. "Correlation between surface area and Atterberg limits of fine-grained soils." Clays and Clay Minerals 55, no. 5 (2007): 519–23. http://dx.doi.org/10.1346/ccmn.2007.0550506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Prakash, K., and A. Sridharan. "Discussion of “Atterberg Limits and Remolded Shear Strength—Water Content Relationships”." Geotechnical Testing Journal 37, no. 4 (2014): 20140008. http://dx.doi.org/10.1520/gtj20140008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Aliy Gobena, Jemal, G. Kumar, and S. Suppiah. "Optimization of Atterberg limits of treated expansive soils with Taguchi method." Materials Today: Proceedings 43 (2021): 2127–33. http://dx.doi.org/10.1016/j.matpr.2020.11.894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Knadel, Maria, Hafeez Ur Rehman, Nastaran Pouladi, Lis Wollesen de Jonge, Per Moldrup, and Emmanuel Arthur. "Estimating Atterberg limits of soils from reflectance spectroscopy and pedotransfer functions." Geoderma 402 (November 2021): 115300. http://dx.doi.org/10.1016/j.geoderma.2021.115300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wasti, Y., and M. H. Bezirci. "Determination of the consistency limits of soils by the fall cone test." Canadian Geotechnical Journal 23, no. 2 (1986): 241–46. http://dx.doi.org/10.1139/t86-033.

Full text
Abstract:
The liquid and plastic limits for a variety of natural and artificial soils covering a wide range of plasticity, as determined by the Casagrande method and the fall cone test and based on a strength criterion, were compared. To check the validity of the strength criterion, the undrained shear strength of these soils has been determined with a laboratory vane over the water content range between these limits. A limited comparison of the undrained strength values obtained from the vane test and fall cone test is also given. Key words: Atterberg limits, consistency, fall cone, laboratory vane, shear strength.
APA, Harvard, Vancouver, ISO, and other styles
48

Ye, Hao, Chengfu Chu, Long Xu, Kunlong Guo, and Dong Li. "Experimental Studies on Drying-Wetting Cycle Characteristics of Expansive Soils Improved by Industrial Wastes." Advances in Civil Engineering 2018 (September 24, 2018): 1–9. http://dx.doi.org/10.1155/2018/2321361.

Full text
Abstract:
The improved engineering properties of the expansive soil by mixing with various additives will be changed during the long-term variation of the meteorological and hydrological conditions. In the present work, a series of tests are performed to investigate the evolution of the unconfined compression strength and the Atterberg limits under drying-wetting cycling conditions for specimens treated by iron tailing sands and calcium carbide slag. Typical results of the unconfined compressive strength can be divided into three stages. The unconfined compressive strength increases initially and then decreases to reach a stable state with continuous drying-wetting process. The calcium carbide slag content (αCCS) of 10% can be determined for the minimum effect of the drying-wetting cycle on the strength of the treated specimen. An exponential relationship is established to describe the evolution of the unconfined compressive strength with the drying-wetting cycle. The liquid limit and plastic index of the specimen increase initially followed by a decreasing trend, while a reverse trend was observed for that of the plastic limit during the drying-wetting process. The minimum effect of the drying-wetting cycle on the Atterberg limits can be presented for the specimen with αCCS of 10% as well.
APA, Harvard, Vancouver, ISO, and other styles
49

Abidin, Mohd Hazreek Zainal, Mohd Shalahudin Adnan, Aziman Madun, et al. "The Performance of Earth Retention Pond Water Retain Capability Using Geotechnical Properties Evaluation." International Journal of Engineering & Technology 7, no. 4.30 (2018): 257. http://dx.doi.org/10.14419/ijet.v7i4.30.22278.

Full text
Abstract:
Development of a new modern housing areas has demand a retention pond for recreation activity and landscaping purposes. This study deals with the evaluation of water retain ability of a new retention pond from the soil condition perspective. Geotechnical laboratory testing was performed via particle size distribution, Atterberg limits and permeability to assess the retention pond soil condition. All the experiment was performed according to British Standard 1377 (1990). It was found that soil tested has been dominated by fine particles which ranged at 30.84 – 60.88 % compared to the coarse particles (sand and gravel). Atterberg limits results has found that all soil tested has a liquid limit (LL), plastic limit (PL) and plasticity index (PI) that was varied at 29 – 74 %, 16.9 – 33.6 % and 17 – 40.4 % respectively representing its promising water retain capability. Moreover, permeability result founds that all values of permeability coefficient, k was ranged at 3.11 x 10-4 – 5.65 x 10-7 cm/s thus conclude that all soil tested has low to very low degree of permeability. Finally, retention pond of a new development area has been evaluated directly according to its soil condition thus provide some valuable information to the responsible parties regarding the future planning and decision making of the sustainable catchment areas.
APA, Harvard, Vancouver, ISO, and other styles
50

Galhano, C., F. Rocha, and C. Gomes. "Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the ‘Argilas de Aveiro’ Formation (Portugal)." Clay Minerals 34, no. 1 (1999): 109–16. http://dx.doi.org/10.1180/000985599545966.

Full text
Abstract:
AbstractTextural, mineralogical and chemical parameters of clays belonging to the Upper Cretaceous ‘Argilas de Aveiro’ formation were determined and correlated, using geostatistical analysis, with some relevant geotechnical parameters. The data obtained made it possible to subdivide the region under study into distinctive sectors on the basis of geotechnical behaviour. Clay fraction content and composition control geotechnical parameters such as the expandability and the Atterberg plastic and liquid limits. A positive correlation was found between both expandability and the Atterberg plasticity index values and the total phyllosilicates, smectite, MgO and Al2O3. However, Atterberg plasticity index values were relatively independent of the diverse clay mineral assemblages.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!