To see the other types of publications on this topic, follow the link: Linear problems.

Journal articles on the topic 'Linear problems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Linear problems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ramzan, Siti Hajar. "Crafting Linear Motion Problems for Problem- Based Learning Physics Classes." International Journal of Psychosocial Rehabilitation 24, no. 5 (April 20, 2020): 5426–37. http://dx.doi.org/10.37200/ijpr/v24i5/pr2020249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ge, Renpu. "Solving linear programming problems via linear minimax problems." Applied Mathematics and Computation 46, no. 1 (November 1991): 59–77. http://dx.doi.org/10.1016/0096-3003(91)90101-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Šeda, Valter. "Generalized boundary value problems with linear growth." Mathematica Bohemica 123, no. 4 (1998): 385–404. http://dx.doi.org/10.21136/mb.1998.125969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eaves, B. Curtis, and Uriel G. Rothblum. "Linear Problems and Linear Algorithms." Journal of Symbolic Computation 20, no. 2 (August 1995): 207–14. http://dx.doi.org/10.1006/jsco.1995.1047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Chi-Kwong, and Stephen Pierce. "Linear Preserver Problems." American Mathematical Monthly 108, no. 7 (August 2001): 591. http://dx.doi.org/10.2307/2695268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Chi-Kwong, and Stephen Pierce. "Linear Preserver Problems." American Mathematical Monthly 108, no. 7 (August 2001): 591–605. http://dx.doi.org/10.1080/00029890.2001.11919790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Djawadi, Mehdi, and Gerd Hofmeister. "Linear diophantine problems." Archiv der Mathematik 66, no. 1 (January 1996): 19–29. http://dx.doi.org/10.1007/bf01323979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

M.Jayalakshmi, M. Jayalakshmi, and P. Pandian P.Pandian. "Solving Fully Fuzzy Multi-Objective Linear Programming Problems." International Journal of Scientific Research 3, no. 4 (June 1, 2012): 1–6. http://dx.doi.org/10.15373/22778179/apr2014/174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sengodan, Gokulraj, and Chandrashekaran Arumugasamy. "Linear complementarity problems and bi-linear games." Applications of Mathematics 65, no. 5 (June 25, 2020): 665–75. http://dx.doi.org/10.21136/am.2020.0371-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Packel, Edward W. "Do Linear Problems Have Linear Optimal Algorithms?" SIAM Review 30, no. 3 (September 1988): 388–403. http://dx.doi.org/10.1137/1030091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Creutzig, Jakob, and P. Wojtaszczyk. "Linear vs. nonlinear algorithms for linear problems." Journal of Complexity 20, no. 6 (December 2004): 807–20. http://dx.doi.org/10.1016/j.jco.2004.05.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hwang, Frank K., Shmuel Onn, and Uriel G. Rothblum. "Linear-shaped partition problems." Operations Research Letters 26, no. 4 (May 2000): 159–63. http://dx.doi.org/10.1016/s0167-6377(99)00069-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Weispfenning, Volker. "Deciding linear-exponential problems." ACM SIGSAM Bulletin 34, no. 1 (March 2000): 30–31. http://dx.doi.org/10.1145/373500.373513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Güler, Osman. "Generalized Linear Complementarity Problems." Mathematics of Operations Research 20, no. 2 (May 1995): 441–48. http://dx.doi.org/10.1287/moor.20.2.441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rothblum, Uriel G. "Linear Inequality Scaling Problems." SIAM Journal on Optimization 2, no. 4 (November 1992): 635–48. http://dx.doi.org/10.1137/0802031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Eberhard, Walter, and Árpad Elbert. "Half-Linear Eigenvalue Problems." Mathematische Nachrichten 183, no. 1 (1997): 55–72. http://dx.doi.org/10.1002/mana.19971830105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mira, Pablo, and Manuel Pastor. "Non linear problems: Introduction." Revue Française de Génie Civil 6, no. 6 (January 2002): 1019–36. http://dx.doi.org/10.1080/12795119.2002.9692729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bartolo, Rossella, Anna Maria Candela, and Addolorata Salvatore. "Perturbed asymptotically linear problems." Annali di Matematica Pura ed Applicata 193, no. 1 (March 28, 2012): 89–101. http://dx.doi.org/10.1007/s10231-012-0267-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Larichev, Oleg I., Oleg A. Polyakov, and Alex D. Nikiforov. "Multicriterion linear programming problems." Journal of Economic Psychology 8, no. 4 (December 1987): 389–407. http://dx.doi.org/10.1016/0167-4870(87)90032-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gowda, M. Seetharama, and Thomas I. Seidman. "Generalized linear complementarity problems." Mathematical Programming 46, no. 1-3 (January 1990): 329–40. http://dx.doi.org/10.1007/bf01585749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dangalchev, Chavdar Atanasov. "Partially-linear transportation problems." European Journal of Operational Research 91, no. 3 (June 1996): 623–33. http://dx.doi.org/10.1016/0377-2217(94)00367-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

MUKHACHIOVA, E. A., and V. A. ZALGALLER. "LINEAR PROGRAMMING CUTTING PROBLEMS." International Journal of Software Engineering and Knowledge Engineering 03, no. 04 (December 1993): 463–76. http://dx.doi.org/10.1142/s0218194093000240.

Full text
Abstract:
Different optimal cutting problems are considered in this paper. Among them are cutting forming problems (closed packing problems) and problems of cutting totality planning with intensities of their application. For solving these planning problems, linear or integer programming is used. Furthermore, different cutting technological and organizational situations are considered. Different optimal criteria and a compromise solution choice procedure are presented. All the statements are illustrated by numerical examples from a guillotine cutting area. The possibility of linear cutting approximation for a non-guillotine (closed packing) cutting stock problem is shown. Rectangular packing algorithms based on this approximation can be built. These algorithms form the basis of special software. Their characteristics are presented in the conclusion of the paper.
APA, Harvard, Vancouver, ISO, and other styles
23

Majumdar, Sarangam. "Interval Linear Assignment Problems." Universal Journal of Applied Mathematics 1, no. 1 (July 2013): 14–16. http://dx.doi.org/10.13189/ujam.2013.010103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ideon, Erge, and Peeter Oja. "Linear/linear rational spline collocation for linear boundary value problems." Journal of Computational and Applied Mathematics 263 (June 2014): 32–44. http://dx.doi.org/10.1016/j.cam.2013.11.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Baradokas, Petras, Edvard Michnevic, and Leonidas Syrus. "LINEAR AND NON‐LINEAR PROBLEMS OF PLATE DYNAMICS." Aviation 11, no. 4 (December 31, 2007): 9–13. http://dx.doi.org/10.3846/16487788.2007.9635971.

Full text
Abstract:
This paper presents a comparative analysis of linear and non‐linear problems of plate dynamics. By expressing the internal friction coefficient of the material by power polynomial γ= γ0 + γ1ϵ0 + γ2ϵ0 2+…, we assume γ= γ0 = const for a linear problem. When at least two polynomial terms are taken, a non‐linear problem is obtained. The calculations of resonance amplitudes of a rectangular plate yielded 3 per cent error: a linear problem yields a higher resonance amplitude. Using the Ritz method and the theory of complex numbers made the calculations. Similar methods of calculation can be used in solving the dynamic problems of thin‐walled vehicle structures.
APA, Harvard, Vancouver, ISO, and other styles
26

Calamai, Paul H., and Luis N. Vicente. "Generating Linear and Linear-Quadratic Bilevel Programming Problems." SIAM Journal on Scientific Computing 14, no. 4 (July 1993): 770–82. http://dx.doi.org/10.1137/0914049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Al-Khayyal, F. A. "On characterizing linear complementarity problems as linear programs." Optimization 20, no. 6 (January 1989): 715–24. http://dx.doi.org/10.1080/02331938908843492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

López, Julio, Rubén López, and C. Héctor Ramírez. "Characterizing -linear transformations for semidefinite linear complementarity problems." Nonlinear Analysis: Theory, Methods & Applications 75, no. 3 (February 2012): 1441–48. http://dx.doi.org/10.1016/j.na.2011.07.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Werschulz, Arthur G., and Henryk Woźniakowski. "Are linear algorithms always good for linear problems?" Aequationes Mathematicae 31, no. 1 (December 1986): 202–12. http://dx.doi.org/10.1007/bf02188189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chakraborty, Bidushi, Sudarshan Nanda, and Mahendra Prasad Biswal. "Equivalence of the Generalized Vertical Block Linear Complementarity Problems and Linear Complementarity Problems." Mediterranean Journal of Mathematics 2, no. 3 (September 2005): 291–99. http://dx.doi.org/10.1007/s00009-005-0045-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bernau, H. "Quadratic programming problems and related linear complementarity problems." Journal of Optimization Theory and Applications 65, no. 2 (May 1990): 209–22. http://dx.doi.org/10.1007/bf01102342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nikol’skii, M. S. "Some linear problems of control." Moscow University Computational Mathematics and Cybernetics 34, no. 1 (March 2010): 8–15. http://dx.doi.org/10.3103/s0278641910010024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gass, Saul I., and Sasirekha Vinjamuri. "Cycling in linear programming problems." Computers & Operations Research 31, no. 2 (February 2004): 303–11. http://dx.doi.org/10.1016/s0305-0548(02)00226-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kakimura, Naonori. "Sign-solvable linear complementarity problems." Linear Algebra and its Applications 429, no. 2-3 (July 2008): 606–16. http://dx.doi.org/10.1016/j.laa.2008.03.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sips, Henk J., Ruud Sommerhalder, and Erik D'Hollander. "Linear systems and associated problems." Parallel Computing 27, no. 7 (June 2001): 867–68. http://dx.doi.org/10.1016/s0167-8191(01)00069-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bohner, M. "Discrete linear Hamiltonian eigenvalue problems." Computers & Mathematics with Applications 36, no. 10-12 (November 1998): 179–92. http://dx.doi.org/10.1016/s0898-1221(98)80019-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Buchbinder, Niv, Kamal Jain, and Mohit Singh. "Secretary Problems via Linear Programming." Mathematics of Operations Research 39, no. 1 (February 2014): 190–206. http://dx.doi.org/10.1287/moor.2013.0604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

García-Esnaola, M., and J. M. Peña. "Sign consistent linear programming problems." Optimization 58, no. 8 (November 2009): 935–46. http://dx.doi.org/10.1080/02331930701763496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jones, M. C., and C. H. Travis. "Bidiagonalization for linear inverse problems." Journal of the Optical Society of America A 5, no. 5 (May 1, 1988): 660. http://dx.doi.org/10.1364/josaa.5.000660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ribes, Alejandro, and Francis Schmitt. "Linear inverse problems in imaging." IEEE Signal Processing Magazine 25, no. 4 (July 2008): 84–99. http://dx.doi.org/10.1109/msp.2008.923099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Paskov, S. H. "Termination Criteria for Linear Problems." Journal of Complexity 11, no. 1 (March 1995): 105–37. http://dx.doi.org/10.1006/jcom.1995.1004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Baum, A. K., and Volker Mehrmann. "Positivity inheritance for linear problems." PAMM 10, no. 1 (November 16, 2010): 597–98. http://dx.doi.org/10.1002/pamm.201010291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kim, Hyunseok, and Jin Keun Seo. "Identification Problems in Linear Elasticity." Journal of Mathematical Analysis and Applications 215, no. 2 (November 1997): 514–31. http://dx.doi.org/10.1006/jmaa.1997.5656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Maurer, Stephen B., Evar D. Nering, and Albert W. Tucker. "Linear Programs and Related Problems." American Mathematical Monthly 101, no. 10 (December 1994): 1022. http://dx.doi.org/10.2307/2975180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Finzi Vita, Stefano, François Murat, and Nicoletta A. Tchou. "Quasi-Linear Relaxed Dirichlet Problems." SIAM Journal on Mathematical Analysis 27, no. 4 (July 1996): 977–96. http://dx.doi.org/10.1137/s0036141094266152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Allahviranloo, T., Kh Shamsolkotabi, N. A. Kiani, and L. Alizadeh. "Fuzzy integer linear programming problems." International Journal of Contemporary Mathematical Sciences 2 (2007): 167–81. http://dx.doi.org/10.12988/ijcms.2007.07010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chuan-Rong, Wang, and Yang Qiao-Lin. "Linear conjugate boundary value problems." Complex Variables, Theory and Application: An International Journal 31, no. 2 (October 1996): 105–19. http://dx.doi.org/10.1080/17476939608814952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mira, Pablo, and Manuel Pastor. "Non linear problems: Advanced Techniques." Revue Française de Génie Civil 6, no. 6 (January 2002): 1069–81. http://dx.doi.org/10.1080/12795119.2002.9692732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lakshmikantham, V., A. K. Maulloo, S. K. Sen, and S. Sivasundaram. "Solving linear programming problems exactly." Applied Mathematics and Computation 81, no. 1 (January 1997): 69–87. http://dx.doi.org/10.1016/0096-3003(95)00309-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kalaida, A. F. "Linear one-dimensional integrodifferential problems." Journal of Soviet Mathematics 67, no. 3 (November 1993): 3035–41. http://dx.doi.org/10.1007/bf01098136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography