Academic literature on the topic 'Linear optical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear optical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Linear optical properties"

1

Obeid, Mohammed T., Waleed A. Hussain, and Wisam A. Radhi. "Linear Optical properties of Pheomelanine pigment extraction from red wool." Journal of Zankoy Sulaimani - Part A 17, no. 1 (January 25, 2015): 177–84. http://dx.doi.org/10.17656/jzs.10371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Awad, Marwan Manhal. "Linear Optical Properties of Beta Barium Borate (β-BaB2O4) Crystal." International Journal of Psychosocial Rehabilitation 24, no. 4 (April 30, 2020): 5688–96. http://dx.doi.org/10.37200/ijpr/v24i4/pr2020373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jingyue Fang, Jingyue Fang, Shiqiao Qin Shiqiao Qin, Xueao Zhang Xueao Zhang, and Shengli Chang Shengli Chang. "Linear and nonlinear optical properties of Au/SiO2 nanocomposite prepared by P123." Chinese Optics Letters 10, no. 3 (2012): 031601–31604. http://dx.doi.org/10.3788/col201210.031601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alnayli, Dr Raad Sh. "Non-Linear Optical Properties of Gold Nano Particles Doped by Distilled Water (DDDW)." Journal of Advanced Research in Dynamical and Control Systems 12, no. 1 (February 13, 2020): 284–86. http://dx.doi.org/10.5373/jardcs/v12i1/20201041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holla, B. Shivarama, B. Veerendra, and J. Indira. "Non-linear optical properties of arylfuranylpropenones." Journal of Crystal Growth 252, no. 1-3 (May 2003): 308–10. http://dx.doi.org/10.1016/s0022-0248(02)02358-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ozel, Aysen E., Sefa Celik, and Sevim Akyuz. "Non-Linear Optical Properties of Primidone." Asian Journal of Chemistry 27, no. 5 (2015): 1932–34. http://dx.doi.org/10.14233/ajchem.2015.18552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vaccaro, John A., and D. T. Pegg. "Phase properties of optical linear amplifiers." Physical Review A 49, no. 6 (June 1, 1994): 4985–95. http://dx.doi.org/10.1103/physreva.49.4985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shaldin, Yu V. "Linear electro-optical properties of zincite." Optics and Spectroscopy 97, no. 3 (September 2004): 381–87. http://dx.doi.org/10.1134/1.1803642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Averitt, Richard D., Sarah L. Westcott, and Naomi J. Halas. "Linear optical properties of gold nanoshells." Journal of the Optical Society of America B 16, no. 10 (October 1, 1999): 1824. http://dx.doi.org/10.1364/josab.16.001824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klingshirn, C. "Non-linear optical properties of semiconductors." Semiconductor Science and Technology 5, no. 6 (June 1, 1990): 457–69. http://dx.doi.org/10.1088/0268-1242/5/6/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Linear optical properties"

1

Rochford, Kent Blair. "Linear and nonlinear optical properties of polydiacetylene waveguides." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185340.

Full text
Abstract:
The linear and nonlinear optical properties of a spin-coated polydiacetylene, [5,7-dodecadiyn-1,12-diol-bis(n-butoxy-carbonyl-methyl-urethane)], or poly(4BCMU), were measured to predict its performance in all-optical devices at 1.319 μm. Material requirements for all-optical devices were identified and figures-of-merit noted. A two-photon absorption figure of merit was verified by numerical simulation of a waveguide device. The refractive index and waveguide loss in spin-coated poly(4BCMU) films were measured. A photo-induced bleaching was observed, and its effect on linear and nonlinear optical properties was quantified. Fabrication of integrated-optical structures using this photobleaching process was demonstrated. The nonlinear refractive index and absorption were measured at 1.319 μm with 60 picosecond laser pulses, using poly(4BCMU) strip-loaded channel waveguides. A novel pulse-modulated interferometer was developed for measuring the intensity-dependent refractive index. The fast electronic contribution was found to be n₂ = (4.8 ± 2.7) x 10⁻⁸ cm²/MW, an a slower thermal contribution of n₂(T) = -(7.9 ± 4.5) x 10⁻¹¹ cm²/MW was measured. The thermal index change was shown to limit the duty cycle of operation for a poly(4BCMU) device. The two-photon absorption coefficient was also measured, yielding γ < 0.25 cm/GW. These values were used to estimate performance of a poly(4BCMU) all-optical device using standard figures-of-merit. For this specific waveguide, the figures-of-merit indicated poor performance. If waveguide losses were neglected, (by assuming improved fabrication for example), and assuming the nonlinearity does not saturate at intensities below the damage threshold, the figures-of-merit improve to useful levels. The limit on duty cycle imposed by thermal effects appears to restrict operation to GHz frequencies of slower.
APA, Harvard, Vancouver, ISO, and other styles
2

Womersley, Martin Nigel. "Linear and non-linear optical properties of electro-optic crystals." Thesis, University of Warwick, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lawrence, Heather Bunting Elizabeth. "Organometallic compounds with non-linear optical properties." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neethling, Pieter. "Determining non-linear optical properties using the Z-scan technique." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Owens, Daniel Thomas. "Linear and nonlinear optical properties of metal-dielectric multilayer structures." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37235.

Full text
Abstract:
The object of the present research is to design and fabricate metal-dielectric thin film multilayer structures that make use of the nonlinear optical (NLO) response of Ag for efficient nonlinear absorption for sensor protection. These structures employ structural resonances to overcome the challenges of reflection and absorption that limit access to this large NLO response. The research consists of three parts: first, we present a comprehensive analysis of the contributions to the nonlinear optical response of Ag. Second, we present a systematic investigation of the linear optical properties of Metal-Dielectric Photonic Band-Gap (MDPBG) structures, including optimization of the structure for a particular transmittance spectrum. Third, we study the linear and nonlinear optical properties of Induced Transmission Filters (ITFs). Each of these parts includes experimental results backed by modeling and simulation.
APA, Harvard, Vancouver, ISO, and other styles
6

Kullock, René. "Metallic Nanorod Arrays: Linear Optical Properties and Beyond." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-68769.

Full text
Abstract:
Arrays of free-standing metallic nanorods are promising candidates for sensors, switches and spectroscopy. They have structure sizes much smaller than the wavelength of visible light, feature a long-axis surface plasmonic resonance (LSPR) and show metamaterial-like properties. This thesis provides a detailed investigation of their linear optical properties and highlights some nonlinear optical aspects. By means of graded structures having a tunable LSPR and three different theoretical models -- a numerical multiple-multipole method (MMP) model, a semi-analytic collective surface plasmon (CSP) model and an analytic dipolar interaction model (DIM) -- the optical properties were analyzed. Using the DIM, the experimentally observed blueshift of the LSPR in comparison to a single nanorod is confirmed and a physical explanation is provided. The LSPR strongly depends on the angle of incidence and the rod diameter. However, for a varying length the changes are small with the long-axis mode showing a lower energy limit. The detailed arrangement of the nanorods and the azimuthal angle of the incoming light plays only a minor role for small nanorod separations. Similarly, the dependence on the metal is the same as for single particles, whereas the sensitivity to the surrounding dielectric is much stronger than in the single-particle case. For longer nanorods made of silver, angle-dependent higher-order modes are observed and reproduced using MMP. The CSP model is applied and Fabry-Pérot-like oscillations of the CSPs are found. The propagating nature of these modes leads to the discovery that the p component of the transmitted light experiences a phase jump and to the observation of polarization conversion inside the structures. Negative refraction is found in nanorod arrays; it is revealed that a negative energy flux occurs only within a bandwidth given by the LSPR of a single nanorod and the array resonance. For smaller wavelengths, the in-plane component of the Poynting vector reverses, leading to an (extraordinary) positive flux. At the LSPR itself, the flux parallel to the surface is found to be zero. The negative refraction is also exploited to mimic a nanolens with structure parameters that are infact technical realizable. In the visible regime the nanolens shows a NA of 1.06 and superlens-like features such as identical rotation and linear translation of image and object. The nonlinear measurements on graded structures are conducted using femtosecond pump-probe spectroscopy resulting in kinetics showing either an increased transmission or absorption with signal changes of up to 40%. By converting them to transient spectra and by comparison with the literature, electron distribution changes at the Fermi edge and hot electrons/phonons are identified as the main reasons for the changes. Probing at the inflection points of the LSPR reveals ultrafast signals. Using transient spectra they are traced back to a short blueshift of the LSPR
Strukturen aus frei stehenden metallischen Nanostäbchen versprechen interessante An­wendungen als Sensoren, Schalter und in der Spektroskopie. Da ihre Strukturgrößen kleiner als die Wellenlänge des sichtbaren Lichtes sind, besitzen sie eine langachsige Oberflächen­plasmonenresonanz (LSPR) und weisen metamaterialartige Eigenschaften auf. In dieser Dissertation werden die linearen und nichtlinearen optischen Eigenschaften solcher Struk­turen im Detail untersucht. Mit Hilfe von Gradientenstrukturen, die eine durchstimmbare LSPR besitzen, und dreier theoretischer Modelle – eines numerischen Modells basierend auf der Methode der mul­tiplen Multipole (MMP), eines semianalytischen Modells kollektiver Oberflächenplasmonen (CSP) sowie eines analytischen dipolaren Interaktionsmodells (DIMs) – werden die op­tischen Eigenschaften analysiert. Unter Verwendung des DIMs wird die experimentell beobachtete Blauverschiebung der LSPR im Vergleich zur Resonanz eines Einzelstäbchens bestätigt und eine physikalische Erklärung dafür geliefert. Die LSPR ist stark vom Einfallswinkel und vom Stäbchendurch­messer abhängig. Im Unterschied dazu sind die Änderungen bei einer Längenvariation klein, wobei die langachsige Mode ein unteres Energielimit aufweist. Weiterhin haben die genaue Anordnung der Stäbchen und der azimutale Winkel des einfallenden Lichtes nur einen untergeordneten Einfluss. Die Abhängigkeit vom verwendeten Metall ist analog zu einem Einzelstäbchen, während die Empfindlichkeit in Bezug auf das Umgebungsmedium wesentlich stärker ist. Längere Nanostäbchen aus Silber zeigen winkelabhängige Moden höherer Ordnung, welche mittels MMP reproduziert werden können. Das CSP-Modell wird ebenfalls darauf ange­wendet, wobei Fabry-Pérot-artige Oszillationen der CSPs entdeckt werden. Die propa­gierende Natur der CSPs führt zur Entdeckung eines Phasensprungs der p‑Komponente des transmittierten Lichtes sowie zur Beobachtung von Polarisationskonversion in den Strukturen. Nanostäbchen-Arrays weisen außerdem negative Brechung auf. Es wird gezeigt, dass ein negativer Energiefluss nur in dem Wellenlängenbereich zwischen der LSPR der Einzelstäb­chen und der Arrayresonanz auftritt. Für kleinere Wellenlängen kehrt sich die in der Ebene befindende Poynting-Vektor-Komponente um, was zu einer (außerordentlichen) positiven Brechung führt. An der LSPR selbst ist der zur Strukturebene parallele Fluss Null. Die negative Brechung wird ferner ausgenutzt, um eine Nanolinse mit realistischen Struktur­parametern zu simulieren. Im sichtbaren Bereich zeigt sie eine NA von 1,06 und super­linsenartige Eigenschaften, wie eine identische Rotation und eine lineare Translation von Bild und Objekt. Die nichtlinearen Messungen an Gradientenstrukturen werden mittels Femtosekunden-Pump-Probe-Spektroskopie durchgeführt und liefern Kinetiken, welche entweder eine ver­stärkte Transmission oder eine verstärkte Absorption mit Signalstärken von bis zu 40% aufweisen. Durch Konvertierung in transiente Spektren und Vergleich mit der Literatur werden eine veränderte Elektronverteilung an der Fermi-Kante und heiße Elektronen/Pho­nonen als Ursache für die Änderungen gefunden. Das Abtasten mit dem Probe-Puls an den Wendepunkten der Resonanz offenbart ultraschnelle Signale. Mit Hilfe der transienten Spektren wird dies auf eine kurzzeitige Blauverschiebung der LSPR zurückgeführt
APA, Harvard, Vancouver, ISO, and other styles
7

Neal, D. B. "Langmuir-Blodgett films for non-linear optics." Thesis, Durham University, 1987. http://etheses.dur.ac.uk/9527/.

Full text
Abstract:
In recent years there has been considerable interest in media which display significant non-linear optical properties; the telecommunications industry may exploit chin films of such materials for signal processing applications. The Langmuir-Blodgett (LB) technique provides a means of depositing organic layers of a precisely defined thickness. Moreover, by alternating layers of different materials, supermolecular arrays may be fabricated in which there is no centrosymmetry, and therefore the second-order non-linearity of the constituent molecules may be exploited. An investigation of the properties of water-surface monolayers of a number of novel materials with potentially large non-linearities is described. Several of these compounds are shown to form high quality homogeneous or heterogeneous LB films. The optical and electrical properties of the layers are characterized by optical absorption spectroscopy, surface plasmon resonance, and measurements of capacitance, whilst their structure is examined by electron diffraction. Monolayers of a nitrostilbene dye are shown to exhibit: on exceptionally high degree of crystalline order. Data are also given for theoretical calculations of non-linear coefficients and for the relative efficiency of second harmonic generation from bulk samples of various materials. Studies of second harmonic generation from monolayer and alternate multilayer films are reported. Optical non-linearity in an alternating donor-acceptor: inverted donor-acceptor dye system is demonstrated for the first time; the results are analysed in terms of second harmonic surface susceptibilities, and the value of the second-order hyperpolarizability determined for the first bilayer is found to be much superior to that expected by the simple addition of the hyperpolarizabilities of the separate layers. Monolayers containing a mixture of hemicyanine and cadmium arachldate are found to give rise to second harmonic generation which is enhanced relative to that obtained from a pure monolayer of the dye. Corresponding changes in the absorption spectra of the layers can be observed. These findings may have important implications for improving the efficiencies of any non-linear optical device which utilises IB films.
APA, Harvard, Vancouver, ISO, and other styles
8

Aganoglu, Ruzin. "Non-linear Optical Properties Of Two Dimensional Quantum Well Structures." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607089/index.pdf.

Full text
Abstract:
In this work optical properties of two dimensional quantum well structures are studied. Variational calculation of the eigenstates in an isolated quantum well structure with and without the external electrical field is presented. At weak fields a quadratic Stark shift is found whose magnitude depends strongly on the finite well depth. It is observed that under external electrical field, the asymmetries due to lack of inversion symmetry leads to higher order nonlinear optical effects such as second order optical polarization and second order optical susceptibility.
APA, Harvard, Vancouver, ISO, and other styles
9

Pereira, Suresh. "Linear and nonlinear optical properties of artificially structured materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ63756.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mayo, Sheridan Clare. "The structure and properties of non-linear optical crystals." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Linear optical properties"

1

Papadopoulos, Manthos G., Andrzej J. Sadlej, and Jerzy Leszczynski, eds. Non-Linear Optical Properties of Matter. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4850-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Womersley, Martin Nigel. Linear & non-linear optical properties of electro-optic crystals. [s.l.]: typescript, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wagnière, Georges Henry. Linear and nonlinear optical properties of molecules. Basel: Helvetica Chimica Acta, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wagnière, Georges Henry. Linear and nonlinear optical properties of molecules. Basel: Helvetica Chimica Acta, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1947-, Ashwell Geoffrey J., Bloor D. 1937-, and Royal Society of Chemistry (Great Britain). Applied Solid State Chemistry Group., eds. Organic Materials for Non-Linear Optics III. Cambridge: Royal Society of Chemistry, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Whitmore, Alexander Peter. Preparation of heterocyclic systems with potential non-linear optical properties. Norwich: University of East Anglia, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ognjanovic, Rade. Some physical and optical properties of linear low density polyethylene. Birmingham: University of Birmingham, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jakubiak, Rachel. Linear and nonlinear optics of organic materials VIII: 12-14 August 2008, San Diego, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Symposium E on Synthetic Metals for Non-linear Optics and Electronics (1992 Strasbourg, France). Synthetic metals for non-linear optics and electronics: Proceedings of Symposium E on Synthetic Metals for Non-linear Optics and Electronics of the 1992 E-MRS spring conference, Strasbourg, France, June 2-4 1992. Amsterdam: North-Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

name, No. Complex mediums IV: Beyond linear isotropic dielectrics :4-5 August 2003, San Diego, California, USA. Bellingham, WA: SPIE, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Linear optical properties"

1

Letz, Martin. "Linear Optical Properties." In Springer Handbook of Glass, 169–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93728-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kalt, Heinz, and Claus F. Klingshirn. "Review of the Linear Optical Properties." In Graduate Texts in Physics, 485–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24152-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klingshirn, Claus F. "Review of the Linear Optical Properties." In Semiconductor Optics, 485–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28362-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deveaud, Benoît. "Ultrafast Dynamics and Non Linear Optical Properties of Semiconductor Quantum Wells and Superlattices." In Optical Properties of Semiconductors, 119–58. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8075-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zuehlsdorff, Tim Joachim. "Linear-Scaling TDDFT in ONETEP." In Computing the Optical Properties of Large Systems, 97–132. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19770-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rao, Soma Venugopal, K. Naga Krishnakanth, C. Indumathi, and T. C. Sabari Girisun. "Non-linear Optical Properties of Novel Nanomaterials." In Handbook of Laser Technology and Applications, 255–87. 2nd ed. 2nd edition. | Boca Raton: CRC Press, 2021– |: CRC Press, 2021. http://dx.doi.org/10.1201/9781315310855-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zuehlsdorff, Tim Joachim. "Linear-Scaling TDDFT Within the PAW Formalism." In Computing the Optical Properties of Large Systems, 133–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19770-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bertolotti, M., and C. Sibilia. "Optical Properties of Quasiperiodic Structures: Linear and Nonlinear Analysis." In Springer Series in OPTICAL SCIENCES, 258–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-540-48886-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Michelotti, F. "Linear and Nonlinear Optical Properties of Polymer Waveguides." In Advances in Integrated Optics, 173–84. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2566-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nakano, Masayoshi. "Diradical Character View of (Non)Linear Optical Properties." In SpringerBriefs in Molecular Science, 43–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08120-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Linear optical properties"

1

Etemad, S., G. L. Baker, D. Jaye, F. Kajzar, and J. Messier. "Linear And Nonlinear Optical Properties Of Polyacetylene." In 30th Annual Technical Symposium, edited by Garo Khanarian. SPIE, 1987. http://dx.doi.org/10.1117/12.939636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cazzanelli, M., R. Spano, N. Daldosso, Z. Gaburro, S. Hernandez, Y. Lebour, P. Pellegrino, et al. "Non-Linear Optical Properties of Si Nanocrystals." In 3rd IEEE International Conference on Group IV Photonics, 2006. IEEE, 2006. http://dx.doi.org/10.1109/group4.2006.1708162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salmani, Imran Ahmad, Tahir Murtaza, Mohd Saleem Khan, and Mohd Shahid Khan. "Non-linear optical properties of BiFeO3 nanoparticles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, J., A.-L. Baudrion, A. Horrer, G. Leveque, J. Butet, A. Horneber, M. Fleischer, D. Zhang, and P.-M. Adam. "Linear and non-linear optical properties of plasmonic nano-antennas." In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Monro, Tanya M. "Exploring the optical properties of holey fibres." In International school of quantum electronics: Nanoscale linear and nonlinear optics. AIP, 2001. http://dx.doi.org/10.1063/1.1372722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gaponenko, Sergey V. "Optical properties of nanocrystals and their assemblies." In International school of quantum electronics: Nanoscale linear and nonlinear optics. AIP, 2001. http://dx.doi.org/10.1063/1.1372724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Domínguez Cruz, R., A. Mendez-Perez, G. Romero Galván, M. Mendoza-Panduro, M. Trejo-Duran, E. Alvarado-Mendez, J. M. Estudillo-Ayala, et al. "Organic-inorganic hybrid glass: non-linear optical properties." In RIAO∕OPTILAS 2007: 6th Ibero-American Conference on Optics (RIAO); 9th Latin-American Meeting on Optics, Lasers and Applications (OPTILAS). AIP, 2008. http://dx.doi.org/10.1063/1.2926923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Trolès, Johann, Laurent Brilland, Celine Caillaud, Gilles Renversez, David Mechin, and Jean-Luc Adam. "Linear and nonlinear optical properties of chalcogenide microstructured optical fibers." In SPIE OPTO, edited by Shibin Jiang and Michel J. F. Digonnet. SPIE, 2015. http://dx.doi.org/10.1117/12.2078156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chavez Boggio, J. M., S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic. "Linear and Nonlinear Properties of Ultra-Compact Fiber Device." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ofc.2010.owt8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sibilia, C. "Optical properties of quasiperiodic (fractals) one-dimensional structures." In International school of quantum electronics: Nanoscale linear and nonlinear optics. AIP, 2001. http://dx.doi.org/10.1063/1.1372727.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Linear optical properties"

1

Haglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1481179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rantala, Tapio T., Mark I. Stockman, Daniel A. Jelski, and Thomas F. George. Linear and Nonlinear Optical Properties of Small Silicon Clusters. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada225495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Henderson, Don O. Metal colloids and quantum dots: linear and nonlinear optical properties. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/799350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ebbers, C. Summary of known linear and nonlinear optical properties of LiInS{sub 2}. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/10149269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cozzens, Robert F. Analysis and Evaluation of Technical Data on the Photochromic and Non-Linear Optical Properties of Materials. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada223855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zuhr, R. A., R. H. III Magruder, T. A. Anderson, and D. O. Jr Osborne. Linear and nonlinear optical properties of metal nanocluster-silica composites formed by sequential implantation of Ag and Cu. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/179275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hamilton, D. S. Energy transfer and non-linear optical properties at near ultraviolet wavelengths: Rare earth 4f yields 5d transitions in crystals and glasses. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/7011776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hamilton, D. S. Energy transfer and non-linear optical properties at near ultraviolet wavelengths: Rare earth 4f {yields} 5d transitions in crystals and glasses. Final report, June 1, 1984--May 31, 1992. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/10187744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, John Q. On The Linear Span of A Binary Sequence Family with Optimal Correlation Properties. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada520449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strand, Michael P. Coastal Benthic Optical Properties Fluorescence Imaging Laser Line Scan Sensor. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada628584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography