To see the other types of publications on this topic, follow the link: Linear difference equation.

Books on the topic 'Linear difference equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 34 books for your research on the topic 'Linear difference equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Orlik, Lyubov', and Galina Zhukova. Operator equation and related questions of stability of differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1061676.

Full text
Abstract:
The monograph is devoted to the application of methods of functional analysis to the problems of qualitative theory of differential equations. Describes an algorithm to bring the differential boundary value problem to an operator equation. The research of solutions to operator equations of special kind in the spaces polutoratonny with a cone, where the limitations of the elements of these spaces is understood as the comparability them with a fixed scale element of exponential type. Found representations of the solutions of operator equations in the form of contour integrals, theorems of existence and uniqueness of such solutions. The spectral criteria for boundedness of solutions of operator equations and, as a consequence, sufficient spectral features boundedness of solutions of differential and differential-difference equations in Banach space. The results obtained for operator equations with operators and work of Volterra operators, allowed to extend to some systems of partial differential equations known spectral stability criteria for solutions of A. M. Lyapunov and also to generalize theorems on the exponential characteristic. The results of the monograph may be useful in the study of linear mechanical and electrical systems, in problems of diffraction of electromagnetic waves, theory of automatic control, etc. It is intended for researchers, graduate students functional analysis and its applications to operator and differential equations.
APA, Harvard, Vancouver, ISO, and other styles
2

Benesty, Jacob, Israel Cohen, and Jingdong Chen. Array Beamforming with Linear Difference Equations. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68273-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jerri, Abdul J. Linear Difference Equations with Discrete Transform Methods. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-5657-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jerri, Abdul J. Linear difference equations with discrete transform methods. Dordrecht: Kluwer Academic, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ri︠a︡benʹkiĭ, V. S. Difference potentials and their applications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacques, Sauloy, and Singer Michael F. 1950-, eds. Galois theories of linear difference equations: An introduction. Providence, Rhode Island: American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hardouin, Charlotte, Jacques Sauloy, and Michael Singer. Galois Theories of Linear Difference Equations: An Introduction. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/surv/211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Godunov, S. K. Difference schemes: An introduction to the underlying theory. Amsterdam: North-Holland, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Difference equations in normed spaces: Stability and oscillations. Amsterdam: Elsevier, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dezin, A. A. Differential operator equations: A method of model operators in the theory of boundary value problems. Moscow: Maik Nauka/Interperiodica, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kuik, Geert Roelof. Transseries in difference and differential equations. [S.l: s.n.], 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

M, Johnson R. Linear differential and difference equations: A systems approach for mathematicians and engineers. Chichester: Albion Pub., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

1960-, Caselles Vicent, and Mazón José M. 1953-, eds. Parabolic quasilinear equations minimizing linear growth functionals. Basel: Birkhäuser, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wolfgang, Kliemann, ed. Dynamical systems and linear algebra. Providence, Rhode Island: American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Goodrich, John W. An approach to the development of numerical algorithms for first order linear hyperbolic systems in multiple space dimensions: The constant coefficient case. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

1980-, Blazquez-Sanz David, Morales Ruiz, Juan J. (Juan José), 1953-, and Lombardero Jesus Rodriguez 1961-, eds. Symmetries and related topics in differential and difference equations: Jairo Charris Seminar 2009, Escuela de Matematicas, Universidad Sergio Arboleda, Bogotá, Colombia. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zbigniew, Hajto, ed. Algebraic groups and differential Galois theory. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Johnson, R. M. Linear differential and difference equations. Woodhead Publishing Limited, 1997. http://dx.doi.org/10.1533/9780857099808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Difference Equations For Scientists And Engineering: Interdisciplinary Difference Equations. New Jersey, USA: World Scientific Publishing Company Pvt. Ltd., 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gil, Michael. Difference Equations in Normed Spaces, Volume 206: Stability and Oscillations (North-Holland Mathematics Studies) (North-Holland Mathematics Studies). Elsevier Science, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rajeev, S. G. The Navier–Stokes Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0003.

Full text
Abstract:
When different layers of a fluid move at different velocities, there is some friction which results in loss of energy and momentum to molecular degrees of freedom. This dissipation is measured by a property of the fluid called viscosity. The Navier–Stokes (NS) equations are the modification of Euler’s equations that include this effect. In the incompressible limit, the NS equations have a residual scale invariance. The flow depends only on a dimensionless ratio (the Reynolds number). In the limit of small Reynolds number, the NS equations become linear, equivalent to the diffusion equation. Ideal flow is the limit of infinite Reynolds number. In general, the larger the Reynolds number, the more nonlinear (complicated, turbulent) the flow.
APA, Harvard, Vancouver, ISO, and other styles
22

Süli, Endre, and Boško S. S. Jovanović. Analysis of Finite Difference Schemes: For Linear Partial Differential Equations with Generalized Solutions. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Analysis Of Finite Difference Schemes For Linear Partial Differential Equations With Generalized Solutions. Springer London Ltd, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jan, Nordstrom, Gottlieb David, and Institute for Computer Applications in Science and Engineering., eds. A stable and conservative interface treatment of arbitrary spatial accuracy. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

David, Gottlieb, Carpenter Mark H, and Institute for Computer Applications in Science and Engineering., eds. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

V, Kondratieva M., ed. Differential and difference dimension polynomials. Dordrecht: Kluwer Academic, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rajeev, S. G. Fluid Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.001.0001.

Full text
Abstract:
Starting with a review of vector fields and their integral curves, the book presents the basic equations of the subject: Euler and Navier–Stokes. Some solutions are studied next: ideal flows using conformal transformations, viscous flows such as Couette and Stokes flow around a sphere, shocks in the Burgers equation. Prandtl’s boundary layer theory and the Blasius solution are presented. Rayleigh–Taylor instability is studied in analogy with the inverted pendulum, with a digression on Kapitza’s stabilization. The possibility of transients in a linearly stable system with a non-normal operator is studied using an example by Trefethen et al. The integrable models (KdV, Hasimoto’s vortex soliton) and their hamiltonian formalism are studied. Delving into deeper mathematics, geodesics on Lie groups are studied: first using the Lie algebra and then using Milnor’s approach to the curvature of the Lie group. Arnold’s deep idea that Euler’s equations are the geodesic equations on the diffeomorphism group is then explained and its curvature calculated. The next three chapters are an introduction to numerical methods: spectral methods based on Chebychev functions for ODEs, their application by Orszag to solve the Orr–Sommerfeld equation, finite difference methods for elementary PDEs, the Magnus formula and its application to geometric integrators for ODEs. Two appendices give an introduction to dynamical systems: Arnold’s cat map, homoclinic points, Smale’s horse shoe, Hausdorff dimension of the invariant set, Aref ’s example of chaotic advection. The last appendix introduces renormalization: Ising model on a Cayley tree and Feigenbaum’s theory of period doubling.
APA, Harvard, Vancouver, ISO, and other styles
28

Zhu, Yang, and Miroslav Krstic. Delay-Adaptive Linear Control. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202549.001.0001.

Full text
Abstract:
Actuator and sensor delays are among the most common dynamic phenomena in engineering practice, and when disregarded, they render controlled systems unstable. Over the past sixty years, predictor feedback has been a key tool for compensating such delays, but conventional predictor feedback algorithms assume that the delays and other parameters of a given system are known. When incorrect parameter values are used in the predictor, the resulting controller may be as destabilizing as without the delay compensation. This book develops adaptive predictor feedback algorithms equipped with online estimators of unknown delays and other parameters. Such estimators are designed as nonlinear differential equations, which dynamically adjust the parameters of the predictor. The design and analysis of the adaptive predictors involves a Lyapunov stability study of systems whose dimension is infinite, because of the delays, and nonlinear, because of the parameter estimators. This book solves adaptive delay compensation problems for systems with single and multiple inputs/outputs, unknown and distinct delays in different input channels, unknown delay kernels, unknown plant parameters, unmeasurable finite-dimensional plant states, and unmeasurable infinite-dimensional actuator states. Presenting breakthroughs in adaptive control and control of delay systems, the book offers powerful new tools for the control engineer and the mathematician.
APA, Harvard, Vancouver, ISO, and other styles
29

Levin, Frank S. Quantum Boxes, Stringed Instruments. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198808275.003.0008.

Full text
Abstract:
Chapter 7 illustrates the results obtained by applying the Schrödinger equation to a simple pedagogical quantum system, the particle in a one-dimensional box. The wave functions are seen to be sine waves; their wavelengths are evaluated and used to calculate the quantized energies via the de Broglie relation. An energy-level diagram of some of the energies is constructed; on it are illustrations of the corresponding wave functions and probability distributions. The wave functions are seen to be either symmetric or antisymmetric about the midpoint of the line representing the box, thereby providing a lead-in to the later exploration of certain symmetry properties of multi-electron atoms. It is next pointed out that the Schrödinger equation for this system is identical to Newton’s equation describing the vibrations of a stretched musical string. The different meaning of the two solutions is discussed, as is the concept and structure of linear superpositions of them.
APA, Harvard, Vancouver, ISO, and other styles
30

Mikhalev, A. V., A. B. Levin, E. V. Pankratiev, and M. V. Kondratieva. Differential and Difference Dimension Polynomials (Mathematics and Its Applications). Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Caraballo Carmona, Carlos Manuel, and Francisco Lázaro García Fernández. Methodology of Mathematics Teaching. Treatment to School Mathematics Equations. Editorial Tecnocientífica Americana, 2021. http://dx.doi.org/10.51736/eta2021edu1.

Full text
Abstract:
This book is aimed at pre-university students and its purpose is to contribute to the development of their knowledge related to the algebraic and transcendent equations studied at school, as well as their application to different situations that occur in practice in an innovative and creative way, using the procedures for solving them, so that it allows the consolidation of attitudes such as industriousness, responsibility and science. The system of knowledge worked on and treated didactically in this book is related to the algebraic equations and within them the linear, quadratic, fractional and radical equations, the modular equations and the transcendental equations such as, the exponential, logarithmic and trigonometric equations, providing the minimum theoretical and methodological resources, necessary to learn and to successfully face the exercises and problems proposed in each chapter.
APA, Harvard, Vancouver, ISO, and other styles
32

United States. National Aeronautics and Space Administration., ed. An approach to the development of numerical algorithms for first order linear hyperbolic systems in multiple space dimensions: The constant coefficient case. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Linear Algebra in Action Graduate Studies in Mathematics. American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Skiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.

Full text
Abstract:
Bones are multifunctional passive organs of movement that supports soft tissue and directly attached muscles. They also protect internal organs and are a reserve of calcium, phosphorus and magnesium. Each bone is covered with periosteum, and the adjacent bone surfaces are covered by articular cartilage. Histologically, the bone is an organ composed of many different tissues. The main component is bone tissue (cortical and spongy) composed of a set of bone cells and intercellular substance (mineral and organic), it also contains fat, hematopoietic (bone marrow) and cartilaginous tissue. Bones are a tissue that even in adult life retains the ability to change shape and structure depending on changes in their mechanical and hormonal environment, as well as self-renewal and repair capabilities. This process is called bone turnover. The basic processes of bone turnover are: • bone modeling (incessantly changes in bone shape during individual growth) following resorption and tissue formation at various locations (e.g. bone marrow formation) to increase mass and skeletal morphology. This process occurs in the bones of growing individuals and stops after reaching puberty • bone remodeling (processes involve in maintaining bone tissue by resorbing and replacing old bone tissue with new tissue in the same place, e.g. repairing micro fractures). It is a process involving the removal and internal remodeling of existing bone and is responsible for maintaining tissue mass and architecture of mature bones. Bone turnover is regulated by two types of transformation: • osteoclastogenesis, i.e. formation of cells responsible for bone resorption • osteoblastogenesis, i.e. formation of cells responsible for bone formation (bone matrix synthesis and mineralization) Bone maturity can be defined as the completion of basic structural development and mineralization leading to maximum mass and optimal mechanical strength. The highest rate of increase in pig bone mass is observed in the first twelve weeks after birth. This period of growth is considered crucial for optimizing the growth of the skeleton of pigs, because the degree of bone mineralization in later life stages (adulthood) depends largely on the amount of bone minerals accumulated in the early stages of their growth. The development of the technique allows to determine the condition of the skeletal system (or individual bones) in living animals by methods used in human medicine, or after their slaughter. For in vivo determination of bone properties, Abstract 10 double energy X-ray absorptiometry or computed tomography scanning techniques are used. Both methods allow the quantification of mineral content and bone mineral density. The most important property from a practical point of view is the bone’s bending strength, which is directly determined by the maximum bending force. The most important factors affecting bone strength are: • age (growth period), • gender and the associated hormonal balance, • genotype and modification of genes responsible for bone growth • chemical composition of the body (protein and fat content, and the proportion between these components), • physical activity and related bone load, • nutritional factors: – protein intake influencing synthesis of organic matrix of bone, – content of minerals in the feed (CA, P, Zn, Ca/P, Mg, Mn, Na, Cl, K, Cu ratio) influencing synthesis of the inorganic matrix of bone, – mineral/protein ratio in the diet (Ca/protein, P/protein, Zn/protein) – feed energy concentration, – energy source (content of saturated fatty acids - SFA, content of polyun saturated fatty acids - PUFA, in particular ALA, EPA, DPA, DHA), – feed additives, in particular: enzymes (e.g. phytase releasing of minerals bounded in phytin complexes), probiotics and prebiotics (e.g. inulin improving the function of the digestive tract by increasing absorption of nutrients), – vitamin content that regulate metabolism and biochemical changes occurring in bone tissue (e.g. vitamin D3, B6, C and K). This study was based on the results of research experiments from available literature, and studies on growing pigs carried out at the Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. The tests were performed in total on 300 pigs of Duroc, Pietrain, Puławska breeds, line 990 and hybrids (Great White × Duroc, Great White × Landrace), PIC pigs, slaughtered at different body weight during the growth period from 15 to 130 kg. Bones for biomechanical tests were collected after slaughter from each pig. Their length, mass and volume were determined. Based on these measurements, the specific weight (density, g/cm3) was calculated. Then each bone was cut in the middle of the shaft and the outer and inner diameters were measured both horizontally and vertically. Based on these measurements, the following indicators were calculated: • cortical thickness, • cortical surface, • cortical index. Abstract 11 Bone strength was tested by a three-point bending test. The obtained data enabled the determination of: • bending force (the magnitude of the maximum force at which disintegration and disruption of bone structure occurs), • strength (the amount of maximum force needed to break/crack of bone), • stiffness (quotient of the force acting on the bone and the amount of displacement occurring under the influence of this force). Investigation of changes in physical and biomechanical features of bones during growth was performed on pigs of the synthetic 990 line growing from 15 to 130 kg body weight. The animals were slaughtered successively at a body weight of 15, 30, 40, 50, 70, 90, 110 and 130 kg. After slaughter, the following bones were separated from the right half-carcass: humerus, 3rd and 4th metatarsal bone, femur, tibia and fibula as well as 3rd and 4th metatarsal bone. The features of bones were determined using methods described in the methodology. Describing bone growth with the Gompertz equation, it was found that the earliest slowdown of bone growth curve was observed for metacarpal and metatarsal bones. This means that these bones matured the most quickly. The established data also indicate that the rib is the slowest maturing bone. The femur, humerus, tibia and fibula were between the values of these features for the metatarsal, metacarpal and rib bones. The rate of increase in bone mass and length differed significantly between the examined bones, but in all cases it was lower (coefficient b <1) than the growth rate of the whole body of the animal. The fastest growth rate was estimated for the rib mass (coefficient b = 0.93). Among the long bones, the humerus (coefficient b = 0.81) was characterized by the fastest rate of weight gain, however femur the smallest (coefficient b = 0.71). The lowest rate of bone mass increase was observed in the foot bones, with the metacarpal bones having a slightly higher value of coefficient b than the metatarsal bones (0.67 vs 0.62). The third bone had a lower growth rate than the fourth bone, regardless of whether they were metatarsal or metacarpal. The value of the bending force increased as the animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. The rate of change in the value of this indicator increased at a similar rate as the body weight changes of the animals in the case of the fibula and the fourth metacarpal bone (b value = 0.98), and more slowly in the case of the metatarsal bone, the third metacarpal bone, and the tibia bone (values of the b ratio 0.81–0.85), and the slowest femur, humerus and rib (value of b = 0.60–0.66). Bone stiffness increased as animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. Abstract 12 The rate of change in the value of this indicator changed at a faster rate than the increase in weight of pigs in the case of metacarpal and metatarsal bones (coefficient b = 1.01–1.22), slightly slower in the case of fibula (coefficient b = 0.92), definitely slower in the case of the tibia (b = 0.73), ribs (b = 0.66), femur (b = 0.59) and humerus (b = 0.50). Bone strength increased as animals grew. Regardless of the growth point tested, bone strength was as follows femur > tibia > humerus > 4 metacarpal> 3 metacarpal> 3 metatarsal > 4 metatarsal > rib> fibula. The rate of increase in strength of all examined bones was greater than the rate of weight gain of pigs (value of the coefficient b = 2.04–3.26). As the animals grew, the bone density increased. However, the growth rate of this indicator for the majority of bones was slower than the rate of weight gain (the value of the coefficient b ranged from 0.37 – humerus to 0.84 – fibula). The exception was the rib, whose density increased at a similar pace increasing the body weight of animals (value of the coefficient b = 0.97). The study on the influence of the breed and the feeding intensity on bone characteristics (physical and biomechanical) was performed on pigs of the breeds Duroc, Pietrain, and synthetic 990 during a growth period of 15 to 70 kg body weight. Animals were fed ad libitum or dosed system. After slaughter at a body weight of 70 kg, three bones were taken from the right half-carcass: femur, three metatarsal, and three metacarpal and subjected to the determinations described in the methodology. The weight of bones of animals fed aa libitum was significantly lower than in pigs fed restrictively All bones of Duroc breed were significantly heavier and longer than Pietrain and 990 pig bones. The average values of bending force for the examined bones took the following order: III metatarsal bone (63.5 kg) <III metacarpal bone (77.9 kg) <femur (271.5 kg). The feeding system and breed of pigs had no significant effect on the value of this indicator. The average values of the bones strength took the following order: III metatarsal bone (92.6 kg) <III metacarpal (107.2 kg) <femur (353.1 kg). Feeding intensity and breed of animals had no significant effect on the value of this feature of the bones tested. The average bone density took the following order: femur (1.23 g/cm3) <III metatarsal bone (1.26 g/cm3) <III metacarpal bone (1.34 g / cm3). The density of bones of animals fed aa libitum was higher (P<0.01) than in animals fed with a dosing system. The density of examined bones within the breeds took the following order: Pietrain race> line 990> Duroc race. The differences between the “extreme” breeds were: 7.2% (III metatarsal bone), 8.3% (III metacarpal bone), 8.4% (femur). Abstract 13 The average bone stiffness took the following order: III metatarsal bone (35.1 kg/mm) <III metacarpus (41.5 kg/mm) <femur (60.5 kg/mm). This indicator did not differ between the groups of pigs fed at different intensity, except for the metacarpal bone, which was more stiffer in pigs fed aa libitum (P<0.05). The femur of animals fed ad libitum showed a tendency (P<0.09) to be more stiffer and a force of 4.5 kg required for its displacement by 1 mm. Breed differences in stiffness were found for the femur (P <0.05) and III metacarpal bone (P <0.05). For femur, the highest value of this indicator was found in Pietrain pigs (64.5 kg/mm), lower in pigs of 990 line (61.6 kg/mm) and the lowest in Duroc pigs (55.3 kg/mm). In turn, the 3rd metacarpal bone of Duroc and Pietrain pigs had similar stiffness (39.0 and 40.0 kg/mm respectively) and was smaller than that of line 990 pigs (45.4 kg/mm). The thickness of the cortical bone layer took the following order: III metatarsal bone (2.25 mm) <III metacarpal bone (2.41 mm) <femur (5.12 mm). The feeding system did not affect this indicator. Breed differences (P <0.05) for this trait were found only for the femur bone: Duroc (5.42 mm)> line 990 (5.13 mm)> Pietrain (4.81 mm). The cross sectional area of the examined bones was arranged in the following order: III metatarsal bone (84 mm2) <III metacarpal bone (90 mm2) <femur (286 mm2). The feeding system had no effect on the value of this bone trait, with the exception of the femur, which in animals fed the dosing system was 4.7% higher (P<0.05) than in pigs fed ad libitum. Breed differences (P<0.01) in the coross sectional area were found only in femur and III metatarsal bone. The value of this indicator was the highest in Duroc pigs, lower in 990 animals and the lowest in Pietrain pigs. The cortical index of individual bones was in the following order: III metatarsal bone (31.86) <III metacarpal bone (33.86) <femur (44.75). However, its value did not significantly depend on the intensity of feeding or the breed of pigs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography