Academic literature on the topic 'Linear difference equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear difference equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Linear difference equation"

1

Pushpalatha, G., and R. Ranjitha. "Three-Term Linear Fractional Nabla Difference Equation." International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (April 30, 2018): 594–600. http://dx.doi.org/10.31142/ijtsrd11059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gefter, S. L., and A. L. Piven. "Implicit Linear Nonhomogeneous Difference Equation in Banach and Locally Convex Spaces." Zurnal matematiceskoj fiziki, analiza, geometrii 15, no. 3 (June 25, 2019): 336–53. http://dx.doi.org/10.15407/mag15.03.336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hartwig, Robert E. "Note on a Linear Difference Equation." American Mathematical Monthly 113, no. 3 (March 1, 2006): 250. http://dx.doi.org/10.2307/27641892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Simons, Stuart. "93.50 A non-linear difference equation." Mathematical Gazette 93, no. 528 (November 2009): 500–504. http://dx.doi.org/10.1017/s0025557200185298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hartwig, Robert E. "Note on a Linear Difference Equation." American Mathematical Monthly 113, no. 3 (March 2006): 250–56. http://dx.doi.org/10.1080/00029890.2006.11920302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Junxia, Qiuling Fei, Fan Guo, and Weili Xiong. "Variational Bayesian Iterative Estimation Algorithm for Linear Difference Equation Systems." Mathematics 7, no. 12 (November 22, 2019): 1143. http://dx.doi.org/10.3390/math7121143.

Full text
Abstract:
Many basic laws of physics or chemistry can be written in the form of differential equations. With the development of digital signals and computer technology, the research on discrete models has received more and more attention. The estimates of the unknown coefficients in the discretized difference equation can be obtained by optimizing certain criterion functions. In modern control theory, the state-space model transforms high-order differential equations into first-order differential equations by introducing intermediate state variables. In this paper, the parameter estimation problem for linear difference equation systems with uncertain noise is developed. By transforming system equations into state-space models and on the basis of the considered priors of the noise and parameters, a variational Bayesian iterative estimation algorithm is derived from the observation data to obtain the parameter estimates. The unknown states involved in the variational Bayesian algorithm are updated by the Kalman filter. A numerical simulation example is given to validate the effectiveness of the proposed algorithm.
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Jun-Feng. "GDTM-Padé technique for the non-linear differential-difference equation." Thermal Science 17, no. 5 (2013): 1305–10. http://dx.doi.org/10.2298/tsci1305305l.

Full text
Abstract:
This paper focuses on applying the GDTM-Pad? technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.
APA, Harvard, Vancouver, ISO, and other styles
8

Gefter, S. L., and A. L. Piven. "Implicit linear difference equation in Frechet spaces." Reports of the National Academy of Sciences of Ukraine, no. 6 (June 18, 2017): 3–8. http://dx.doi.org/10.15407/dopovidi2017.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bakery, Awad A., and Afaf R. Abou Elmatty. "Non Linear Difference Equation of Orlicz Type." Journal of Computational and Theoretical Nanoscience 14, no. 1 (January 1, 2017): 306–13. http://dx.doi.org/10.1166/jctn.2017.6321.

Full text
Abstract:
We give here the sufficient conditions on the positive solutions of the difference equation xn+1 = α+M((xn−1)/xn), n = 0, 1, …, where M is an Orlicz function, α∈ (0, ∞) with arbitrary positive initials x−1, x0 to be bounded, α-convergent and the equilibrium point to be globally asymptotically stable. Finally we present the condition for which every positive solution converges to a prime two periodic solution. Our results coincide with that known for the cases M(x) = x in Ref. [3] and M(x) = xk, where k ∈ (0, ∞) in Ref. [7]. We have given the solution of open problem proposed in Ref. [7] about the existence of the positive solution which eventually alternates above and below equilibrium and converges to the equilibrium point. Some numerical examples with figures will be given to show our results.
APA, Harvard, Vancouver, ISO, and other styles
10

Mazrooei-Sebdani, Reza, and Mehdi Dehghan. "Dynamics of a non-linear difference equation." Applied Mathematics and Computation 178, no. 2 (July 2006): 250–61. http://dx.doi.org/10.1016/j.amc.2005.11.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Linear difference equation"

1

Kisela, Tomáš. "Basics of Qualitative Theory of Linear Fractional Difference Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234025.

Full text
Abstract:
Tato doktorská práce se zabývá zlomkovým kalkulem na diskrétních množinách, přesněji v rámci takzvaného (q,h)-kalkulu a jeho speciálního případu h-kalkulu. Nejprve jsou položeny základy teorie lineárních zlomkových diferenčních rovnic v (q,h)-kalkulu. Jsou diskutovány některé jejich základní vlastnosti, jako např. existence, jednoznačnost a struktura řešení, a je zavedena diskrétní analogie Mittag-Lefflerovy funkce jako vlastní funkce operátoru zlomkové diference. Dále je v rámci h-kalkulu provedena kvalitativní analýza skalární a vektorové testovací zlomkové diferenční rovnice. Výsledky analýzy stability a asymptotických vlastností umožňují vymezit souvislosti s jinými matematickými disciplínami, např. spojitým zlomkovým kalkulem, Volterrovými diferenčními rovnicemi a numerickou analýzou. Nakonec je nastíněno možné rozšíření zlomkového kalkulu na obecnější časové škály.
APA, Harvard, Vancouver, ISO, and other styles
2

Clinger, Richard A. "Stability Analysis of Systems of Difference Equations." VCU Scholars Compass, 2007. http://hdl.handle.net/10156/1318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sevinik, Adiguzel Rezan. "On The Q-analysis Of Q-hypergeometric Difference Equation." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612758/index.pdf.

Full text
Abstract:
In this thesis, a fairly detailed survey on the q-classical orthogonal polynomials of the Hahn class is presented. Such polynomials appear to be the bounded solutions of the so called qhypergeometric difference equation having polynomial coefficients of degree at most two. The central idea behind our study is to discuss in a unified sense the orthogonality of all possible polynomial solutions of the q-hypergeometric difference equation by means of a qualitative analysis of the relevant q-Pearson equation. To be more specific, a geometrical approach has been used by taking into account every posssible rational form of the polynomial coefficients, together with various relative positions of their zeros, in the q-Pearson equation to describe a desired q-weight function on a suitable orthogonality interval. Therefore, our method differs from the standard ones which are based on the Favard theorem and the three-term recurrence relation.
APA, Harvard, Vancouver, ISO, and other styles
4

Budke, Albrecht [Verfasser], Rüdiger [Akademischer Betreuer] Seydel, and Pascal [Akademischer Betreuer] Heider. "Finite Difference Methods for the Non-Linear Black-Scholes-Barenblatt Equation / Albrecht Budke. Gutachter: Rüdiger Seydel ; Pascal Heider." Köln : Universitäts- und Stadtbibliothek Köln, 2013. http://d-nb.info/1062696697/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morávková, Blanka. "Reprezentace řešení lineárních diskrétních systémů se zpožděním." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233649.

Full text
Abstract:
Disertační práce se zabývá lineárními diskrétními systémy s konstantními maticemi a s jedním nebo dvěma zpožděními. Hlavním cílem je odvodit vzorce analyticky popisující řešení počátečních úloh. K tomu jsou definovány speciální maticové funkce zvané diskrétní maticové zpožděné exponenciály a je dokázána jejich základní vlastnost. Tyto speciální maticové funkce jsou základem analytických vzorců reprezentujících řešení počáteční úlohy. Nejprve je uvažována počáteční úloha s impulsy, které působí na řešení v některých předepsaných bodech, a jsou odvozeny vzorce popisující řešení této úlohy. V další části disertační práce jsou definovány dvě různé diskrétní maticové zpožděné exponenciály pro dvě zpoždění a jsou dokázány jejich základní vlastnosti. Tyto diskrétní maticové zpožděné exponenciály nám dávají možnost najít reprezentaci řešení lineárních systémů se dvěma zpožděními. Tato řešení jsou konstruována v poslední kapitole disertační práce, kde je řešení tohoto problému dáno pomocí dvou různých vzorců.
APA, Harvard, Vancouver, ISO, and other styles
6

Eslick, John. "A Dynamical Study of the Evolution of Pressure Waves Propagating through a Semi-Infinite Region of Homogeneous Gas Combustion Subject to a Time-Harmonic Signal at the Boundary." ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/1367.

Full text
Abstract:
In this dissertation, the evolution of a pressure wave driven by a harmonic signal on the boundary during gas combustion is studied. The problem is modeled by a nonlinear, hyperbolic partial differential equation. Steady-state behavior is investigated using the perturbation method to ensure that enough time has passed for any transient effects to have dissipated. The zeroth, first and second-order perturbation solutions are obtained and their moduli are plotted against frequency. It is seen that the first and second-order corrections have unique maxima that shift to the right as the frequency decreases and to the left as the frequency increases. Dispersion relations are determined and their limiting behavior investigated in the low and high frequency regimes. It is seen that for low frequencies, the medium assumes a diffusive-like nature. However, for high frequencies the medium behaves similarly to one exhibiting relaxation. The phase speed is determined and its limiting behavior examined. For low frequencies, the phase speed is approximately equal to sqrt[ω/(n+1)] and for high frequencies, it behaves as 1/(n+1), where n is the mode number. Additionally, a maximum allowable value of the perturbation parameter, ε = 0.8, is determined that ensures boundedness of the solution. The location of the peak of the first-order correction, xmax, as a function of frequency is determined and is seen to approach the limiting value of 0.828/sqrt(ω) as the frequency tends to zero and the constant value of 2 ln 2 as the frequency tends to infinity. Analytic expressions are obtained for the approximate general perturbation solution in the low and high-frequency regimes and are plotted together with the perturbation solution in the corresponding frequency regimes, where the agreement is seen to be excellent. Finally, the solution obtained from the perturbation method is compared with the long-time solution obtained by the finite-difference scheme; again, ensuring that the transient effects have dissipated. Since the finite-difference scheme requires a right boundary, its location is chosen so that the wave dissipates in amplitude enough so that any reflections from the boundary will be negligible. The perturbation solution and the finite-difference solution are found to be in excellent agreement. Thus, the validity of the perturbation method is established.
APA, Harvard, Vancouver, ISO, and other styles
7

Bou, Saba David. "Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI084/document.

Full text
Abstract:
Les réseaux de lois de bilan sont définis par l'interconnexion, via des conditions aux bords, de modules élémentaires individuellement caractérisés par la conservation de certaines quantités. Des applications industrielles se trouvent dans les réseaux de lignes de transmission électriques (réseaux HVDC), hydrauliques et pneumatiques (réseaux de distribution du gaz, de l'eau et du fuel). La thèse se concentre sur l'analyse modulaire et la commande au bord d'une ligne élémentaire représentée par un système de lois de bilan en dimension infinie, où la dynamique de la ligne est prise en considération au moyen d'équations aux dérivées partielles hyperboliques linéaires du premier ordre et couplées deux à deux. Cette dynamique permet de modéliser d'une manière rigoureuse les phénomènes de transport et les vitesses finies de propagation, aspects normalement négligés dans le régime transitoire. Les développements de ces travaux sont des outils d'analyse qui testent la stabilité du système, et de commande au bord pour la stabilisation autour d'un point d'équilibre. Dans la partie analyse, nous considérons un système de lois de bilan avec des couplages statiques aux bords et anti-diagonaux à l’intérieur du domaine. Nous proposons des conditions suffisantes de stabilité, tant explicites en termes des coefficients du système, que numériques par la construction d'un algorithme. La méthode se base sur la reformulation du problème en une analyse, dans le domaine fréquentiel, d'un système à retard obtenu en appliquant une transformation backstepping au système de départ. Dans le travail de stabilisation, un couplage avec des dynamiques décrites par des équations différentielles ordinaires (EDO) aux deux bords des EDP est considéré. Nous développons une transformation backstepping (bornée et inversible) et une loi de commande qui, à la fois stabilise les EDP à l'intérieur du domaine et la dynamique des EDO, et élimine les couplages qui peuvent potentiellement mener à l’instabilité. L'efficacité de la loi de commande est illustrée par une simulation numérique
Networks of balance laws are defined by the interconnection, via boundary conditions, of elementary modules individually characterized by the conservation of physical quantities. Industrial applications of such networks can be found in electric (HVDC networks), hydraulic and pneumatic (gas, water and oil distribution) transmission lines. The thesis is focused on modular analysis and boundary control of an elementary line represented by a system of balance laws in infinite dimension, where the dynamics of the line is taken into consideration by means of first order two by two coupled linear hyperbolic partial differential equations. This representation allows to rigorously model the transport phenomena and finite propagation speed, aspects usually neglected in transient regime. The developments of this work are analysis tools that test the stability, as well as boundary control for the stabilization around an equilibrium point. In the analysis section, we consider a system of balance laws with static boundary conditions and anti-diagonal in-domain couplings. We propose sufficient stability conditions, explicit in terms of the system coefficients, and numerical by constructing an algorithm. The method is based on reformulating the analysis problem as an analysis of a delay system in the frequency domain, obtained by applying a backstepping transform to the original system. In the stabilization work, couplings with dynamic boundary conditions, described by ordinary differential equations (ODE), at both boundaries of the PDEs are considered. We develop a backstepping (bounded and invertible) transform and a control law that at the same time, stabilizes the PDEs inside the domain and the ODE dynamics, and eliminates the couplings that are a potential source of instability. The effectiveness of the control law is illustrated by a numerical simulation
APA, Harvard, Vancouver, ISO, and other styles
8

Clark, Rebecca G. "A Study of the Effect of Harvesting on a Discrete System with Two Competing Species." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4497.

Full text
Abstract:
This is a study of the effect of harvesting on a system with two competing species. The system is a Ricker-type model that extends the work done by Luis, Elaydi, and Oliveira to include the effect of harvesting on the system. We look at the uniform bound of the system as well as the isoclines and perform a stability analysis of the equilibrium points. We also look at the effects of harvesting on the stability of the system by looking at the bifurcation of the system with respect to harvesting.
APA, Harvard, Vancouver, ISO, and other styles
9

Goedhart, Eva Govinda. "Explicit bounds for linear difference equations /." Electronic thesis, 2005. http://etd.wfu.edu/theses/available/etd-05102005-222845/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Šafařík, Jan. "Slabě zpožděné systémy lineárních diskrétních rovnic v R^3." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-378908.

Full text
Abstract:
Dizertační práce se zabývá konstrukcí obecného řešení slabě zpožděných systémů lineárních diskrétních rovnic v ${\mathbb R}^3$ tvaru \begin{equation*} x(k+1)=Ax(k)+Bx(k-m), \end{equation*} kde $m>0$ je kladné celé číslo, $x\colon \bZ_{-m}^{\infty}\to\bR^3$, $\bZ_{-m}^{\infty} := \{-m, -m+1, \dots, \infty\}$, $k\in\bZ_0^{\infty}$, $A=(a_{ij})$ a $B=(b_{ij})$ jsou konstantní $3\times 3$ matice. Charakteristické rovnice těchto systémů jsou identické s charakteristickými rovnicemi systému, který neobsahuje zpožděné členy. Jsou získána kriteria garantující, že daný systém je slabě zpožděný a následně jsou tato kritéria specifikována pro všechny možné případy Jordanova tvaru matice $A$. Systém je vyřešen pomocí metody, která ho transformuje na systém vyšší dimenze, ale bez zpoždění \begin{equation*} y(k+1)=\mathcal{A}y(k), \end{equation*} kde ${\mathrm{dim}}\ y = 3(m+1)$. Pomocí metod lineární algebry je možné najít Jordanovy formy matice $\mathcal{A}$ v závislosti na vlastních číslech matic $A$ and $B$. Tudíž lze nalézt obecné řešení nového systému a v důsledku toho pak odvodit obecné řešení počátečního systému.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Linear difference equation"

1

Orlik, Lyubov', and Galina Zhukova. Operator equation and related questions of stability of differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1061676.

Full text
Abstract:
The monograph is devoted to the application of methods of functional analysis to the problems of qualitative theory of differential equations. Describes an algorithm to bring the differential boundary value problem to an operator equation. The research of solutions to operator equations of special kind in the spaces polutoratonny with a cone, where the limitations of the elements of these spaces is understood as the comparability them with a fixed scale element of exponential type. Found representations of the solutions of operator equations in the form of contour integrals, theorems of existence and uniqueness of such solutions. The spectral criteria for boundedness of solutions of operator equations and, as a consequence, sufficient spectral features boundedness of solutions of differential and differential-difference equations in Banach space. The results obtained for operator equations with operators and work of Volterra operators, allowed to extend to some systems of partial differential equations known spectral stability criteria for solutions of A. M. Lyapunov and also to generalize theorems on the exponential characteristic. The results of the monograph may be useful in the study of linear mechanical and electrical systems, in problems of diffraction of electromagnetic waves, theory of automatic control, etc. It is intended for researchers, graduate students functional analysis and its applications to operator and differential equations.
APA, Harvard, Vancouver, ISO, and other styles
2

Benesty, Jacob, Israel Cohen, and Jingdong Chen. Array Beamforming with Linear Difference Equations. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68273-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jerri, Abdul J. Linear Difference Equations with Discrete Transform Methods. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-5657-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jerri, Abdul J. Linear difference equations with discrete transform methods. Dordrecht: Kluwer Academic, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ri︠a︡benʹkiĭ, V. S. Difference potentials and their applications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacques, Sauloy, and Singer Michael F. 1950-, eds. Galois theories of linear difference equations: An introduction. Providence, Rhode Island: American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hardouin, Charlotte, Jacques Sauloy, and Michael Singer. Galois Theories of Linear Difference Equations: An Introduction. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/surv/211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Godunov, S. K. Difference schemes: An introduction to the underlying theory. Amsterdam: North-Holland, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Difference equations in normed spaces: Stability and oscillations. Amsterdam: Elsevier, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dezin, A. A. Differential operator equations: A method of model operators in the theory of boundary value problems. Moscow: Maik Nauka/Interperiodica, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Linear difference equation"

1

Dobrogowska, Alina, and Mahouton Norbert Hounkonnou. "Factorization Method and General Second Order Linear Difference Equation." In Differential and Difference Equations with Applications, 67–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75647-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wei, Gengping. "On a Linear Delay Partial Difference Equation with Impulses." In Difference Equations, Discrete Dynamical Systems and Applications, 145–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24747-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rasulov, Abdujabbor, Gulnora Raimova, and Matyokub Bakoev. "Monte Carlo Solution of Dirichlet Problem for Semi-linear Equation." In Finite Difference Methods. Theory and Applications, 443–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11539-5_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tomášek, Petr. "Asymptotic Stability Regions for Certain Two Parametric Full-Term Linear Difference Equation." In Differential and Difference Equations with Applications, 323–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32857-7_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Balibrea, Francisco. "A Logistic Non-linear Difference Equation with Two Delays." In Understanding Complex Systems, 269–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66766-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elyseeva, Julia V. "On Oscillation and Nonoscillation Domains for Difference Riccati Equation." In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 157–68. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ostalczyk, Piotr. "Linearization of the Non-linear Time-Variant Fractional-Order Difference Equation." In Theoretical Developments and Applications of Non-Integer Order Systems, 41–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23039-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Salinelli, Ernesto, and Franco Tomarelli. "Linear difference equations." In UNITEXT, 25–83. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02291-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pötzsche, Christian. "Linear Difference Equations." In Lecture Notes in Mathematics, 95–185. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14258-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simonovits, András. "Linear Difference Equations." In Mathematical Methods in Dynamic Economics, 17–48. London: Palgrave Macmillan UK, 2000. http://dx.doi.org/10.1057/9780230513532_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Linear difference equation"

1

Gu, Ku, and Desheng Li. "New Remarks on Oscillation of Second-Order Linear Difference Equation." In 2016 International Conference on Applied Mathematics, Simulation and Modelling. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/amsm-16.2016.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Esmaeili, Mansoureh, and Mansour Shirvani. "Detecting of zeros locations in a linear differential-difference equation." In 2011 IEEE International Conference on System Engineering and Technology (ICSET). IEEE, 2011. http://dx.doi.org/10.1109/icsengt.2011.5993421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xiong, Yan, Jiaxiong Peng, Mingyue Ding, Guoyou Wang, and Donghui Xue. "Small moving target indication based on linear-variant-coefficient-difference equation." In Aerospace/Defense Sensing and Controls, edited by Oliver E. Drummond. SPIE, 1996. http://dx.doi.org/10.1117/12.241167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Costa, Eduardo F., and Alessandro Astolfi. "Bounds related to the Riccati difference equation for linear time varying systems." In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Chao, Xin Chen, Enyi Tang, Mengda He, Lei Bu, Shengchao Qin, and Yifeng Zeng. "Navigating Discrete Difference Equation Governed WMR by Virtual Linear Leader Guided HMPC." In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. http://dx.doi.org/10.1109/icra40945.2020.9197375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zou, Zhiyun, Dandan Zhao, Yue Huang, Yusong Pan, Yuqing Guo, and Meng Yu. "Design of a new Predictive Functional Control algorithm based on linear difference equation model." In 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP). IEEE, 2013. http://dx.doi.org/10.1109/icicip.2013.6568156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Yu-Yan, and Huan-Wen Liu. "An Unconditionally Stable Spline Difference Scheme for Solving the Second 2D Linear Hyperbolic Equation." In 2010 Second International Conference on Computer Modeling and Simulation (ICCMS). IEEE, 2010. http://dx.doi.org/10.1109/iccms.2010.198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Qing-hai, Xiao-kai Chen, Yi Lin, and Zheng-Dong Ma. "Linear Heat Conduction Equation Based Filtering Iteration for Topology Optimization." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87631.

Full text
Abstract:
This paper deals with an alternative approach to density and sensitivity filtering based on the solution of the linear heat conduction equation which is proposed for eliminating checkerboard patterns and mesh dependence in topology optimization problems. In order to guarantee the existence, uniqueness and stability of the solution of PDE, Neumann boundary conditions are introduced. With the help of the existing computational framework of FEM, boundary points have been extended to satisfy Neumann boundary conditions, and together with finite difference method to solve this initial boundary value. In order to guarantee the stability, stability factor is introduced to control the deviation for the solution of the finite difference method. Then the filtering technique is directly applied to the design variables and the design sensitivities, respectively. Especially, different from previous methods based on convolution operation, filtering iteration is employed to ensure the function to eliminate numerical instability. When the value of stability factor is changed at setting range, the number of times of filtering is manually corresponding set. At last, using different test examples in 2D show the advantage and effectiveness of filtering iteration of the new filter method in compared with previous filter method.
APA, Harvard, Vancouver, ISO, and other styles
9

Geer, James, and John Fillo. "Finite Difference Schemes for Diffusion Problems Based on a Hybrid Perturbation Galerkin Method." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16162.

Full text
Abstract:
A new technique for the development of finite difference schemes for diffusion equations is presented. The model equations are the one space variable advection diffusion equation and the two space variable diffusion equation, each with Dirichlet boundary conditions. A two-step hybrid technique, which combines perturbation methods, based on the parameter ρ = Δt / (Δx)2, with the Galerkin method, provides a systematic way to develop new finite difference methods, referred to as hybrid equations. The main contributions of this paper include: 1) recovery of classical explicit or implicit finite difference schemes using only the perturbation terms; 2) development of new finite difference schemes, referred to as hybrid equations, which have better stability properties than the classical finite difference equations, permitting the use of larger values of the parameter ρ; and 3) higher order accurate methods, with either O((Δx)4) or O((Δx)6) truncation error, formed by convex linear combinations of the classical and hybrid equations. The solution of the hybrid finite difference equations requires only a tridiagonal equation solver and, hence, does not lead to excessive computational effort.
APA, Harvard, Vancouver, ISO, and other styles
10

Xia, Z. Z., P. Zhang, and R. Z. Wang. "A Novel Finite Difference Method for Flow Calculation on Colocated Grids." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56265.

Full text
Abstract:
A new finite difference method, which removes the need for staggered grids in fluid dynamic computation, is presented. Pressure checker boarding is prevented through a dual-velocity scheme that incorporates the influence of pressure on velocity gradients. A supplementary velocity resulting from the discrete divergence of pressure gradient, together with the main velocity driven by the discretized pressure first-order gradient, is introduced for the discretization of continuity equation. The method in which linear algebraic equations are solved using incomplete LU factorization, removes the pressure-correction equation, and was applied to rectangle duct flow and natural convection in a cubic cavity. These numerical solutions are in excellent agreement with the analytical solutions and those of the algorithm on staggered grids. The new method is shown to be superior in convergence compared to the original one on staggered grids.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography