Academic literature on the topic 'Linear generative model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear generative model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear generative model"
Liao, Huadong, Jiawei He, and Kunxian Shu. "Generative Model With Dynamic Linear Flow." IEEE Access 7 (2019): 150175–83. http://dx.doi.org/10.1109/access.2019.2947567.
Full textRoweis, Sam, and Zoubin Ghahramani. "A Unifying Review of Linear Gaussian Models." Neural Computation 11, no. 2 (February 1, 1999): 305–45. http://dx.doi.org/10.1162/089976699300016674.
Full textKuo, Ping-Huan, Ssu-Ting Lin, and Jun Hu. "DNAE-GAN: Noise-free acoustic signal generator by integrating autoencoder and generative adversarial network." International Journal of Distributed Sensor Networks 16, no. 5 (May 2020): 155014772092352. http://dx.doi.org/10.1177/1550147720923529.
Full textLi, Guangyu, Bo Jiang, Hao Zhu, Zhengping Che, and Yan Liu. "Generative Attention Networks for Multi-Agent Behavioral Modeling." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 7195–202. http://dx.doi.org/10.1609/aaai.v34i05.6209.
Full textBishop, Christopher M., Markus Svensén, and Christopher K. I. Williams. "GTM: The Generative Topographic Mapping." Neural Computation 10, no. 1 (January 1, 1998): 215–34. http://dx.doi.org/10.1162/089976698300017953.
Full textBikmukhamedo, Radion F., and Adel F. Nadeev. "Generative transformer framework for network traffic generation and classification." T-Comm 14, no. 11 (2020): 64–71. http://dx.doi.org/10.36724/2072-8735-2020-14-11-64-71.
Full textArora, Sanjeev, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. "A Latent Variable Model Approach to PMI-based Word Embeddings." Transactions of the Association for Computational Linguistics 4 (December 2016): 385–99. http://dx.doi.org/10.1162/tacl_a_00106.
Full textNeal, Radford M., and Peter Dayan. "Factor Analysis Using Delta-Rule Wake-Sleep Learning." Neural Computation 9, no. 8 (November 1, 1997): 1781–803. http://dx.doi.org/10.1162/neco.1997.9.8.1781.
Full textSinaga, Regina Sabariah. "PENGARUH MODEL PEMBELAJARAN GENERATIF TERHADAP PEMECAHAN MASALAH MATEMATIKA PADA MATERI PERSAMAAN LINIER DUA VARIABEL KELAS X SMK SWASTA ASAHAN KISARAN TAHUN PELAJARAN 2018/2019." Jurnal Serunai Matematika 12, no. 1 (March 29, 2020): 26–31. http://dx.doi.org/10.37755/jsm.v12i1.264.
Full textLiu, Yang, Qun Liu, and Shouxun Lin. "Discriminative Word Alignment by Linear Modeling." Computational Linguistics 36, no. 3 (September 2010): 303–39. http://dx.doi.org/10.1162/coli_a_00001.
Full textDissertations / Theses on the topic "Linear generative model"
Poire, Xavier Corvera. "Model generation and sampling algorithms for dynamic stochastic programming." Thesis, University of Essex, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294674.
Full textHenriksson, Johan. "Generating Solutions in General Relativity using a Non-Linear Sigma Model." Thesis, Uppsala universitet, Teoretisk fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226272.
Full textZhang, Li Zhang Li. "Automatic digital surface model (DSM) generation from linear array images /." [S.l.] : [s.n.], 2005. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16078.
Full textDe, Oliveira Steven. "Finding constancy in linear routines." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS207/document.
Full textThe criticality of programs constantly reaches new boundaries as they are relied on to take decisions in place of the user (autonomous cars, robot surgeon, etc.). This raised the need to develop safe programs and to verify the already existing ones.Anyone willing to formally prove the soundness of a program faces the two challenges of scalability and undecidability. Million of lines of code, complexity of the algorithm, concurrency, and even simple polynomial expressions are part of the issues formal verification have to deal with. In order to succeed, formal methods rely on state abstraction to analyze approximations of the behavior of the analyzed program.The analysis of loops is a full axis of formal verification, as this construction is still today not well understood. Though some of them can be easily handled when they perform simple operations, there still exist some seemingly basic loops whose behavior has not been solved yet (the Syracuse sequence for example is suspected to be undecidable).The most common approach for the treatment of loops is the use of loop invariants, i.e. relations on variables that are true at the beginning of the loop and after every step. In general, invariants are expected to use the same set of expressions used in the loop: if a loop manipulates the memory on a structure for example, invariants will naturally use expressions involving memory operations. However, there exist loops containing only linear instructions that admit only polynomial invariants (for example, the sum on integers $sumlimits_{i=0}^n i$ can be computed by a linear loop and is a degree 2 polynomial in n), hence using expressions that are syntacticallyabsent of the loop. Is the previous remark wrong then ?This thesis presents new insights on loops containing linear and polynomial instructions. It is already known that linear loops are polynomially expressive, in the sense that if a variable evolves linearly, then any monomial of this variable evolves linearly. The first contribution of this thesis is the extraction of a class of polynomial loops that is exactly as expressive as linear loops, in the sense that there exist a linear loop with the exact same behavior. Then, two new methods for generating invariants are presented.The first method is based on abstract interpretation and is focused on a specific kind of linear loops called linear filters. Linear filters play a role in many embedded systems (plane sensors for example) and require the use of floating point operations, that may be imprecise and lead to errors if they are badly handled. Also, the presence of non deterministic assignments makes their analysis even more complex.The second method treats of a more generic subject by finding a complete set of linear invariants of linear loops that is easily computable. This technique is based on the linear algebra concept of eigenspace. It is extended to deal with conditions, nested loops and non determinism in assignments.Generating invariants is an interesting topic, but it is not an end in itself, it must serve a purpose. This thesis investigates the expressivity of invariantsgenerated by the second method by generating counter examples for the Kannan-Lipton Orbit problem.It also presents the tool PILAT implementing this technique and compares its efficiency technique with other state-of-the-art invariant synthesizers. The effective usefulness of the invariants generated by PILAT is demonstrated by using the tool in concert with CaFE, a model-checker for C programs based on temporal logics
DUCA, VICTOR EDUARDO LEITE DE A. "A NEW APPROACH TO GENERATE TIME SERIES PERIODICAL SCENARIOS VIA NON-LINEAR MODELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33375@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
Os modelos autorregressivos são comumente encontrados dentro do contexto de séries hidrológicas, especificamente em séries de vazões e/ou ENA (Energia Natural Afluente). Muitos destes modelos são de ordem 1, possuem parâmetros constantes ou periódicos e necessitam do requisito de normalidade. Segundo a literatura, séries de vazões anuais podem ser aproximadas para distribuições normais, porém em períodos de tempo curtos como diário, semanal e mensal esta característica não é observada, especialmente pelo problema de assimetria. Devido a isto, uma nova classe de modelo de ordem 1 foi estudada na tentativa de suprir tal problema. O novo modelo mantém estrutura autorregressiva, pode ser aditivo, multiplicativo ou híbrido, onde incorpora propriedades aditivas e multiplicativas conjunta- mente, porém suas marginais assumirão distribuição gama. Além disso, a modelagem parte do pressuposto que os Métodos de Momentos são eficientes para estimação de seus parâmetros. Recentemente esta abordagem, sob a forma híbrida, não demonstrou sucesso para o contexto do despacho hidrotérmico brasileiro. O presente trabalho foca na análise completa do modelo híbrido para as séries do Setor Elétrico Brasileiro, trazendo como novidade a estimação via máxima verossimilhança além dos estudos isolados de modelos aditivos e multiplicativos. Os resultados revelaram uma linha de pesquisa promissora, abrindo um campo de possibilidades para que novas ordens superiores a primeira ou distribuições assimétricas possam ser estudadas partindo deste princípio.
Autoregressive models are commonly found in the context of hydrological series, specifically in streamflow and/or ANE series (Affluent Natural Energy). Most of them are models of order 1, which have constant or periodic parameters and need the requirement of normality. According to the literature, annual streamflow series can be approximated for normal distributions, however, in short periods of time, like daily, weekly and monthly, this feature is not observed, especially because of the asymmetry issue. Due to this reason, a new class of model of order 1 was studied for attempting to solve such problem. The new model keeps autoregressive structure and can be additive, multiplicative or hybrid, in which embodies additive and multiplicative properties together, but its marginals will assume gamma distribution. Moreover, this modeling departs from the presupposition that Methods of Moments are efficient to the estimation of its parameters. Recently, this approach, under the hybrid way, has not proved to be successful to the context of Brazilian hydrothermal dispatch. This work focuses on the complete analysis of hybrid model to the series of the Brazilian Electric Sector, bringing, as novelty, Maximum Likelihood Estimation, besides isolated studies of additive and multiplicative models. The results revealed a prosperous line of research, opening a field of possibilities for new orders or asymmetric distributions to be studied starting from this point.
Alqattan, Nael Abdulhameed. "A Multi-Period Mixed Integer Linear Programming Model for Desalination and Electricity Co-generation in Kuwait." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5167.
Full textFreitas, Patrícia Fernanda da Silva. "Planejamento da expansão de sistemas de transmissão considerando múltiplos cenários de geração /." Ilha Solteira, 2018. http://hdl.handle.net/11449/157393.
Full textResumo: Tradicionalmente, o problema de Planejamento da Expansão de Sistemas de Transmissão (PEST) é solucionado considerando apenas um único cenário de geração, embora sistemas elétricos reais operem em diferentes cenários de geração. Nessa pesquisa são propostos modelos matemáticos para resolver o problema de PEST, considerando múltiplos cenários de geração de forma que o plano de expansão obtido permita uma operação adequada do sistema. No modelo proposto, o custo de investimento é maior em relação aos planos de expansão encontrados pelo planejamento tradicional, que considera apenas um cenário de geração. Para reduzir o correspondente custo de investimento são apresentadas estratégias eficientes para encontrar planos de expansão para o problema de PEST considerando múltiplos cenários. As estratégias utilizadas foram: permitir pequenos cortes de carga; permitir o deslocamento do nível de geração em uma pequena faixa de geração mínima e máxima em relação à geração ideal e permitir pequenas sobrecargas nas linhas de transmissão. Adicionalmente, uma combinação entre essas estratégias é apresentada e o problema PEST também foi resolvido para o planejamento multiestágio, considerando múltiplos cenários de geração. O método proposto foi implementado com o uso da linguagem de modelagem algébrica AMPL e resolvido com o uso do solver comercial CPLEX. Os resultados encontrados correspondem à propostas de solução que são válidas para diferentes cenários de geração e apresentam diferentes alt... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Traditionally, the Transmission Network Expansion Problem is solved considering only a single generation scenario. However, a real power system operates in different generation scenarios. This work presents the disjunctive linear model for the Transmission Network Expansion Problem considering multiple generation scenarios to provide a single expansion plan, which must operate in a appropriate way in each one of the different scenarios. The investment cost of the proposed model is greater in relation to the traditional expansion plans, that consider single generation scenario. In order to reduce the investment costs, efficient strategies are presented to find the expansion plans for multiples scenarios. Therefore those strategies are: allow small load cuts; allow generation level displacement in a narrow generation range in relation to the ideal one; and allow small overload in the transmission lines. Moreover, a combination between those strategies is shown and the Transmission Network Expansion Problem was also solved for multistage planning for multiple generation scenarios. The proposed method was implemented using A Mathematical Programming Language (AMPL) and the commercial solver CPLEX. The results were of optimal quality, considering the characteristics of the used solver, and they were compared with methods found in the specialized literature.
Doutor
Krisztin, Tamás. "Semi-parametric spatial autoregressive models in freight generation modeling." Elsevier, 2018. https://publish.fid-move.qucosa.de/id/qucosa%3A72336.
Full textSong, Ge. "Sound generation by coherent structures in mixing layers." Phd thesis, Paris, ENSAM, 2012. http://pastel.archives-ouvertes.fr/pastel-00835374.
Full textLoe, Bao Sheng. "The effectiveness of automatic item generation for the development of cognitive ability tests." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289990.
Full textBooks on the topic "Linear generative model"
Glovackaya, Alevtina. Computational model. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1013723.
Full textSeslavin, Andrey. Theory of automatic control. Linear, continuous systems. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1014654.
Full textVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Full textLinear and non-linear video and TV applications using IPv6 and IPv6 multicast: Deploying the infrastructure to deliver evolving next-generation TV and video services. Hoboken, N.J: Wiley, 2012.
Find full textChemodurov, Vladimir, and Ella Litvinova. Physical and mathematical modeling of building systems. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1014191.
Full text1964-, Hartley T. T., and Lewis Research Center, eds. A method for generating reduced-order linear models of multidimensional supersonic inlets. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textWalsh, Bruce, and Michael Lynch. Short-term Changes in the Mean: 2. Truncation and Threshold Selection. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830870.003.0014.
Full textJappelli, Tullio, and Luigi Pistaferri. The Buffer Stock Model. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199383146.003.0007.
Full text1964-, Hartley T. T., and United States. National Aeronautics and Space Administration., eds. A method for generating reduced order linear models of supersonic inlets: Under grant NAG3-1450. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textCoolen, A. C. C., A. Annibale, and E. S. Roberts. Soft constraints: exponential random graph models. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0004.
Full textBook chapters on the topic "Linear generative model"
Luo, Bin, Richard C. Wilson, and Edwin R. Hancock. "A Linear Generative Model for Graph Structure." In Graph-Based Representations in Pattern Recognition, 54–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31988-7_6.
Full textRundo, Francesco, Giuseppe Luigi Banna, Francesca Trenta, Concetto Spampinato, Luc Bidaut, Xujiong Ye, Stefanos Kollias, and Sebastiano Battiato. "Advanced Non-linear Generative Model with a Deep Classifier for Immunotherapy Outcome Prediction: A Bladder Cancer Case Study." In Pattern Recognition. ICPR International Workshops and Challenges, 227–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68763-2_17.
Full textJaminet, Jean, Gabriel Esquivel, and Shane Bugni. "Serlio and Artificial Intelligence: Problematizing the Image-to-Object Workflow." In Proceedings of the 2021 DigitalFUTURES, 3–12. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_1.
Full textLópez, Toni, Reinhold Elferich, and Eduard Alarcón. "Model Level 1: Piecewise Linear Analytical Switching Model." In Voltage Regulators for Next Generation Microprocessors, 133–95. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7560-7_3.
Full textPerrie, Will. "The Third Generation WAM Models for Wind-Generated Ocean Waves." In Non-Linear Variability in Geophysics, 257–59. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-2147-4_19.
Full textCiardo, Gianfranco, Alex Blakemore, Philip F. Chimento, Jogesh K. Muppala, and Kishor S. Trivedi. "Automated Generation and Analysis of Markov Reward Models Using Stochastic Reward Nets." In Linear Algebra, Markov Chains, and Queueing Models, 145–91. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8351-2_11.
Full textWęsowski, Andrzej. "Automatic Generation of Program Families by Model Restrictions." In Software Product Lines, 73–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28630-1_5.
Full textHughes, Jack, and Dominic Orchard. "Resourceful Program Synthesis from Graded Linear Types." In Logic-Based Program Synthesis and Transformation, 151–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68446-4_8.
Full textAleksandrowicz, Gadi, Alexander Ivrii, Oded Margalit, and Dan Rasin. "Generating Modulo-2 Linear Invariants for Hardware Model Checking." In Hardware and Software: Verification and Testing, 54–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13338-6_5.
Full textAppel, Simon, and Jaap Wijker. "Generation of Linear Conductors for Lumped Parameter Thermal Models." In Simulation of Thermoelastic Behaviour of Spacecraft Structures, 225–59. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78999-2_9.
Full textConference papers on the topic "Linear generative model"
Han, Tian, Jiawen Wu, and Ying Nian Wu. "Replicating Active Appearance Model by Generator Network." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/305.
Full textSanthanam, Anand P., Brad Stiehl, Michael Lauria, Igor Barjaktarevic, Jonathan Goldin, Jane Yanagawa, and Daniel Low. "A quantitative prediction of the post-operative lobectomy lung physiology using a GPU-based linear elastic lung biomechanics model and a constrained generative adversarial learning approach." In Image-Guided Procedures, Robotic Interventions, and Modeling, edited by Cristian A. Linte and Jeffrey H. Siewerdsen. SPIE, 2021. http://dx.doi.org/10.1117/12.2582271.
Full textVillanueva Llerena, Julissa. "Predictive Uncertainty Estimation for Tractable Deep Probabilistic Models." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/745.
Full textZhang Xiaojin and Xie Xiaorong. "A multimass model with non-linear modal damping for SSR analysis of turbine generators." In 2009 International Conference on Sustainable Power Generation and Supply. SUPERGEN 2009. IEEE, 2009. http://dx.doi.org/10.1109/supergen.2009.5347928.
Full textJalali, Shirin, and Xin Yuan. "Solving linear inverse problems using generative models." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849788.
Full textLaksari, Kaveh, and Kurosh Darvish. "Brain Deformation in Linear Head Impact." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11697.
Full textOkada, Takashi, Satoshi Teramoto, and Nobuo Furuta. "New Generation Model of Linear Oxygen Sensor." In JSAE/SAE 2015 International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2015. http://dx.doi.org/10.4271/2015-01-2020.
Full textKanev, Valeriy. "Solution Modeling in System Coordination of Objectives and Resourcing Linear Business Processes." In Contemporary Issues in Business, Management and Education. Vilnius Gediminas Technical University, 2017. http://dx.doi.org/10.3846/cbme.2017.104.
Full textHor, S., A. Tabesh, and A. Zamani. "Analytical model of an improved linear generator for seawave energy harvesting." In IET Conference on Renewable Power Generation (RPG 2011). IET, 2011. http://dx.doi.org/10.1049/cp.2011.0230.
Full textYang, Junggi, Youngho Lee, and Un Gu Kang. "Cardiovascular disease prediction models on Linear Discriminant Analysis of depression." In Next Generation Computer and Information Technology 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.63.30.
Full textReports on the topic "Linear generative model"
Noble, Michael. How to implement sub-national poverty lines in a SOUTHMOD country model using conditional constants: The case of UGAMOD. UNU-WIDER, March 2021. http://dx.doi.org/10.35188/unu-wider/wtn/2021-3.
Full textAllen, Luke, Joon Lim, Robert Haehnel, and Ian Detwiller. Rotor blade design framework for airfoil shape optimization with performance considerations. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41037.
Full textBlonigan, Patrick Joseph, Gianluca Geraci, Francesco Rizzi, Michael S. Eldred, and Kevin Carlberg. On-line Generation and Error Handling for Surrogate Models within Multifidelity Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1567834.
Full textWissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg, and Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40883.
Full textGuidati, Gianfranco, and Domenico Giardini. Joint synthesis “Geothermal Energy” of the NRP “Energy”. Swiss National Science Foundation (SNSF), February 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.4.en.
Full text