Academic literature on the topic 'LINCS L1000'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LINCS L1000.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LINCS L1000"
Liu, Chenglin, Jing Su, Fei Yang, Kun Wei, Jinwen Ma, and Xiaobo Zhou. "Compound signature detection on LINCS L1000 big data." Molecular BioSystems 11, no. 3 (2015): 714–22. http://dx.doi.org/10.1039/c4mb00677a.
Full textQiu, Yue, Tianhuan Lu, Hansaim Lim, and Lei Xie. "A Bayesian approach to accurate and robust signature detection on LINCS L1000 data." Bioinformatics 36, no. 9 (2020): 2787–95. http://dx.doi.org/10.1093/bioinformatics/btaa064.
Full textKort, Eric J., and Stefan Jovinge. "Streamlined analysis of LINCS L1000 data with the slinky package for R." Bioinformatics 35, no. 17 (2019): 3176–77. http://dx.doi.org/10.1093/bioinformatics/btz002.
Full textWen, Huaming, Ryan A. Gallo, Xiaosheng Huang, et al. "Incorporating Differential Gene Expression Analysis with Predictive Biomarkers to Identify Novel Therapeutic Drugs for Fuchs Endothelial Corneal Dystrophy." Journal of Ophthalmology 2021 (June 28, 2021): 1–8. http://dx.doi.org/10.1155/2021/5580595.
Full textWang, Zichen, Neil R. Clark, and Avi Ma’ayan. "Drug-induced adverse events prediction with the LINCS L1000 data." Bioinformatics 32, no. 15 (2016): 2338–45. http://dx.doi.org/10.1093/bioinformatics/btw168.
Full textDuan, Qiaonan, Corey Flynn, Mario Niepel, et al. "LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures." Nucleic Acids Research 42, W1 (2014): W449—W460. http://dx.doi.org/10.1093/nar/gku476.
Full textSzalai, Bence, Vigneshwari Subramanian, Christian H. Holland, Róbert Alföldi, László G. Puskás, and Julio Saez-Rodriguez. "Signatures of cell death and proliferation in perturbation transcriptomics data—from confounding factor to effective prediction." Nucleic Acids Research 47, no. 19 (2019): 10010–26. http://dx.doi.org/10.1093/nar/gkz805.
Full textSuter, Robert, Vasileios Stathias, Anna Jermakowicz, et al. "COMP-16. COMPREHENSIVE TRANSCRIPTOMIC ANALYSIS OF SINGLE CELLS FROM RECURRENT AND PRIMARY GLIOBLASTOMA TO PREDICT CELL-TYPE SPECIFIC THERAPEUTICS." Neuro-Oncology 21, Supplement_6 (2019): vi64. http://dx.doi.org/10.1093/neuonc/noz175.259.
Full textLee, Hanbi, and Wankyu Kim. "Comparison of Target Features for Predicting Drug-Target Interactions by Deep Neural Network Based on Large-Scale Drug-Induced Transcriptome Data." Pharmaceutics 11, no. 8 (2019): 377. http://dx.doi.org/10.3390/pharmaceutics11080377.
Full textFerguson, Laura B., Shruti Patil, Bailey A. Moskowitz, et al. "A Pathway-Based Genomic Approach to Identify Medications: Application to Alcohol Use Disorder." Brain Sciences 9, no. 12 (2019): 381. http://dx.doi.org/10.3390/brainsci9120381.
Full textDissertations / Theses on the topic "LINCS L1000"
White, Shana. "Application and Development of Novel Methods for Pathway Analysis and Visualization of the LINCS L1000 Dataset." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1623241379918016.
Full textMahi, Naim. "Connectivity Analysis of Single-cell RNA-seq Derived Transcriptional Signatures." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613748441148963.
Full textChen, Tzu-Yao, and 陳子堯. "Investigating the functions of unannotated genes using LINCS L1000 big data." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/05564794452357217247.
Full textLiao, Pei-Han, and 廖珮函. "Inferring Drug-Target Interactions Based on Perturbational Profiles in LINCS L1000 Data." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/dw9egx.
Full textConference papers on the topic "LINCS L1000"
Huang, Chia-Ling, Andrew Yang, Ted Natoli, et al. "Abstract 2467: Heme-CMap: Generation and characterization of ~20K L1000 profiles across 11 hematologic malignant lines." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2467.
Full textHuang, Chia-Ling, Andrew Yang, Ted Natoli, et al. "Abstract 2467: Heme-CMap: Generation and characterization of ~20K L1000 profiles across 11 hematologic malignant lines." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2467.
Full text