Academic literature on the topic 'Linear Multistep Methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear Multistep Methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear Multistep Methods"
Hairer, Ernst. "Symmetric linear multistep methods." BIT Numerical Mathematics 46, no. 3 (August 16, 2006): 515–24. http://dx.doi.org/10.1007/s10543-006-0066-z.
Full textButcher, J. C., and A. T. Hill. "Linear Multistep Methods as Irreducible General Linear Methods." BIT Numerical Mathematics 46, no. 1 (March 2006): 5–19. http://dx.doi.org/10.1007/s10543-006-0046-3.
Full textHundsdorfer, Willem, Steven J. Ruuth, and Raymond J. Spiteri. "Monotonicity-Preserving Linear Multistep Methods." SIAM Journal on Numerical Analysis 41, no. 2 (January 2003): 605–23. http://dx.doi.org/10.1137/s0036142902406326.
Full textSahoo, G., and N. Datta. "Auxiliary linear multistep methods: explicit." International Journal of Computer Mathematics 26, no. 2 (January 1989): 101–15. http://dx.doi.org/10.1080/00207168908803688.
Full textSahoo, G., and N. Datta. "Auxiliary linear multistep methods: implicit." International Journal of Computer Mathematics 31, no. 1-2 (January 1989): 115–23. http://dx.doi.org/10.1080/00207168908803793.
Full textOliveira, Paula, and Fernanda Patricio. "Instability in linear multistep methods." Applicable Analysis 28, no. 1 (January 1988): 1–14. http://dx.doi.org/10.1080/00036818808839745.
Full textSand, Jørgen. "Circle contractive linear multistep methods." BIT 26, no. 1 (March 1986): 114–22. http://dx.doi.org/10.1007/bf01939367.
Full textBoutelje, B. R., and A. T. Hill. "Nonautonomous stability of linear multistep methods." IMA Journal of Numerical Analysis 30, no. 2 (February 20, 2009): 525–42. http://dx.doi.org/10.1093/imanum/drn070.
Full textLenferink, H. W. J. "Contractivity-preserving implicit linear multistep methods." Mathematics of Computation 56, no. 193 (January 1, 1991): 177. http://dx.doi.org/10.1090/s0025-5718-1991-1052098-0.
Full textJódar, L., J. L. Morera, and E. Navarro. "On convergent linear multistep matrix methods." International Journal of Computer Mathematics 40, no. 3-4 (January 1991): 211–19. http://dx.doi.org/10.1080/00207169108804014.
Full textDissertations / Theses on the topic "Linear Multistep Methods"
Boutelje, Bruce R. "Nonlinear stability and convergence of linear multistep methods." Thesis, University of Bath, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.478943.
Full textConsidine, Seamus. "Modified linear multistep methods for the numerical integration of stiff initial value problems." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47005.
Full textArnold, Andrea. "Sequential Monte Carlo Parameter Estimation for Differential Equations." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396617699.
Full textSehnalová, Pavla. "Stabilita a konvergence numerických výpočtů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2011. http://www.nusl.cz/ntk/nusl-261248.
Full textSantos, Claudia Augusta dos. "Métodos numéricos para o retoque digital /." São José do Rio Preto : [s.n.], 2005. http://hdl.handle.net/11449/94281.
Full textBanca: Antonio Castelo Filho
Banca: Heloisa Helena Marino Silva
Resumo: O objetivo deste trabalho þe aplicar Mþetodos Numþericos de ordem de precisão mais alta ao problema de Retoque Digital, visando melhorar a qualidade da aproximação quando comparada com o Método de Euler, que þe geralmente utilizado para esse tipo de problema. Para testar a eficiência de tais métodos, utilizamos três modelos de Retoque Digital: o modelo proposto por Bertalmþýo, Sapiro, Ballester e Caselles (BSBC), o modelo de Rudin, Osher e Fatemi conhecido como Variacional Total (TV) e o modelo de Chan e Shen, chamado de Difusão Guiada pela Curvatura (CDD).
Abstract: The purpose of this work is to apply Numerical Methods of higher order to the problem of Digital Inpainting, aiming to improve the quality of the approach when compared with the Eulers Method which is generally used for this kind of problem. To test the e ciency of these methods we use three models of Digital Inpainting: the model considered by Bertalmþýo, Sapiro, Ballester and Caselles (BSBC), the model of Rudin, Osher and Fatemi known as Total Variation (TV) and the model of Chan and Shen, named Curvature Driven Di usion (CDD)
Mestre
Santos, Claudia Augusta dos [UNESP]. "Métodos numéricos para o retoque digital." Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/94281.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
O objetivo deste trabalho þe aplicar Mþetodos Numþericos de ordem de precisão mais alta ao problema de Retoque Digital, visando melhorar a qualidade da aproximação quando comparada com o Método de Euler, que þe geralmente utilizado para esse tipo de problema. Para testar a eficiência de tais métodos, utilizamos três modelos de Retoque Digital: o modelo proposto por Bertalmþýo, Sapiro, Ballester e Caselles (BSBC), o modelo de Rudin, Osher e Fatemi conhecido como Variacional Total (TV) e o modelo de Chan e Shen, chamado de Difusão Guiada pela Curvatura (CDD).
The purpose of this work is to apply Numerical Methods of higher order to the problem of Digital Inpainting, aiming to improve the quality of the approach when compared with the Euler s Method which is generally used for this kind of problem. To test the e ciency of these methods we use three models of Digital Inpainting: the model considered by Bertalmþýo, Sapiro, Ballester and Caselles (BSBC), the model of Rudin, Osher and Fatemi known as Total Variation (TV) and the model of Chan and Shen, named Curvature Driven Di usion (CDD)
Hadjimichael, Yiannis. "Perturbed Strong Stability Preserving Time-Stepping Methods For Hyperbolic PDEs." Diss., 2017. http://hdl.handle.net/10754/625526.
Full textZivariPiran, Hossein. "Efficient Simulation, Accurate Sensitivity Analysis and Reliable Parameter Estimation for Delay Differential Equations." Thesis, 2009. http://hdl.handle.net/1807/19253.
Full textBook chapters on the topic "Linear Multistep Methods"
Hairer, Ernst, Syvert Paul Nørsett, and Gerhard Wanner. "Multistep Methods and General Linear Methods." In Solving Ordinary Differential Equations I, 303–432. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-12607-3_3.
Full textGriffiths, David F., and Desmond J. Higham. "Linear Multistep Methods—V: Solving Implicit Methods." In Numerical Methods for Ordinary Differential Equations, 109–21. London: Springer London, 2010. http://dx.doi.org/10.1007/978-0-85729-148-6_8.
Full textGriffiths, David F., and Desmond J. Higham. "Linear Multistep Methods—III: Absolute Stability." In Numerical Methods for Ordinary Differential Equations, 75–94. London: Springer London, 2010. http://dx.doi.org/10.1007/978-0-85729-148-6_6.
Full textCano, B. "Variable Stepsizes in Symmetric Linear Multistep Methods." In Lecture Notes in Computer Science, 144–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45262-1_18.
Full textGriffiths, David F., and Desmond J. Higham. "Linear Multistep Methods—I: Construction and Consistency." In Numerical Methods for Ordinary Differential Equations, 43–60. London: Springer London, 2010. http://dx.doi.org/10.1007/978-0-85729-148-6_4.
Full textGriffiths, David F., and Desmond J. Higham. "Linear Multistep Methods—IV: Systems of ODEs." In Numerical Methods for Ordinary Differential Equations, 95–108. London: Springer London, 2010. http://dx.doi.org/10.1007/978-0-85729-148-6_7.
Full textSandu, Adrian. "Reverse Automatic Differentiation of Linear Multistep Methods." In Advances in Automatic Differentiation, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68942-3_1.
Full textGriffiths, David F., and Desmond J. Higham. "Linear Multistep Methods—II: Convergence and Zero-Stability." In Numerical Methods for Ordinary Differential Equations, 61–73. London: Springer London, 2010. http://dx.doi.org/10.1007/978-0-85729-148-6_5.
Full textOwolabi, Kolade M., and Adelegan L. Momoh. "Linear Multistep Method with Application to Chaotic Processes." In Mathematical Methods in Engineering and Applied Sciences, 277–90. Boca Raton: CRC Press, [2020] | Series: Mathematics and its applications series: CRC Press, 2020. http://dx.doi.org/10.1201/9780429343537-10.
Full textMincsovics, M. E. "Note on Weakly and Strongly Stable Linear Multistep Methods." In Advances in High Performance Computing, 290–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55347-0_25.
Full textConference papers on the topic "Linear Multistep Methods"
Mitsui, Taketomo. "Performance of “look-ahead” linear multistep methods." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4951868.
Full textMincsovics, M. E. "Note on the stability of strongly stable linear multistep methods." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’17. Author(s), 2017. http://dx.doi.org/10.1063/1.5007412.
Full textHetmanczyk, Georg, and Karlheinz Ochs. "Initialization of linear multistep methods in multidimensional wave digital models." In 2009 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2009. http://dx.doi.org/10.1109/mwscas.2009.5235886.
Full textAnastassi, Z. A., T. E. Simos, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Linear Multistep Methods for the Efficient Integration of the Schrödinger Equation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241413.
Full textMincsovics, Miklós Emil. "Stability of one-step and linear multistep methods - a matrix technique approach." In The 10'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2016. http://dx.doi.org/10.14232/ejqtde.2016.8.15.
Full textGuo, Jinjin, Binbin Qiu, Liangjie Ming, and Yunong Zhang. "Explicit Linear Dual-Multistep Methods Applied to ZNN Illustrated via Discrete Time-Dependent Linear and Nonlinear Inequalities System Solving." In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9207394.
Full textPanopoulos, G. A., Z. A. Anastassi, and T. E. Simos. "Optimized explicit symmetric linear multistep methods for the numerical solution of the Schrödinger equation and related orbital problems." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4772179.
Full textBru¨ls, Olivier, and Martin Arnold. "The Generalized-α Scheme as a Linear Multistep Integrator: Towards a General Mechatronic Simulator." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34941.
Full textAnastassi, Z. A., T. E. Simos, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "A Family of Symmetric Linear Multistep Methods for the Numerical Solution of the Schrödinger Equation and Related Problems." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498259.
Full textCalvetti, Daniela, Salvatore Cuomo, Monica Pragliola, Erkki Somersalo, and Gerardo Toraldo. "Computational issues in linear multistep method particle filtering." In NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965321.
Full text