To see the other types of publications on this topic, follow the link: Line algebras.

Books on the topic 'Line algebras'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Line algebras.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Mizumachi, Tetsu. Stability of line solitons for the KP-II equation in R2. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andréka, Hajnal, Miklós Ferenczi, and István Németi, eds. Cylindric-like Algebras and Algebraic Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35025-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jacobson, Nathan. Finite-dimensional division algebras over fields. Berlin: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Inc, ebrary, ed. Simple Lie algebras over fields of positive characteristic: Classifying the absolute toral rank two case. Berlin: Walter de Gruyter, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adler, Mark. Algebraic integrability, Painlevé geometry and Lie algebras. Berlin: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seligman, George B. Constructions of Lie algebras and their modules. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Structure of the level one standard modules for the affine Lie algebras Bl⁽¹⁾, F₄⁽¹⁾, and G₂⁽¹⁾. Providence, R.I., USA: American Mathematical Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mirko, Primc, ed. Structure of the standard modules for the affine Lie algebra A₁ superscript (1). Providence, R.I: American Mathematical Society, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kostant, Bertram. Collected papers. Edited by Joseph Anthony 1942-, Vergne Michèle, and Kumar S. (Shrawan) 1953-. Dordrecht: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lectures on sl2 (C)-modules. London: Imperial College Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Strade, Helmut. Modular lie algebras and their representations. New York: Marcel Dekker, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rolf, Farnsteiner, ed. Modular lie algebras and their representations. New York: Marcel Dekker, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

H, Lenagan T., ed. Growth of algebras and Gelfand-Kirillov dimension. Boston: Pitman Advanced Pub. Program, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Krause, G. R. Growth of algebras and Gelfand-Kirillov dimension. Providence, R.I: American Mathematical Society, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

M, McGovern William. Completely prime maximal ideals and quantization. Providence, R.I: American Mathematical Society, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

K, Raina A., ed. Bombay lectures on highest weight representations of infinite dimensional lie algebras. Singapore: World Scientific, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

author, Raina A. K., and Rozhkovskaya Natasha author, eds. Bombay lectures on highest weight representations of infinite dimensional lie algebras. Hackensack,] New Jersey: World Scientific, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Steeb, W. H. Continuous symmetries, Lie algebras, differential equations, and computer algebra. Singapore: World Scientific, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Steeb, W. H. Continuous symmetries, Lie algebras, differential equations, and computer algebra. 2nd ed. Hackensack, N.J: World Scientific, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nakano, Daniel K. Projective modules over Lie algebras of Cartan type. Providence, R.I: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dixmier, Jacques. Enveloping algebras. Providence, R.I: American Mathematical Society, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

1960-, Testerman Donna M., ed. Linear algebraic groups and finite groups of lie type. Cambridge: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Abstract lie algebras. Mineola, N.Y: Dover Publications, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Algebra ix: Finite groups of lie type. finite -dimensional division algebras. [S.l.]: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

A, Bakhturin I͡U︡, ed. Groups, rings, Lie and Hopf algebras. Dordrecht: Kluwer Academic Publishers, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lawther, R. A1 subgroups of exceptional algebraic groups. Providence, R.I: American Mathematical Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

1943-, Seitz Gary M., and American Mathematical Society, eds. Reductive subgroups of exceptional algebraic groups. Providence, R.I: American Mathematical Society, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

1960-, Testerman Donna M., ed. A₁ subgroups of exceptional algebraic groups. Providence, R.I: American Mathematical Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Malle, Gunter. Linear algebraic groups and finite groups of lie type. Cambridge: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mikhaĭlovna, Gubareni Nadezhda, and Kirichenko Vladimir V, eds. Algebras, rings, and modules: Lie algebras and Hopf algebras. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bokutʹ, L. A. (Leonid Arkadʹevich), 1937-, Bremner Murray R, and Kotchetov Mikhail V, eds. Selected works of A.I. Shirshov. Basel: Birkhäuser, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Benkart, Georgia. Stability in modules for classical lie algebras: A constructive approach. Providence, R.I., USA: American Mathematical Society, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mortajine, A. Classification des espaces préhomogènes de type parabolique réguliers et de leurs invariants relatifs. Paris: Hermann, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yau, Stephen S. T. Classification of Jacobian ideals in variant by sl (2, c) actions. Providence, R.I., USA: American Mathematical Society, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yau, Stephen Shing-Toung. Classification of Jacobian ideals invariant by sl(2, C) actions. Providence, R.I., USA: American Mathematical Society, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

1943-, Seitz Gary M., ed. Unipotent and nilpotent classes in simple algebraic groups and lie algebras. Providence, R.I: American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Goze, Michel. Nilpotent Lie algebras. Dordrecht: Kluwer Academic, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

William, Fulton. Representation theory: A first course. New York: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

William, Fulton. Representation theory: A first course. 3rd ed. New York: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Robert, Hermann. Lie-theoretic ODE numerical analysis, mechanics, and differential systems. Brookline, Mass: Math Sci Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Reutenauer, Christophe. Free lie algebras. Oxford: Clarendon Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Humphreys, James E. Introduction to Lie algebras and representation theory. 7th ed. New York: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Introduction to Lie algebras and representation theory. 6th ed. New York: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Malcev-admissible algebras. Boston: Birkhäuser, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Myung, Hyo Chul. Malcev-admissible algebras. Boston: Birkhäuser, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Smooth compactifications of locally symmetric varieties. 2nd ed. Cambridge, UK: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vertex algebras and integral bases for the enveloping algebras of affine Lie algebras. Providence, R.I: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras. (1990 Fuji-Kawaguchiko, Japan). Representation theory of Lie groups and Lie algebras: The proceedings of Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras, Fuji-Kawaguchiko, Aug 31-Sep 3, 1990. Edited by Kawazoe T, Oshima T, and Sano S. Singapore: World Scientific, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Infinite dimensional Lie algebras. 2nd ed. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Infinite dimensional Lie algebras. 3rd ed. Cambridge: Cambridge University Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography