To see the other types of publications on this topic, follow the link: Linear Fresnel Reflector.

Journal articles on the topic 'Linear Fresnel Reflector'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Linear Fresnel Reflector.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mills, David R., Graham Morrison, John Pye, and Peter Le Lièvre. "Multi-tower Line Focus Fresnel Array Project." Journal of Solar Energy Engineering 128, no. 1 (2005): 118–20. http://dx.doi.org/10.1115/1.2148971.

Full text
Abstract:
As an alternative to conventional tracking solar thermal trough systems, one may use line focus Fresnel reflector systems. In a conventional Fresnel reflector design, each field of reflectors is directed to a single tower. However, efficient systems of very high ground utilisation can be setup if a field of reflectors uses multiple receivers on different towers. This paper describes a line focus system, called the compact linear fresnel reflector system and a project to produce an initial 95 MWth solar array. The array will be used as a retrofit preheater for a coal fired generating plant.
APA, Harvard, Vancouver, ISO, and other styles
2

Feuermann, D., and J. M. Gordon. "Analysis of a Two-Stage Linear Fresnel Reflector Solar Concentrator." Journal of Solar Energy Engineering 113, no. 4 (1991): 272–79. http://dx.doi.org/10.1115/1.2929973.

Full text
Abstract:
The two-stage linear Fresnel reflector solar concentrator is analyzed via an in-depth study of an installed, nominally 220 KWt system. The concentrator includes: (1) a primary linear Fresnel reflector comprised of curved mirrors and (2) a secondary nonimaging CPC-type trough with a tubular receiver. The principal practical design options for the secondary concentrator are evaluated. Via a computer simulation which includes ray-tracing of the primary reflector, we evaluate the sensitivity of energy output to: concentrator optical errors, system geometry, tracking mode, and the option of using f
APA, Harvard, Vancouver, ISO, and other styles
3

Sánchez-González, Alberto, and Jesús Gómez-Hernández. "Beam-down linear Fresnel reflector: BDLFR." Renewable Energy 146 (February 2020): 802–15. http://dx.doi.org/10.1016/j.renene.2019.07.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Du Chunxu, 杜春旭, 王普 Wang Pu, 吴玉庭 Wu Yuting, and 马重芳 Ma Chongfang. "Concentration Ratio Analysis of Linear Fresnel Reflector." Acta Optica Sinica 31, no. 8 (2011): 0808001. http://dx.doi.org/10.3788/aos201131.0808001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mills, David R., and Graham L. Morrison. "Compact Linear Fresnel Reflector solar thermal powerplants." Solar Energy 68, no. 3 (2000): 263–83. http://dx.doi.org/10.1016/s0038-092x(99)00068-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singhal, A. K., M. S. Sharma, B. S. Negi, and S. S. Mathur. "Performance testing of a linear fresnel reflector." International Journal of Energy Research 10, no. 1 (1986): 39–46. http://dx.doi.org/10.1002/er.4440100105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Jianwei, Kang Chen, Pengfei Chen, Dongsheng Niu, and Xiao Wang. "Heat Transfer Enhancement Analysis of Collector Tube in LFR-CSP." Journal of Physics: Conference Series 2584, no. 1 (2023): 012057. http://dx.doi.org/10.1088/1742-6596/2584/1/012057.

Full text
Abstract:
Abstract The heat transfer characteristics of the collector tube is one of the cores of a linear Fresnel reflector-solar thermal power generation system (LFR-CSP). In this paper, the heat transfer model of reflective linear Fresnel single-tube compound parabolic collector (CPC) is established. In light of the normal operating conditions during the day, it is found that the direct normal irradiation (DNI) and loop length exert significant effects on the heat collection and thermal loss performance of the linear Fresnel reflector. With the increase of DNI and unit length, the outlet temperature
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Farajat, Rabaa K., Mohamed R. Gomaa, and Mai Z. Alzghoul. "Comparison Between CSP Systems and Effect of Different Heat Transfer Fluids on the Performance." WSEAS TRANSACTIONS ON HEAT AND MASS TRANSFER 17 (December 31, 2022): 196–205. http://dx.doi.org/10.37394/232012.2022.17.21.

Full text
Abstract:
While fossil fuel sources have declined and energy demand has increased, in addition to the climate change crisis, the world turned to using renewable energies to get its energy. Concentrated solar power (CSP) is one of the main technologies used for this purpose. This study aims to compare the different concentrated solar power technologies in terms of their efficiency, cost, concentration ratio, and receiver temperature. Results showed that technologies were arranged according to temperatures from high to low as follows; the parabolic dish reflector, central receiver collector, linear Fresne
APA, Harvard, Vancouver, ISO, and other styles
9

MA Jun, 马. 军., 王成龙 WANG Cheng-long, and 夏养君 XIA Yang-jun. "Compound parabolic collector for linear Fresnel reflector system." Optics and Precision Engineering 27, no. 12 (2019): 2542–48. http://dx.doi.org/10.3788/ope.20192712.2542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Taramona, Sebastián, Pedro Ángel González-Gómez, Javier Villa Briongos, and Jesús Gómez-Hernández. "Designing a flat beam-down linear Fresnel reflector." Renewable Energy 187 (March 2022): 484–99. http://dx.doi.org/10.1016/j.renene.2022.01.104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

He, Jia, Zhongzhu Qiu, Qiming Li, and Yi Zhang. "Optical Design of Linear Fresnel Reflector Solar Concentrators." Energy Procedia 14 (2012): 1960–66. http://dx.doi.org/10.1016/j.egypro.2011.12.1194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhu, Jie, and Ziwei Chen. "Optical design of compact linear fresnel reflector systems." Solar Energy Materials and Solar Cells 176 (March 2018): 239–50. http://dx.doi.org/10.1016/j.solmat.2017.12.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Barbón, A., D. Vesperinas, L. Bayón, D. García-Mollaghan, and M. Ghodbane. "Numerical simulation of a solar water disinfection system based on a small-scale linear Fresnel reflector." RSC Advances 13, no. 1 (2023): 155–71. http://dx.doi.org/10.1039/d2ra05596a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Barbón, A., N. Barbón, L. Bayón, and J. A. Sánchez-Rodríguez. "Parametric study of the small scale linear Fresnel reflector." Renewable Energy 116 (February 2018): 64–74. http://dx.doi.org/10.1016/j.renene.2017.09.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

WANG, ChengLong, Jun MA, and YangJun XIA. "Research progress on secondary concentrator for linear Fresnel reflector." SCIENTIA SINICA Technologica 50, no. 8 (2020): 997–1008. http://dx.doi.org/10.1360/sst-2020-0190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Abbas, R., M. J. Montes, M. Piera, and J. M. Martínez-Val. "Solar radiation concentration features in Linear Fresnel Reflector arrays." Energy Conversion and Management 54, no. 1 (2012): 133–44. http://dx.doi.org/10.1016/j.enconman.2011.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Manikumar, R., and A. Valan Arasu. "Design Parameters Optimization and Theoretical Performance Analysis of Linear Fresnel Reflector Solar Concentrator with Multi Tube Absorber." Advanced Materials Research 984-985 (July 2014): 807–18. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.807.

Full text
Abstract:
Linear Fresnel reflector solar concentrator technology is similar to solar trough technology in which the sunlight is reflected by a series of mirrors onto an absorber tube, thus linear F resnel reflector solar concentrator , is a linear line concentrator. The performance of the system depends on the design parameters, mass flow rate, etc. In the present work, by using MATLAB simulation program, a detailed design parameters analysis including the effect of variation in the height of the absorber, width of the absorber plane and the width of the reflector mirror elements on the concentration on
APA, Harvard, Vancouver, ISO, and other styles
18

Lee, Hyun Jin, Jong Kyu Kim, and Sang Nam Lee. "Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System." Transactions of the Korean Society of Mechanical Engineers B 39, no. 12 (2015): 927–34. http://dx.doi.org/10.3795/ksme-b.2015.39.12.927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Souza, Leonardo Faustino Lacerda de, Naum Fraidenraich, Chigueru Tiba, and Jeffrey M. Gordon. "Linear aplanatic Fresnel reflector for practical high-performance solar concentration." Solar Energy 222 (July 2021): 259–68. http://dx.doi.org/10.1016/j.solener.2021.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sharma, Vashi, Jayanta K. Nayak, and Shireesh B. Kedare. "Effects of shading and blocking in linear Fresnel reflector field." Solar Energy 113 (March 2015): 114–38. http://dx.doi.org/10.1016/j.solener.2014.12.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bellos, Evangelos, Christos Tzivanidis, and Angelos Papadopoulos. "Daily, monthly and yearly performance of a linear Fresnel reflector." Solar Energy 173 (October 2018): 517–29. http://dx.doi.org/10.1016/j.solener.2018.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cheng, Ze-Dong, Xue-Ru Zhao, Ya-Ling He, and Yu Qiu. "A novel optical optimization model for linear Fresnel reflector concentrators." Renewable Energy 129 (December 2018): 486–99. http://dx.doi.org/10.1016/j.renene.2018.06.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Barbón, A., J. A. Sánchez-Rodríguez, L. Bayón, and C. Bayón-Cueli. "Cost estimation relationships of a small scale linear Fresnel reflector." Renewable Energy 134 (April 2019): 1273–84. http://dx.doi.org/10.1016/j.renene.2018.09.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rehman, Shafiqur, Aftab Ahmad, Luai M. Alhems, and Muhammad M. Rafique. "Experimental evaluation of solar thermal performance of linear Fresnel reflector." Journal of Mechanical Science and Technology 33, no. 9 (2019): 4555–62. http://dx.doi.org/10.1007/s12206-019-0852-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Acevedo, G. F., M. E. Lopes, B. A. Menezes, et al. "Linear Fresnel reflector technology in Brazil: a techno-economic evaluation." Renewable Energy and Power Quality Journal 21, no. 1 (2023): 329–36. http://dx.doi.org/10.24084/repqj21.315.

Full text
Abstract:
This study aims to present the results of applying a computational tool developed to perform a technical-economic feasibility analysis of a large-scale Linear Fresnel Reflector (LFR) solar power plant. The viability analysis indicators were obtained considering that the electricity produced trades at the Regulated Contracting Environment of the Brazilian Electricity Market. The parametric structural optimization method is used to optimize the technical parameters of the plant. A case study was conducted to analyze the viability of Implementing a 100 MW LFR power plant in the five regions of Br
APA, Harvard, Vancouver, ISO, and other styles
26

Barbón, Arsenio, Covadonga Bayón-Cueli, José A. Fernández Rubiera, and Luis Bayón. "Theoretical Deduction of the Optimum Tilt Angles for Small-Scale Linear Fresnel Reflectors." Energies 14, no. 10 (2021): 2883. http://dx.doi.org/10.3390/en14102883.

Full text
Abstract:
A theoretical justification and computation of the optimum values of the two longitudinal tilt angles of a small-scale linear Fresnel reflector is provided. The optimum angle of the mobile structure is proved to be half the latitude of the geographic location, while the optimum angle of the secondary reflector system is proved to be equal to that latitude. Brute-force verification is carried out for five EU cities, each in one of the five European climate zones.
APA, Harvard, Vancouver, ISO, and other styles
27

González-Mora, Eduardo, and Ma Dolores Durán García. "Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation." Energies 13, no. 2 (2020): 355. http://dx.doi.org/10.3390/en13020355.

Full text
Abstract:
A methodology for an optical optimization of the intercept factor concerning a linear Fresnel reflector is described to increase the amount of solar irradiation that will be delivered in the absorber for Agua Prieta, Sonora; taking the FRESDEMO’s Fresnel field as the reference design. For the performed optimization, the intercept factor is determined as a function of the receiver’s height, establishing a simple criterion for the optimization. The FRESDEMO’s field description is determined and briefly discussed, next compared with the proposed optimization. The compound parabolic concentrator (
APA, Harvard, Vancouver, ISO, and other styles
28

Montenon, Alaric Christian, Giorgos Papakokkinos, and Kostantinos Ilia. "Quantifying the Shading Effects of a Small-Scale Rooftop-Installed Linear Fresnel Reflector in Cyprus." Energies 17, no. 13 (2024): 3269. http://dx.doi.org/10.3390/en17133269.

Full text
Abstract:
Linear Fresnel reflectors are a versatile solar concentration technology, suitable for a wide range of industrial processes and thermal conditioning applications. Such collectors entail a certain footprint, generating shading on the surface where they are installed. This effect is rarely quantified but may play an indirect role on the surface below. When installed on a roof, the solar radiation heats the building less. In places where the annual heating demand is higher than the cooling demand, this constitutes an asset. However, this becomes a disadvantage when the cooling demand is higher an
APA, Harvard, Vancouver, ISO, and other styles
29

Boito, Paola, and Roberto Grena. "Application of a fixed-receiver Linear Fresnel Reflector in concentrating photovoltaics." Solar Energy 215 (February 2021): 198–205. http://dx.doi.org/10.1016/j.solener.2020.12.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

WANG Cheng-long, 王成龙, 马军 MA Jun, and 范多旺 FAN Duo-wang. "Arrangement and optimization of mirror field for linear Fresnel reflector system." Optics and Precision Engineering 23, no. 1 (2015): 78–82. http://dx.doi.org/10.3788/ope.20152301.0078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jun, MA, WANG Chenglong, and XIA Yangjun. "Modeling and simulation of linear Fresnel reflector system based on SolTrace." Journal of Applied Optics 40, no. 4 (2019): 676–80. http://dx.doi.org/10.5768/jao201940.0405003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gao, Xiaolu, Zhaowen Zheng, Wenqiang He, and Zhiyong Wang. "Research on Automatic Adaptation Method for Reflector of Linear Fresnel Collector." IOP Conference Series: Materials Science and Engineering 394 (August 8, 2018): 042035. http://dx.doi.org/10.1088/1757-899x/394/4/042035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Moghimi, M. A., K. J. Craig, and J. P. Meyer. "Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector." Solar Energy 119 (September 2015): 343–61. http://dx.doi.org/10.1016/j.solener.2015.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ghodbane, Mokhtar, Zafar Said, Ahmed Amine Hachicha, and Boussad Boumeddane. "Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids." Renewable Energy 151 (May 2020): 43–56. http://dx.doi.org/10.1016/j.renene.2019.10.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sharma, Vashi, Sourav Khanna, Jayanta K. Nayak, and Shireesh B. Kedare. "Effects of shading and blocking in compact linear fresnel reflector field." Energy 94 (January 2016): 633–53. http://dx.doi.org/10.1016/j.energy.2015.10.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Abbas, R., A. Sebastián, M. J. Montes, and M. Valdés. "Optical features of linear Fresnel collectors with different secondary reflector technologies." Applied Energy 232 (December 2018): 386–97. http://dx.doi.org/10.1016/j.apenergy.2018.09.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Achahour, Omar, Badreddine El Ghazzani, Rachid Safoui, et al. "Experimental investigation on linear fresnel reflector prototype for solar heat production." Renewable Energy and Sustainable Development 11, no. 1 (2025): 146. https://doi.org/10.21622/resd.2025.11.1.1277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ghodbane, Mokhtar, Marek Majdak, and Boussad Boumeddane. "The efficiency of linear Fresnel reflectors in producing superheated steam for power plant drive." E3S Web of Conferences 323 (2021): 00011. http://dx.doi.org/10.1051/e3sconf/202132300011.

Full text
Abstract:
Solar energy is one of the most important sources of renewable energies, which is widely used in many fields, such as electricity production through direct production of superheated steam based on Linear Fresnel Reflector. This study aims to show the optical and thermal behavior of linear Fresnel solar reflectors field directed to the electricity production in El-Oued region at Algeria. Four days of different weather data have been selected to track the change in solar field performance. Numerical optical modeling has shown that the optical performance of the solar field has reached 53.60 %, w
APA, Harvard, Vancouver, ISO, and other styles
39

Babu, M., Sachin S. Raj, and A. Valan Arasu. "Experimental analysis on Linear Fresnel reflector solar concentrating hot water system with varying width reflectors." Case Studies in Thermal Engineering 14 (September 2019): 100444. http://dx.doi.org/10.1016/j.csite.2019.100444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Thomas, Sanju, Ajith Kumar, Sudhansu Sahoo, and Shinu Varghese. "Entropy generation analysis for forced convection boiling in absorber tubes of linear fresnel reflector solar thermal system." Thermal Science 24, no. 2 Part A (2020): 735–43. http://dx.doi.org/10.2298/tsci180331234t.

Full text
Abstract:
A methodology has been presented related to entropy generation due to forced convection boiling in long absorber tubes used in linear Fresnel reflector solar thermal system. Variable heat flux has been applied on the tube which replicates the scenario for aforementioned tubes and local entropy generation has been obtained for various parameters. Mathematical modeling has been made separately for single-phase and two-phase regions in flow boiling conditions encountered in linear Fresnel reflector tubes. Entropy generation in two-phase region has been formulated using homogeneous equilibrium mod
APA, Harvard, Vancouver, ISO, and other styles
41

Zhao Jinlong, 赵金龙, 李林 Li Lin, 崔正军 Cui Zhengjun, et al. "Calculation of Flux Density Distribution on Focal Plane in Linear Fresnel Reflector." Acta Optica Sinica 32, no. 12 (2012): 1208001. http://dx.doi.org/10.3788/aos201232.1208001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhu, Guangdong. "New adaptive method to optimize the secondary reflector of linear Fresnel collectors." Solar Energy 144 (March 2017): 117–26. http://dx.doi.org/10.1016/j.solener.2017.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bellos, Evangelos, Christos Tzivanidis, and Angelos Papadopoulos. "Secondary concentrator optimization of a linear Fresnel reflector using Bezier polynomial parametrization." Solar Energy 171 (September 2018): 716–27. http://dx.doi.org/10.1016/j.solener.2018.07.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pulido-Iparraguirre, Diego, Loreto Valenzuela, Juan-José Serrano-Aguilera, and Aránzazu Fernández-García. "Optimized design of a Linear Fresnel reflector for solar process heat applications." Renewable Energy 131 (February 2019): 1089–106. http://dx.doi.org/10.1016/j.renene.2018.08.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gharbi, Najla El, Halima Derbal, Sofiane Bouaichaoui, and Noureddine Said. "A comparative study between parabolic trough collector and linear Fresnel reflector technologies." Energy Procedia 6 (2011): 565–72. http://dx.doi.org/10.1016/j.egypro.2011.05.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Said, Zafar, Mokhtar Ghodbane, Ahmed Amine Hachicha, and Boussad Boumeddane. "Optical performance assessment of a small experimental prototype of linear Fresnel reflector." Case Studies in Thermal Engineering 16 (December 2019): 100541. http://dx.doi.org/10.1016/j.csite.2019.100541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhu, Yanqing, Jifu Shi, Yujian Li, Leilei Wang, Qizhang Huang, and Gang Xu. "Design and thermal performances of a scalable linear Fresnel reflector solar system." Energy Conversion and Management 146 (August 2017): 174–81. http://dx.doi.org/10.1016/j.enconman.2017.05.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Dabwan, Yousef N., and Esmail M. A. Mokheimer. "Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant." Energy Conversion and Management 148 (September 2017): 830–43. http://dx.doi.org/10.1016/j.enconman.2017.06.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Negi, B. S., S. S. Mathur, and T. C. Kandpal. "Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator." Solar & Wind Technology 6, no. 5 (1989): 589–93. http://dx.doi.org/10.1016/0741-983x(89)90095-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bellos, Evangelos, and Christos Tzivanidis. "Concentrating Solar Collectors for a Trigeneration System—A Comparative Study." Applied Sciences 10, no. 13 (2020): 4492. http://dx.doi.org/10.3390/app10134492.

Full text
Abstract:
The objective of this study is the investigation of different solar concentrating collectors for application in a trigeneration system. Parabolic trough collectors, linear Fresnel reflectors and solar dishes are the examined solar concentrating technologies in this work. The trigeneration unit includes an organic Rankine cycle coupled with an absorption heat machine that operates with LiBr/water. The analysis is performed throughout the year by using the weather data of Athens in Greece. The results of this work indicate that the selection of parabolic trough collectors is the best choice beca
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!