Academic literature on the topic 'Linear classifier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear classifier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear classifier"
Chen, Songcan, and Xubing Yang. "Alternative linear discriminant classifier." Pattern Recognition 37, no. 7 (July 2004): 1545–47. http://dx.doi.org/10.1016/j.patcog.2003.11.008.
Full textBarlach, Flemming. "A linear classifier design approach." Pattern Recognition 24, no. 9 (January 1991): 871–77. http://dx.doi.org/10.1016/0031-3203(91)90006-q.
Full textGyamfi, Kojo Sarfo, James Brusey, Andrew Hunt, and Elena Gaura. "Linear classifier design under heteroscedasticity in Linear Discriminant Analysis." Expert Systems with Applications 79 (August 2017): 44–52. http://dx.doi.org/10.1016/j.eswa.2017.02.039.
Full textEllis, Steven P. "When a Constant Classifier is as Good as Any Linear Classifier." Communications in Statistics - Theory and Methods 40, no. 21 (November 2011): 3800–3811. http://dx.doi.org/10.1080/03610926.2010.498650.
Full textPascadi, Manuela A., and Mihai V. Pascadi. "Non‐linear Trainable Classifier in IRd." Kybernetes 22, no. 1 (January 1993): 13–21. http://dx.doi.org/10.1108/eb005953.
Full textZhu, Changming, Xiang Ji, Chao Chen, Rigui Zhou, Lai Wei, and Xiafen Zhang. "Improved linear classifier model with Nyström." PLOS ONE 13, no. 11 (November 5, 2018): e0206798. http://dx.doi.org/10.1371/journal.pone.0206798.
Full textLi Yujian, Liu Bo, Yang Xinwu, Fu Yaozong, and Li Houjun. "Multiconlitron: A General Piecewise Linear Classifier." IEEE Transactions on Neural Networks 22, no. 2 (February 2011): 276–89. http://dx.doi.org/10.1109/tnn.2010.2094624.
Full textBertò, Giulia, Daniel Bullock, Pietro Astolfi, Soichi Hayashi, Luca Zigiotto, Luciano Annicchiarico, Francesco Corsini, et al. "Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation." NeuroImage 224 (January 2021): 117402. http://dx.doi.org/10.1016/j.neuroimage.2020.117402.
Full textKundu, Anirban, Guanxiong Xu, and Chunlin Ji. "Structural Analysis of Cloud Classifier." International Journal of Cloud Applications and Computing 4, no. 1 (January 2014): 63–75. http://dx.doi.org/10.4018/ijcac.2014010106.
Full textHUANG, KAI-YI, and P. W. MAUSEL. "Spatial post-processing of spectrally classified video images by a piecewise linear classifier." International Journal of Remote Sensing 14, no. 13 (September 1993): 2563–74. http://dx.doi.org/10.1080/01431169308904293.
Full textDissertations / Theses on the topic "Linear classifier"
Medonza, Dharshan C. "AUTOMATIC DETECTION OF SLEEP AND WAKE STATES IN MICE USING PIEZOELECTRIC SENSORS." UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_theses/271.
Full textGeorgatzis, Konstantinos. "Dynamical probabilistic graphical models applied to physiological condition monitoring." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28838.
Full textOzer, Gizem. "Fuzzy Classification Models Based On Tanaka." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610785/index.pdf.
Full texts Fuzzy Linear Regression (FLR) approach, and an improvement of an existing one, Improved Fuzzy Classifier Functions (IFCF). Tanaka&rsquo
s FLR approach is a well known fuzzy regression technique used for the prediction problems including fuzzy type of uncertainty. In the first part of the study, three alternative approaches are presented, which utilize the FLR approach for a particular customer satisfaction classification problem. A comparison of their performances and their applicability in other cases are discussed. In the second part of the study, the improved IFCF method, Nonparametric Improved Fuzzy Classifier Functions (NIFCF), is presented, which proposes to use a nonparametric method, Multivariate Adaptive Regression Splines (MARS), in clustering phase of the IFCF method. NIFCF method is applied on three data sets, and compared with Fuzzy Classifier Function (FCF) and Logistic Regression (LR) methods.
Fonseca, Everthon Silva. "Wavelets, predição linear e LS-SVM aplicados na análise e classificação de sinais de vozes patológicas." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-04072008-094655/.
Full textThe main objective of this work was to use the advantages of the time-frequency analysis mathematical tool, discrete wavelet transform (DWT), besides the linear prediction coefficients (LPC) and the artificial intelligence algorithm, Least Squares Support Vector Machines (LS-SVM), for applications in voice signal analysis and classification of pathological voices. A large number of works in the literature has been shown that there is a great interest for auxiliary tools to the diagnosis of laryngeal pathologies. DWT components gave measure parameters for the analysis and classification of pathological voices, mainly that ones from patients with Reinke\'s edema and nodule in the vocal folds. It was used a data bank with pathological voices from the Otolaryngology and the Head and Neck Surgery sector of the Clinical Hospital of the Faculty of Medicine at Ribeirão Preto, University of Sao Paulo (FMRP-USP), Brazil. Using the automatic learning algorithm applied in pattern recognition problems, LS-SVM, results have showed that the combination of Daubechies\' DWT components and inverse LP filter leads to a classifier with good performance reaching more than 90% of accuracy in the classification of the pathological voices.
Zhang, Angang. "Some Advances in Classifying and Modeling Complex Data." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/77958.
Full textPh. D.
Gul, Ahmet Bahtiyar. "Holistic Face Recognition By Dimension Reduction." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1056738/index.pdf.
Full texthowever, even Subspace LDA and Bayesian PCA do not perform well under changes in illumination and aging although they perform better than PCA.
Tuma, Carlos Cesar Mansur. "Aprendizado de máquina baseado em separabilidade linear em sistema de classificação híbrido-nebuloso aplicado a problemas multiclasse." Universidade Federal de São Carlos, 2009. https://repositorio.ufscar.br/handle/ufscar/407.
Full textFinanciadora de Estudos e Projetos
This master thesis describes an intelligent classifier system applied to multiclass non-linearly separable problems called Slicer. The system adopts a low computacional cost supervised learning strategy (evaluated as ) based on linear separability. During the learning period the system determines a set of hyperplanes associated to oneclass regions (sub-spaces). In classification tasks the classifier system uses the hyperplanes as a set of if-then-else rules to infer the class of the input attribute vector (non classified object). Among other characteristics, the intelligent classifier system is able to: deal with missing attribute values examples; reject noise examples during learning; adjust hyperplane parameters to improve the definition of the one-class regions; and eliminate redundant rules. The fuzzy theory is considered to design a hybrid version with features such as approximate reasoning and parallel inference computation. Different classification methods and benchmarks are considered for evaluation. The classifier system Slicer reaches acceptable results in terms of accuracy, justifying future investigation effort.
Este trabalho de mestrado descreve um sistema classificador inteligente aplicado a problemas multiclasse não-linearmente separáveis chamado Slicer. O sistema adota uma estratégia de aprendizado supervisionado de baixo custo computacional (avaliado em ) baseado em separabilidade linear. Durante o período de aprendizagem o sistema determina um conjunto de hiperplanos associados a regiões de classe única (subespaços). Nas tarefas de classificação o sistema classificador usa os hiperplanos como um conjunto de regras se-entao-senao para inferir a classe do vetor de atributos dado como entrada (objeto a ser classificado). Entre outras caracteristicas, o sistema classificador é capaz de: tratar atributos faltantes; eliminar ruídos durante o aprendizado; ajustar os parâmetros dos hiperplanos para obter melhores regiões de classe única; e eliminar regras redundantes. A teoria nebulosa é considerada para desenvolver uma versão híbrida com características como raciocínio aproximado e simultaneidade no mecanismo de inferência. Diferentes métodos de classificação e domínios são considerados para avaliação. O sistema classificador Slicer alcança resultados aceitáveis em termos de acurácia, justificando investir em futuras investigações.
Šenkýř, Ivo. "Detekce objektů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217232.
Full textBust, Reg. "Orthogonal models for cross-classified observations." Doctoral thesis, University of Cape Town, 1987. http://hdl.handle.net/11427/15852.
Full textThis thesis describes methods of constructing models for cross-classified categorical data. In particular we discuss the construction of a class of approximating models and the selection of the most suitable model in the class. Examples of application are used to illustrate the methodology. The main purpose of the thesis is to demonstrate that it is both possible and advantageous to construct models which are specifically designed for the particular application under investigation. We believe that the methods described here allow the statistician to make good use of any expert knowledge which the client (typically a non-statistician) might possess on the subject to which the data relate.
Černá, Tereza. "Detekce a rozpoznání registrační značky vozidla pro analýzu dopravy." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234966.
Full textBooks on the topic "Linear classifier"
Cristante, Francesca. Item analysis: An approach using log-linear models for the study of cross-classified tables. Bologna: Pàtron editore, 1987.
Find full textFienberg, Stephen E. The analysis of cross-classified categorical data. 2nd ed. Cambridge, Mass: MIT Press, 1989.
Find full textauthor, Sarich Marco 1985, ed. Metastability and Markov state models in molecular dynamics: Modeling, analysis, algorithmic approaches. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textBaillo, Amparo, Antonio Cuevas, and Ricardo Fraiman. Classification methods for functional data. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.10.
Full textFienberg, Stephen. The Analysis of Cross-Classified Categorical Data. 2nd ed. Springer, 2007.
Find full textCaramello, Olivia. Examples of theories of presheaf type. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198758914.003.0011.
Full textAusink, John A. An Optimization Approach to Workforce Planning for the Information Technology Field. RAND Corporation, 2002.
Find full textPittenger, Christopher. The Pharmacological Treatment of Refractory OCD. Edited by Christopher Pittenger. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228163.003.0041.
Full textSchneider, Edgar W. Models of English in the World. Edited by Markku Filppula, Juhani Klemola, and Devyani Sharma. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199777716.013.001.
Full textCamper, Martin. Ambiguity. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190677121.003.0002.
Full textBook chapters on the topic "Linear classifier"
Gopi, E. S. "Linear Classifier Techniques." In Pattern Recognition and Computational Intelligence Techniques Using Matlab, 31–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22273-4_2.
Full textSkurichina, Marina, and Robert P. W. Duin. "Boosting in Linear Discriminant Analysis." In Multiple Classifier Systems, 190–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45014-9_18.
Full textHand, David J., Niall M. Adams, and Mark G. Kelly. "Multiple Classifier Systems Based on Interpretable Linear Classifiers." In Multiple Classifier Systems, 136–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-48219-9_14.
Full textMaudes, Jesús, Juan J. Rodríguez, and César García-Osorio. "Disturbing Neighbors Ensembles for Linear SVM." In Multiple Classifier Systems, 191–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02326-2_20.
Full textReid, Sam, and Greg Grudic. "Regularized Linear Models in Stacked Generalization." In Multiple Classifier Systems, 112–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02326-2_12.
Full textGama, João. "A Linear-Bayes Classifier." In Advances in Artificial Intelligence, 269–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44399-1_28.
Full textAhmad, Amir, and Gavin Brown. "A Study of Random Linear Oracle Ensembles." In Multiple Classifier Systems, 488–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02326-2_49.
Full textPękalska, Elżbieta, Marina Skurichina, and Robert P. W. Duin. "Combining Fisher Linear Discriminants for Dissimilarity Representations." In Multiple Classifier Systems, 117–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45014-9_11.
Full textJaneliūnas, Arūnas, and Šarūnas Raudys. "Reduction of the Boasting Bias of Linear Experts." In Multiple Classifier Systems, 242–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45428-4_24.
Full textFumera, Giorgio, and Fabio Roli. "Linear Combiners for Classifier Fusion: Some Theoretical and Experimental Results." In Multiple Classifier Systems, 74–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44938-8_8.
Full textConference papers on the topic "Linear classifier"
Fan, Xiannian, and Ke Tang. "Enhanced Maximum AUC Linear Classifier." In 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2010. http://dx.doi.org/10.1109/fskd.2010.5569339.
Full textWang, Hai, and Fei Hao. "An efficient linear regression classifier." In 2012 IEEE International Conference on Signal Processing, Computing and Control (ISPCC). IEEE, 2012. http://dx.doi.org/10.1109/ispcc.2012.6224355.
Full textFestila, L., R. Groza, M. Cirlugea, and A. Fazakas. "Log-Domain Linear SVM Classifier." In 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/mixdes.2007.4286172.
Full textAbdurrab, Abdul A., Michael T. Manry, Jiang Li, Sanjeev S. Malalur, and Robert G. Gore. "A Piecewise Linear Network Classifier." In 2007 International Joint Conference on Neural Networks. IEEE, 2007. http://dx.doi.org/10.1109/ijcnn.2007.4371222.
Full textZhang, Fei, Wei Jie Huang, and Patrick P. K. Chan. "Hardness of evasion of multiple classifier system with non-linear classifiers." In 2014 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2014. http://dx.doi.org/10.1109/icwapr.2014.6961290.
Full textMladenić, Dunja, Janez Brank, Marko Grobelnik, and Natasa Milic-Frayling. "Feature selection using linear classifier weights." In the 27th annual international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1008992.1009034.
Full textHartono, Pitoyo, and Shuji Hashimoto. "Ensemble as a Piecewise Linear Classifier." In 2006 Sixth International Conference on Hybrid Intelligent Systems. IEEE, 2006. http://dx.doi.org/10.1109/his.2006.264915.
Full textWu, Jianxin, Matthew D. Mullin, and James M. Rehg. "Linear Asymmetric Classifier for cascade detectors." In the 22nd international conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1102351.1102476.
Full textPakri, Noor Azilah, Abdul Razak Hussain, and Khairul Azhar Kasmiran. "Linear machine weight adaptation in a genetic programming classifier that classifies medical data." In 2008 International Conference on Computer and Communication Engineering (ICCCE). IEEE, 2008. http://dx.doi.org/10.1109/iccce.2008.4580603.
Full textFeng, Qingxiang, Qi Zhu, Chun Yuan, and Ivan Lee. "Multi-linear regression coefficient classifier for recognition." In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. http://dx.doi.org/10.1109/cec.2016.7743950.
Full textReports on the topic "Linear classifier"
Chavez, Wesley. An Exploration of Linear Classifiers for Unsupervised Spiking Neural Networks with Event-Driven Data. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6323.
Full text