Academic literature on the topic 'Linear separability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear separability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear separability"
Smith, J. David, Morgan J. Murray, and John Paul Minda. "Straight talk about linear separability." Journal of Experimental Psychology: Learning, Memory, and Cognition 23, no. 3 (1997): 659–80. http://dx.doi.org/10.1037/0278-7393.23.3.659.
Full textTorres, Claudio, Pablo Pérez-Lantero, and Gilberto Gutiérrez. "Linear separability in spatial databases." Knowledge and Information Systems 54, no. 2 (May 27, 2017): 287–314. http://dx.doi.org/10.1007/s10115-017-1063-z.
Full textElizondo, David A., Ralph Birkenhead, Matias Gamez, Noelia Garcia, and Esteban Alfaro. "Linear separability and classification complexity." Expert Systems with Applications 39, no. 9 (July 2012): 7796–807. http://dx.doi.org/10.1016/j.eswa.2012.01.090.
Full textBauer, Ben, Pierre Jolicoeur, and William B. Cowan. "Distractor Heterogeneity versus Linear Separability in Colour Visual Search." Perception 25, no. 11 (November 1996): 1281–93. http://dx.doi.org/10.1068/p251281.
Full textTajine, M., and D. Elizondo. "New methods for testing linear separability." Neurocomputing 47, no. 1-4 (August 2002): 161–88. http://dx.doi.org/10.1016/s0925-2312(01)00587-2.
Full textBruckstein, Alfred M., and Thomas M. Cover. "Monotonicity of Linear Separability Under Translation." IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7, no. 3 (May 1985): 355–58. http://dx.doi.org/10.1109/tpami.1985.4767666.
Full textGherardi, Marco. "Solvable Model for the Linear Separability of Structured Data." Entropy 23, no. 3 (March 4, 2021): 305. http://dx.doi.org/10.3390/e23030305.
Full textHerrnberger, Bärbel, and Günter Ehret. "Linearity or separability?" Behavioral and Brain Sciences 21, no. 2 (April 1998): 269–70. http://dx.doi.org/10.1017/s0140525x98331179.
Full textRuts, Wim, Gert Storms, and James Hampton. "Linear separability in superordinate natural language concepts." Memory & Cognition 32, no. 1 (January 2004): 83–95. http://dx.doi.org/10.3758/bf03195822.
Full textHou, Jinchuan, and Xiaofei Qi. "Linear maps preserving separability of pure states." Linear Algebra and its Applications 439, no. 5 (September 2013): 1245–57. http://dx.doi.org/10.1016/j.laa.2013.04.007.
Full textDissertations / Theses on the topic "Linear separability"
Tuma, Carlos Cesar Mansur. "Aprendizado de máquina baseado em separabilidade linear em sistema de classificação híbrido-nebuloso aplicado a problemas multiclasse." Universidade Federal de São Carlos, 2009. https://repositorio.ufscar.br/handle/ufscar/407.
Full textFinanciadora de Estudos e Projetos
This master thesis describes an intelligent classifier system applied to multiclass non-linearly separable problems called Slicer. The system adopts a low computacional cost supervised learning strategy (evaluated as ) based on linear separability. During the learning period the system determines a set of hyperplanes associated to oneclass regions (sub-spaces). In classification tasks the classifier system uses the hyperplanes as a set of if-then-else rules to infer the class of the input attribute vector (non classified object). Among other characteristics, the intelligent classifier system is able to: deal with missing attribute values examples; reject noise examples during learning; adjust hyperplane parameters to improve the definition of the one-class regions; and eliminate redundant rules. The fuzzy theory is considered to design a hybrid version with features such as approximate reasoning and parallel inference computation. Different classification methods and benchmarks are considered for evaluation. The classifier system Slicer reaches acceptable results in terms of accuracy, justifying future investigation effort.
Este trabalho de mestrado descreve um sistema classificador inteligente aplicado a problemas multiclasse não-linearmente separáveis chamado Slicer. O sistema adota uma estratégia de aprendizado supervisionado de baixo custo computacional (avaliado em ) baseado em separabilidade linear. Durante o período de aprendizagem o sistema determina um conjunto de hiperplanos associados a regiões de classe única (subespaços). Nas tarefas de classificação o sistema classificador usa os hiperplanos como um conjunto de regras se-entao-senao para inferir a classe do vetor de atributos dado como entrada (objeto a ser classificado). Entre outras caracteristicas, o sistema classificador é capaz de: tratar atributos faltantes; eliminar ruídos durante o aprendizado; ajustar os parâmetros dos hiperplanos para obter melhores regiões de classe única; e eliminar regras redundantes. A teoria nebulosa é considerada para desenvolver uma versão híbrida com características como raciocínio aproximado e simultaneidade no mecanismo de inferência. Diferentes métodos de classificação e domínios são considerados para avaliação. O sistema classificador Slicer alcança resultados aceitáveis em termos de acurácia, justificando investir em futuras investigações.
Liu, Mau-Sheng, and 劉茂生. "Necessary and sufficient condition for the linear binary separability in the Euclidean normed space." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/11456312275869539597.
Full text義守大學
電機工程學系碩士班
94
The classical binary classification problem is considered in this thesis. Necessary and sufficient condition is proposed to guarantee the linear binary separability of the training data in the Euclidean normed space. A suitable hyperplane that correctly classifies the training data is also constructed provided that the necessary and sufficient condition is satisfied. Based on the main result, we present an easy-to-check criterion for the linear binary separability of the training set. Finally, two numerical examples are given to illustrate the use of the main result.
Johnston, Nathaniel. "Norms and Cones in the Theory of Quantum Entanglement." Thesis, 2012. http://hdl.handle.net/10214/3773.
Full textNatural Sciences and Engineering Research Council (Canada Graduate Scholarship), Brock Scholarship
Beaulieu, Julien. "La contribution de la stéréoscopie à la constance de forme." Thèse, 2013. http://hdl.handle.net/1866/10730.
Full textThis study was conducted to evaluate the contribution of stereopsis to the shape constancy phenomenon. Four groups of eight participants each were asked to perform a visual exploration task. The first group was exposed to a stereoscopic stimulation, the second group was exposed to a reversed stereoscopic stimulation, the third group was exposed to a monocular stimulation with textures and shadow and the fourth group was exposed to a monocular stimulation with shadow only. Response times and error rates were used to measure participant's performance. Results show an interaction between rotation effects (familiar viewpoints vs. non-familiar viewpoints) and available depth cues (stereopsis, reversed stereopsis, textures and shadow, shadow only). The rotation cost was smaller in the group exposed to a reversed stereoscopic stimulation. These results are congruent with the use of tridimensional representations underlying visual processing.
Book chapters on the topic "Linear separability"
Cover, Thomas M. "Linear Separability." In Open Problems in Communication and Computation, 156–57. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4808-8_47.
Full textWebb, Geoffrey I., Claude Sammut, Claudia Perlich, Tamás Horváth, Stefan Wrobel, Kevin B. Korb, William Stafford Noble, et al. "Linear Separability." In Encyclopedia of Machine Learning, 606. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_478.
Full textBobrowski, Leon. "Prognostic Models Based on Linear Separability." In Advances in Data Mining. Applications and Theoretical Aspects, 11–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23184-1_2.
Full textSperduti, Alessandro. "On Linear Separability of Sequences and Structures." In Artificial Neural Networks — ICANN 2002, 601–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46084-5_98.
Full textContassot-Vivier, Sylvain, and David Elizondo. "A Near Linear Algorithm for Testing Linear Separability in Two Dimensions." In Engineering Applications of Neural Networks, 114–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32909-8_12.
Full textElizondo, David, Juan Miguel Ortiz-de-Lazcano-Lobato, and Ralph Birkenhead. "A Novel and Efficient Method for Testing Non Linear Separability." In Lecture Notes in Computer Science, 737–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74690-4_75.
Full textBobrowski, Leon. "Induction of Linear Separability through the Ranked Layers of Binary Classifiers." In Engineering Applications of Neural Networks, 69–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23957-1_8.
Full textBobrowski, Leon. "CPL Criterion Functions and Learning Algorithms Linked to the Linear Separability Concept." In Engineering Applications of Neural Networks, 456–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41013-0_47.
Full textBertini, João Roberto, and Maria do Carmo Nicoletti. "A Feedforward Constructive Neural Network Algorithm for Multiclass Tasks Based on Linear Separability." In Constructive Neural Networks, 145–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04512-7_8.
Full textBertini, João Roberto, and Maria do Carmo Nicoletti. "MBabCoNN – A Multiclass Version of a Constructive Neural Network Algorithm Based on Linear Separability and Convex Hull." In Artificial Neural Networks - ICANN 2008, 723–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87559-8_75.
Full textConference papers on the topic "Linear separability"
Sheppard, John W., and Stephyn G. W. Butcher. "On the Linear Separability of Diagnostic Models." In 2006 IEEE AUTOTESTCON. IEEE Systems Readiness Technology Conference. IEEE, 2006. http://dx.doi.org/10.1109/autest.2006.283738.
Full textOzay, Mete, and Fatos T. Yarman Vural. "Linear separability analysis for stacked generalization architecture." In 2009 IEEE 17th Signal Processing and Communications Applications Conference (SIU). IEEE, 2009. http://dx.doi.org/10.1109/siu.2009.5136569.
Full textToth, Zsolt, and Laszlo Kovacs. "Testing linear separability in classification of inflection rules." In 2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY 2014). IEEE, 2014. http://dx.doi.org/10.1109/sisy.2014.6923610.
Full textPathak, Anjali, Bhawna Vohra, and Kapil Gupta. "Supervised Learning Approach towards Class Separability- Linear Discriminant Analysis." In 2019 International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 2019. http://dx.doi.org/10.1109/iccs45141.2019.9065622.
Full textSaha, Suvarup, and Randall A. Berry. "Parallel linear deterministic interference channels with feedback: Combinatorial structure and separability." In 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620336.
Full textZhang, D., M. Kamel, and M. I. Elmasry. "A training approach based on linear separability analysis for layered perceptrons." In Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94). IEEE, 1994. http://dx.doi.org/10.1109/icnn.1994.374217.
Full textBobrowski, L. "Piecewise-linear classifiers, formal neurons and separability of the learning sets." In Proceedings of 13th International Conference on Pattern Recognition. IEEE, 1996. http://dx.doi.org/10.1109/icpr.1996.547420.
Full textXu, Yong, and Guangming Lu. "Analysis On Fisher Discriminant Criterion And Linear Separability Of Feature Space." In 2006 International Conference on Computational Intelligence and Security. IEEE, 2006. http://dx.doi.org/10.1109/iccias.2006.295345.
Full textP, Yogananda A., M. Narasimha Murthy, and Lakshmi Gopal. "A fast linear separability test by projection of positive points on subspaces." In the 24th international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1273496.1273586.
Full textKarras, D. A., S. J. Perantonis, and S. J. Varoufakis. "An efficient constrained learning algorithm for optimal linear separability of the internal representations." In Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94). IEEE, 1994. http://dx.doi.org/10.1109/icnn.1994.374176.
Full text