Academic literature on the topic 'Linear optical properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear optical properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear optical properties"
Obeid, Mohammed T., Waleed A. Hussain, and Wisam A. Radhi. "Linear Optical properties of Pheomelanine pigment extraction from red wool." Journal of Zankoy Sulaimani - Part A 17, no. 1 (January 25, 2015): 177–84. http://dx.doi.org/10.17656/jzs.10371.
Full textAwad, Marwan Manhal. "Linear Optical Properties of Beta Barium Borate (β-BaB2O4) Crystal." International Journal of Psychosocial Rehabilitation 24, no. 4 (April 30, 2020): 5688–96. http://dx.doi.org/10.37200/ijpr/v24i4/pr2020373.
Full textJingyue Fang, Jingyue Fang, Shiqiao Qin Shiqiao Qin, Xueao Zhang Xueao Zhang, and Shengli Chang Shengli Chang. "Linear and nonlinear optical properties of Au/SiO2 nanocomposite prepared by P123." Chinese Optics Letters 10, no. 3 (2012): 031601–31604. http://dx.doi.org/10.3788/col201210.031601.
Full textAlnayli, Dr Raad Sh. "Non-Linear Optical Properties of Gold Nano Particles Doped by Distilled Water (DDDW)." Journal of Advanced Research in Dynamical and Control Systems 12, no. 1 (February 13, 2020): 284–86. http://dx.doi.org/10.5373/jardcs/v12i1/20201041.
Full textHolla, B. Shivarama, B. Veerendra, and J. Indira. "Non-linear optical properties of arylfuranylpropenones." Journal of Crystal Growth 252, no. 1-3 (May 2003): 308–10. http://dx.doi.org/10.1016/s0022-0248(02)02358-8.
Full textOzel, Aysen E., Sefa Celik, and Sevim Akyuz. "Non-Linear Optical Properties of Primidone." Asian Journal of Chemistry 27, no. 5 (2015): 1932–34. http://dx.doi.org/10.14233/ajchem.2015.18552.
Full textVaccaro, John A., and D. T. Pegg. "Phase properties of optical linear amplifiers." Physical Review A 49, no. 6 (June 1, 1994): 4985–95. http://dx.doi.org/10.1103/physreva.49.4985.
Full textShaldin, Yu V. "Linear electro-optical properties of zincite." Optics and Spectroscopy 97, no. 3 (September 2004): 381–87. http://dx.doi.org/10.1134/1.1803642.
Full textAveritt, Richard D., Sarah L. Westcott, and Naomi J. Halas. "Linear optical properties of gold nanoshells." Journal of the Optical Society of America B 16, no. 10 (October 1, 1999): 1824. http://dx.doi.org/10.1364/josab.16.001824.
Full textKlingshirn, C. "Non-linear optical properties of semiconductors." Semiconductor Science and Technology 5, no. 6 (June 1, 1990): 457–69. http://dx.doi.org/10.1088/0268-1242/5/6/001.
Full textDissertations / Theses on the topic "Linear optical properties"
Rochford, Kent Blair. "Linear and nonlinear optical properties of polydiacetylene waveguides." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185340.
Full textWomersley, Martin Nigel. "Linear and non-linear optical properties of electro-optic crystals." Thesis, University of Warwick, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263787.
Full textLawrence, Heather Bunting Elizabeth. "Organometallic compounds with non-linear optical properties." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276835.
Full textNeethling, Pieter. "Determining non-linear optical properties using the Z-scan technique." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1135.
Full textOwens, Daniel Thomas. "Linear and nonlinear optical properties of metal-dielectric multilayer structures." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37235.
Full textKullock, René. "Metallic Nanorod Arrays: Linear Optical Properties and Beyond." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-68769.
Full textStrukturen aus frei stehenden metallischen Nanostäbchen versprechen interessante Anwendungen als Sensoren, Schalter und in der Spektroskopie. Da ihre Strukturgrößen kleiner als die Wellenlänge des sichtbaren Lichtes sind, besitzen sie eine langachsige Oberflächenplasmonenresonanz (LSPR) und weisen metamaterialartige Eigenschaften auf. In dieser Dissertation werden die linearen und nichtlinearen optischen Eigenschaften solcher Strukturen im Detail untersucht. Mit Hilfe von Gradientenstrukturen, die eine durchstimmbare LSPR besitzen, und dreier theoretischer Modelle – eines numerischen Modells basierend auf der Methode der multiplen Multipole (MMP), eines semianalytischen Modells kollektiver Oberflächenplasmonen (CSP) sowie eines analytischen dipolaren Interaktionsmodells (DIMs) – werden die optischen Eigenschaften analysiert. Unter Verwendung des DIMs wird die experimentell beobachtete Blauverschiebung der LSPR im Vergleich zur Resonanz eines Einzelstäbchens bestätigt und eine physikalische Erklärung dafür geliefert. Die LSPR ist stark vom Einfallswinkel und vom Stäbchendurchmesser abhängig. Im Unterschied dazu sind die Änderungen bei einer Längenvariation klein, wobei die langachsige Mode ein unteres Energielimit aufweist. Weiterhin haben die genaue Anordnung der Stäbchen und der azimutale Winkel des einfallenden Lichtes nur einen untergeordneten Einfluss. Die Abhängigkeit vom verwendeten Metall ist analog zu einem Einzelstäbchen, während die Empfindlichkeit in Bezug auf das Umgebungsmedium wesentlich stärker ist. Längere Nanostäbchen aus Silber zeigen winkelabhängige Moden höherer Ordnung, welche mittels MMP reproduziert werden können. Das CSP-Modell wird ebenfalls darauf angewendet, wobei Fabry-Pérot-artige Oszillationen der CSPs entdeckt werden. Die propagierende Natur der CSPs führt zur Entdeckung eines Phasensprungs der p‑Komponente des transmittierten Lichtes sowie zur Beobachtung von Polarisationskonversion in den Strukturen. Nanostäbchen-Arrays weisen außerdem negative Brechung auf. Es wird gezeigt, dass ein negativer Energiefluss nur in dem Wellenlängenbereich zwischen der LSPR der Einzelstäbchen und der Arrayresonanz auftritt. Für kleinere Wellenlängen kehrt sich die in der Ebene befindende Poynting-Vektor-Komponente um, was zu einer (außerordentlichen) positiven Brechung führt. An der LSPR selbst ist der zur Strukturebene parallele Fluss Null. Die negative Brechung wird ferner ausgenutzt, um eine Nanolinse mit realistischen Strukturparametern zu simulieren. Im sichtbaren Bereich zeigt sie eine NA von 1,06 und superlinsenartige Eigenschaften, wie eine identische Rotation und eine lineare Translation von Bild und Objekt. Die nichtlinearen Messungen an Gradientenstrukturen werden mittels Femtosekunden-Pump-Probe-Spektroskopie durchgeführt und liefern Kinetiken, welche entweder eine verstärkte Transmission oder eine verstärkte Absorption mit Signalstärken von bis zu 40% aufweisen. Durch Konvertierung in transiente Spektren und Vergleich mit der Literatur werden eine veränderte Elektronverteilung an der Fermi-Kante und heiße Elektronen/Phononen als Ursache für die Änderungen gefunden. Das Abtasten mit dem Probe-Puls an den Wendepunkten der Resonanz offenbart ultraschnelle Signale. Mit Hilfe der transienten Spektren wird dies auf eine kurzzeitige Blauverschiebung der LSPR zurückgeführt
Neal, D. B. "Langmuir-Blodgett films for non-linear optics." Thesis, Durham University, 1987. http://etheses.dur.ac.uk/9527/.
Full textAganoglu, Ruzin. "Non-linear Optical Properties Of Two Dimensional Quantum Well Structures." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607089/index.pdf.
Full textPereira, Suresh. "Linear and nonlinear optical properties of artificially structured materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ63756.pdf.
Full textMayo, Sheridan Clare. "The structure and properties of non-linear optical crystals." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306883.
Full textBooks on the topic "Linear optical properties"
Papadopoulos, Manthos G., Andrzej J. Sadlej, and Jerzy Leszczynski, eds. Non-Linear Optical Properties of Matter. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4850-5.
Full textWomersley, Martin Nigel. Linear & non-linear optical properties of electro-optic crystals. [s.l.]: typescript, 1996.
Find full textWagnière, Georges Henry. Linear and nonlinear optical properties of molecules. Basel: Helvetica Chimica Acta, 1993.
Find full textWagnière, Georges Henry. Linear and nonlinear optical properties of molecules. Basel: Helvetica Chimica Acta, 1993.
Find full text1947-, Ashwell Geoffrey J., Bloor D. 1937-, and Royal Society of Chemistry (Great Britain). Applied Solid State Chemistry Group., eds. Organic Materials for Non-Linear Optics III. Cambridge: Royal Society of Chemistry, 1993.
Find full textWhitmore, Alexander Peter. Preparation of heterocyclic systems with potential non-linear optical properties. Norwich: University of East Anglia, 1994.
Find full textOgnjanovic, Rade. Some physical and optical properties of linear low density polyethylene. Birmingham: University of Birmingham, 1986.
Find full textJakubiak, Rachel. Linear and nonlinear optics of organic materials VIII: 12-14 August 2008, San Diego, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.
Find full textSymposium E on Synthetic Metals for Non-linear Optics and Electronics (1992 Strasbourg, France). Synthetic metals for non-linear optics and electronics: Proceedings of Symposium E on Synthetic Metals for Non-linear Optics and Electronics of the 1992 E-MRS spring conference, Strasbourg, France, June 2-4 1992. Amsterdam: North-Holland, 1993.
Find full textname, No. Complex mediums IV: Beyond linear isotropic dielectrics :4-5 August 2003, San Diego, California, USA. Bellingham, WA: SPIE, 2003.
Find full textBook chapters on the topic "Linear optical properties"
Letz, Martin. "Linear Optical Properties." In Springer Handbook of Glass, 169–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93728-1_5.
Full textKalt, Heinz, and Claus F. Klingshirn. "Review of the Linear Optical Properties." In Graduate Texts in Physics, 485–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24152-0_25.
Full textKlingshirn, Claus F. "Review of the Linear Optical Properties." In Semiconductor Optics, 485–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28362-8_18.
Full textDeveaud, Benoît. "Ultrafast Dynamics and Non Linear Optical Properties of Semiconductor Quantum Wells and Superlattices." In Optical Properties of Semiconductors, 119–58. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8075-5_5.
Full textZuehlsdorff, Tim Joachim. "Linear-Scaling TDDFT in ONETEP." In Computing the Optical Properties of Large Systems, 97–132. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19770-8_5.
Full textRao, Soma Venugopal, K. Naga Krishnakanth, C. Indumathi, and T. C. Sabari Girisun. "Non-linear Optical Properties of Novel Nanomaterials." In Handbook of Laser Technology and Applications, 255–87. 2nd ed. 2nd edition. | Boca Raton: CRC Press, 2021– |: CRC Press, 2021. http://dx.doi.org/10.1201/9781315310855-21.
Full textZuehlsdorff, Tim Joachim. "Linear-Scaling TDDFT Within the PAW Formalism." In Computing the Optical Properties of Large Systems, 133–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19770-8_6.
Full textBertolotti, M., and C. Sibilia. "Optical Properties of Quasiperiodic Structures: Linear and Nonlinear Analysis." In Springer Series in OPTICAL SCIENCES, 258–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-540-48886-6_17.
Full textMichelotti, F. "Linear and Nonlinear Optical Properties of Polymer Waveguides." In Advances in Integrated Optics, 173–84. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2566-0_10.
Full textNakano, Masayoshi. "Diradical Character View of (Non)Linear Optical Properties." In SpringerBriefs in Molecular Science, 43–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08120-5_4.
Full textConference papers on the topic "Linear optical properties"
Etemad, S., G. L. Baker, D. Jaye, F. Kajzar, and J. Messier. "Linear And Nonlinear Optical Properties Of Polyacetylene." In 30th Annual Technical Symposium, edited by Garo Khanarian. SPIE, 1987. http://dx.doi.org/10.1117/12.939636.
Full textCazzanelli, M., R. Spano, N. Daldosso, Z. Gaburro, S. Hernandez, Y. Lebour, P. Pellegrino, et al. "Non-Linear Optical Properties of Si Nanocrystals." In 3rd IEEE International Conference on Group IV Photonics, 2006. IEEE, 2006. http://dx.doi.org/10.1109/group4.2006.1708162.
Full textSalmani, Imran Ahmad, Tahir Murtaza, Mohd Saleem Khan, and Mohd Shahid Khan. "Non-linear optical properties of BiFeO3 nanoparticles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113030.
Full textWang, J., A.-L. Baudrion, A. Horrer, G. Leveque, J. Butet, A. Horneber, M. Fleischer, D. Zhang, and P.-M. Adam. "Linear and non-linear optical properties of plasmonic nano-antennas." In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550397.
Full textMonro, Tanya M. "Exploring the optical properties of holey fibres." In International school of quantum electronics: Nanoscale linear and nonlinear optics. AIP, 2001. http://dx.doi.org/10.1063/1.1372722.
Full textGaponenko, Sergey V. "Optical properties of nanocrystals and their assemblies." In International school of quantum electronics: Nanoscale linear and nonlinear optics. AIP, 2001. http://dx.doi.org/10.1063/1.1372724.
Full textDomínguez Cruz, R., A. Mendez-Perez, G. Romero Galván, M. Mendoza-Panduro, M. Trejo-Duran, E. Alvarado-Mendez, J. M. Estudillo-Ayala, et al. "Organic-inorganic hybrid glass: non-linear optical properties." In RIAO∕OPTILAS 2007: 6th Ibero-American Conference on Optics (RIAO); 9th Latin-American Meeting on Optics, Lasers and Applications (OPTILAS). AIP, 2008. http://dx.doi.org/10.1063/1.2926923.
Full textTrolès, Johann, Laurent Brilland, Celine Caillaud, Gilles Renversez, David Mechin, and Jean-Luc Adam. "Linear and nonlinear optical properties of chalcogenide microstructured optical fibers." In SPIE OPTO, edited by Shibin Jiang and Michel J. F. Digonnet. SPIE, 2015. http://dx.doi.org/10.1117/12.2078156.
Full textChavez Boggio, J. M., S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic. "Linear and Nonlinear Properties of Ultra-Compact Fiber Device." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ofc.2010.owt8.
Full textSibilia, C. "Optical properties of quasiperiodic (fractals) one-dimensional structures." In International school of quantum electronics: Nanoscale linear and nonlinear optics. AIP, 2001. http://dx.doi.org/10.1063/1.1372727.
Full textReports on the topic "Linear optical properties"
Haglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1481179.
Full textRantala, Tapio T., Mark I. Stockman, Daniel A. Jelski, and Thomas F. George. Linear and Nonlinear Optical Properties of Small Silicon Clusters. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada225495.
Full textHenderson, Don O. Metal colloids and quantum dots: linear and nonlinear optical properties. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/799350.
Full textEbbers, C. Summary of known linear and nonlinear optical properties of LiInS{sub 2}. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/10149269.
Full textCozzens, Robert F. Analysis and Evaluation of Technical Data on the Photochromic and Non-Linear Optical Properties of Materials. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada223855.
Full textZuhr, R. A., R. H. III Magruder, T. A. Anderson, and D. O. Jr Osborne. Linear and nonlinear optical properties of metal nanocluster-silica composites formed by sequential implantation of Ag and Cu. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/179275.
Full textHamilton, D. S. Energy transfer and non-linear optical properties at near ultraviolet wavelengths: Rare earth 4f yields 5d transitions in crystals and glasses. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/7011776.
Full textHamilton, D. S. Energy transfer and non-linear optical properties at near ultraviolet wavelengths: Rare earth 4f {yields} 5d transitions in crystals and glasses. Final report, June 1, 1984--May 31, 1992. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/10187744.
Full textLu, John Q. On The Linear Span of A Binary Sequence Family with Optimal Correlation Properties. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada520449.
Full textStrand, Michael P. Coastal Benthic Optical Properties Fluorescence Imaging Laser Line Scan Sensor. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada628584.
Full text