To see the other types of publications on this topic, follow the link: Linear Stochastic Differential Equations.

Dissertations / Theses on the topic 'Linear Stochastic Differential Equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Linear Stochastic Differential Equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Stanciulescu, Vasile Nicolae. "Selected topics in Dirichlet problems for linear parabolic stochastic partial differential equations." Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/8271.

Full text
Abstract:
This thesis is devoted to the study of Dirichlet problems for some linear parabolic SPDEs. Our aim in it is twofold. First, we consider SPDEs with deterministic coefficients which are smooth up to some order of regularity. We establish some theoretical results in terms of existence, uniqueness and regularity of the classical solution to the considered problem. Then, we provide the probabilistic representations (the averaging-over-characteristic formulas of its solution. We, thereafter, construct numerical methods for it. The methods are based on the averaging-over-characteristic formula and the weak-sense numerical integration of ordinary stochastic differential equations in bounded domains. Their orders of convergence in the mean-square sense and in the sense of almost sure convergence are obtained. The Monte Carlo technique is used for practical realization of the methods. Results of some numerical experiments are presented. These results are in agreement with the theoretical findings. Second, we construct the solution of a class of one dimensional stochastic linear heat equations with drift in the first Wiener chaos, deterministic initial condition and which are driven by a space-time white noise and the white noise. This is done by giving explicitly its Wiener chaos decomposition. We also prove its uniqueness in the weak sense. Then we use the chaos expansion in order to show that the unique weak solution is an analytic functional with finite moments of all orders. The chaos decomposition is also utilized as a very useful tool for obtaining a continuity property of the solution.
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Zakaria Idriss. "Existence result for a class of stochastic quasilinear partial differential equations with non-standard growth." Diss., University of Pretoria, 2010. http://hdl.handle.net/2263/29519.

Full text
Abstract:
In this dissertation, we investigate a very interesting class of quasi-linear stochastic partial differential equations. The main purpose of this article is to prove an existence result for such type of stochastic differential equations with non-standard growth conditions. The main difficulty in the present problem is that the existence cannot be easily retrieved from the well known results under Lipschitz type of growth conditions [42].
Dissertation (MSc)--University of Pretoria, 2010.
Mathematics and Applied Mathematics
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
3

Köhnlein, Dieter. "Asymptotisches Verhalten von Lösungen stochastischer linearer Differenzengleichungen im Rd." Bonn : [s.n.], 1988. http://catalog.hathitrust.org/api/volumes/oclc/20267120.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blöthner, Florian [Verfasser]. "Non-Uniform Semi-Discretization of Linear Stochastic Partial Differential Equations in R / Florian Blöthner." München : Verlag Dr. Hut, 2019. http://d-nb.info/1181514207/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pefferly, Robert J. "Finite difference approximations of second order quasi-linear elliptic and hyperbolic stochastic partial differential equations." Thesis, University of Edinburgh, 2001. http://hdl.handle.net/1842/11244.

Full text
Abstract:
This thesis covers topics such as finite difference schemes, mean-square convergence, modelling, and numerical approximations of second order quasi-linear stochastic partial differential equations (SPDE) driven by white noise in less than three space dimensions. The motivation for discussing and expanding these topics lies in their implications in such physical phenomena as signal and information flow, gravitational and electromagnetic fields, large scale weather systems, and macro-computer networks. Chapter 2 delves into the hyperbolic SPDE in one space and one time dimension. This is an important equation to such fields as signal processing, communications, and information theory where singularities propagate throughout space as a function of time. Chapter 3 discusses some concepts and implications of elliptic SPDE's driven by additive noise. These systems are key for understanding steady state phenomena. Chapter 4 presents some numerical work regarding elliptic SPDE's driven by multiplicative and general noise. These SPDE's are open topics in the theoretical literature, hence numerical work provides significant insight into the nature of the process. Chapter 5 presents some numerical work regarding quasi-geostrophic geophysical fluid dynamics involving stochastic noise and demonstrates how these systems can be represented as a combination of elliptic and hyperbolic components.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Xuan. "Some contribution to analysis and stochastic analysis." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:485474c0-2501-4ef0-a0bc-492e5c6c9d62.

Full text
Abstract:
The dissertation consists of two parts. The first part (Chapter 1 to 4) is on some contributions to the development of a non-linear analysis on the quintessential fractal set Sierpinski gasket and its probabilistic interpretation. The second part (Chapter 5) is on the asymptotic tail decays for suprema of stochastic processes satisfying certain conditional increment controls. Chapters 1, 2 and 3 are devoted to the establishment of a theory of backward problems for non-linear stochastic differential equations on the gasket, and to derive a probabilistic representation to some parabolic type partial differential equations on the gasket. In Chapter 2, using the theory of Markov processes, we derive the existence and uniqueness of solutions to backward stochastic differential equations driven by Brownian motion on the Sierpinski gasket, for which the major technical difficulty is the exponential integrability of quadratic processes of martingale additive functionals. A Feynman-Kac type representation is obtained as an application. In Chapter 3, we study the stochastic optimal control problems for which the system uncertainties come from Brownian motion on the gasket, and derive a stochastic maximum principle. It turns out that the necessary condition for optimal control problems on the gasket consists of two equations, in contrast to the classical result on ℝd, where the necessary condition is given by a single equation. The materials in Chapter 2 are based on a joint work with Zhongmin Qian (referenced in Chapter 2). Chapter 4 is devoted to the analytic study of some parabolic PDEs on the gasket. Using a new type of Sobolev inequality which involves singular measures developed in Section 4.2, we establish the existence and uniqueness of solutions to these PDEs, and derive the space-time regularity for solutions. As an interesting application of the results in Chapter 4 and the probabilistic representation developed in Chapter 2, we further study Burgers equations on the gasket, to which the space-time regularity for solutions is deduced. The materials in Chapter 4 are based on a joint work with Zhongmin Qian (referenced in Chapter 4). In Chapter 5, we consider a class of continuous stochastic processes which satisfy the conditional increment control condition. Typical examples include continuous martingales, fractional Brownian motions, and diffusions governed by SDEs. For such processes, we establish a Doob type maximal inequality. Under additional assumptions on the tail decays of their marginal distributions, we derive an estimate for the tail decay of the suprema (Theorem 5.3.2), which states that the suprema decays in a manner similar to the margins of the processes. In Section 5.4, as an application of Theorem 5.3.2, we derive the existence of strong solutions to a class of SDEs. The materials in this chapter is based on the work [44] by the author (Section 5.2 and Section 5.3) and an ongoing joint project with Guangyu Xi (Section 5.4).
APA, Harvard, Vancouver, ISO, and other styles
7

Fromm, Alexander. "Theory and applications of decoupling fields for forward-backward stochastic differential equations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2015. http://dx.doi.org/10.18452/17115.

Full text
Abstract:
Diese Arbeit beschäftigt sich mit der Theorie der sogenannten stochastischen Vorwärts-Rückwärts-Differentialgleichungen (FBSDE), welche als ein stochastisches Anologon und in gewisser Weise als eine Verallgemeinerung von parabolischen quasi-linearen partiellen Differentialgleichungen betrachtet werden können. Die Dissertation besteht aus zwei Teilen: In dem ersten entwicklen wir die Theorie der sogenannten Entkopplungsfelder für allgemeine mehrdimensionale stark gekoppelte FBSDE. Diese Theorie besteht aus Existenz- sowie Eindeutigkeitsresultaten basierend auf dem Konzept des maximalen Intervalls. Es beinhaltet darüberhinaus Werkzeuge um Regularität von konkreten Problemen zu untersuchen. Insgesamt wird die Theorie für drei Klassen von Problemen entwickelt: In dem ersten Fall werden Lipschitz-Bedingungen an die Parameter des Problems vorausgesetzt, welche zugleich vom Zufall abhängen dürfen. Die Untersuchung der beiden anderen Klassen basiert auf dem ersten. In diesen werden die Parameter als deterministisch vorausgesetzt. Gleichwohl wird die Lipschitz-Stetigkeit durch zwei verschiedene Formen der lokalen Lipschitz-Stetigkeit abgeschwächt. In dem zweiten Teil werden diese abstrakten Resultate auf drei konkrete Probleme angewendet: In der ersten Anwendung wird gezeigt wie globale Lösbarkeit von FBSDE in dem sogenannten nicht-degenerierten Fall untersucht werden kann. In der zweiten Anwendung wird die Lösbarkeit eines gekoppelten Systems gezeigt, welches eine Lösung zu dem Skorokhod''schen Einbettungproblem liefert. Die Lösung wird für den Fall einer allgemeinen nicht-linearen Drift konstruiert. Die dritte Anwendung führt auf Lösbarkeit eines komplexen gekoppelten Vorwärt-Rückwärts-Systems, aus welchem optimale Strategien für das Problem der Nutzenmaximierung in unvollständingen Märkten konstruiert werden. Das System wird in einem verhältnismäßig allgmeinen Rahmen gelöst, d.h. für eine verhältnismäßig allgemeine Klasse von Nutzenfunktion auf den reellen Zahlen.
This thesis deals with the theory of so called forward-backward stochastic differential equations (FBSDE) which can be seen as a stochastic formulation and in some sense generalization of parabolic quasi-linear partial differential equations. The thesis consist of two parts: In the first we develop the theory of so called decoupling fields for general multidimensional fully coupled FBSDE in a Brownian setting. The theory consists of uniqueness and existence results for decoupling fields on the so called the maximal interval. It also provides tools to investigate well-posedness and regularity for particular problems. In total the theory is developed for three different classes of FBSDE: In the first Lipschitz continuity of the parameter functions is required, which at the same time are allowed to be random. The other two classes we investigate are based on the theory developed for the first one. In both of them all parameter functions have to be deterministic. However, two different types of local Lipschitz continuity replace the more restrictive Lipschitz continuity of the first class. In the second part we apply these techniques to three different problems: In the first application we demonstrate how well-posedness of FBSDE in the so called non-degenerate case can be investigated. As a second application we demonstrate the solvability of a system, which provides a solution to the so called Skorokhod embedding problem (SEP) via FBSDE. The solution to the SEP is provided for the case of general non-linear drift. The third application provides solutions to a complex FBSDE from which optimal trading strategies for a problem of utility maximization in incomplete markets are constructed. The FBSDE is solved in a relatively general setting, i.e. for a relatively general class of utility functions on the real line.
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, Gang. "Analyzing and Solving Non-Linear Stochastic Dynamic Models on Non-Periodic Discrete Time Domains." TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1236.

Full text
Abstract:
Stochastic dynamic programming is a recursive method for solving sequential or multistage decision problems. It helps economists and mathematicians construct and solve a huge variety of sequential decision making problems in stochastic cases. Research on stochastic dynamic programming is important and meaningful because stochastic dynamic programming reflects the behavior of the decision maker without risk aversion; i.e., decision making under uncertainty. In the solution process, it is extremely difficult to represent the existing or future state precisely since uncertainty is a state of having limited knowledge. Indeed, compared to the deterministic case, which is decision making under certainty, the stochastic case is more realistic and gives more accurate results because the majority of problems in reality inevitably have many unknown parameters. In addition, time scale calculus theory is applicable to any field in which a dynamic process can be described with discrete or continuous models. Many stochastic dynamic models are discrete or continuous, so the results of time scale calculus are directly applicable to them as well. The aim of this thesis is to introduce a general form of a stochastic dynamic sequence problem on complex discrete time domains and to find the optimal sequence which maximizes the sequence problem.
APA, Harvard, Vancouver, ISO, and other styles
9

Mtiraoui, Ahmed. "I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées." Thesis, Toulon, 2016. http://www.theses.fr/2016TOUL0010/document.

Full text
Abstract:
Cette thèse aborde deux sujets de recherches, le premier est sur l’existence et l’unicité des solutions des Équations Différentielles Doublement Stochastiques Rétrogrades (EDDSRs) et les Équations aux Dérivées partielles Stochastiques (EDPSs) multidimensionnelles à croissance surlinéaire. Le deuxième établit l’existence d’un contrôle optimal strict pour un système controlé dirigé par des équations différentielles stochastiques progressives rétrogrades (EDSPRs) couplées dans deux cas de diffusions dégénérée et non dégénérée.• Existence et unicité des solutions des EDDSRs multidimensionnels :Nous considérons EDDSR avec un générateur de croissance surlinéaire et une donnée terminale de carré intégrable. Nous introduisons une nouvelle condition locale sur le générateur et nous montrons qu’elle assure l’existence, l’unicité et la stabilité des solutions. Même si notre intérêt porte sur le cas multidimensionnel, notre résultat est également nouveau en dimension un. Comme application, nous établissons l’existence et l’unicité des solutions des EDPS semi-linéaires.• Contrôle des EDSPR couplées :Nous étudions un problème de contrôle avec une fonctionnelle coût non linéaire dont le système contrôlé est dirigé par une EDSPR couplée. L’objective de ce travail est d’établir l’existence d’un contrôle optimal dans la classe des contrôle stricts, donc on montre que ce contrôle vérifie notre équation et qu’il minimise la fonctionnelle coût. La méthode consiste à approcher notre système par une suite de systèmes réguliers et on montre la convergence. En passant à la limite, sous des hypothèses de convexité, on obtient l’existence d’un contrôle optimal strict. on suit cette méthode théorique pour deux cas différents de diffusions dégénérée et non dégénérée
In this Phd thesis, we considers two parts. The first one establish the existence and the uniquness of the solutions of multidimensional backward doubly stochastic differential equations (BDSDEs in short) and the stochastic partial differential equations (SPDEs in short) in the superlinear growth generators. In the second part, we study the stochastic controls problems driven by a coupled Forward-Backward stochastic differentialequations (FBSDEs in short).• BDSDEs and SPDEs with a superlinear growth generators :We deal with multidimensional BDSDE with a superlinear growth generator and a square integrable terminal datum. We introduce new local conditions on the generator then we show that they ensure the existence and uniqueness as well as the stability of solutions. Our work go beyond the previous results on the subject. Although we are focused on multidimensional case, the uniqueness result we establish is new in one dimensional too. As application, we establish the existence and uniqueness of probabilistic solutions tosome semilinear SPDEs with superlinear growth generator. By probabilistic solution, we mean a solution which is representable throughout a BDSDEs.• Controlled coupled FBSDEs :We establish the existence of an optimal control for a system driven by a coupled FBDSE. The cost functional is defined as the initial value of the backward component of the solution. We construct a sequence of approximating controlled systems, for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we get the existence of a feedback optimal control. The convexity condition is used to ensure that the optimal control is strict. In this part, we study two cases of diffusions : degenerate and non-degenerate
APA, Harvard, Vancouver, ISO, and other styles
10

Campos, Fabio Antonio Araujo de 1984. "Métodos matemáticos para o problema de acústica linear estocástica." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306070.

Full text
Abstract:
Orientador: Maria Cristina de Castro Cunha
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T19:33:01Z (GMT). No. of bitstreams: 1 Campos_FabioAntonioAraujode_D.pdf: 1374668 bytes, checksum: 6318414d486cf4810705b84e0d722e77 (MD5) Previous issue date: 2015
Resumo: Neste trabalho estudamos o sistema de equações diferenciais estocásticas obtido na linearização do modelo de propagação de ondas acústicas. Mais especificamente, analisamos métodos para solução do sistema de equações diferenciais usado na acústica linear, onde a matriz com dados aleatórios e um vetor de funções aleatórias que define as condições iniciais. Além do tradicional Método de Monte Carlo aplicamos o Método de Transformações de Variáveis Aleatórias e o Método de Galerkin Estocástico. Apresentamos resultados obtidos usando diferentes distribuições de probabilidades dos dados do problema. Também comparamos os métodos através da distribuição de probabilidade e momentos estatísticos da solução
Abstract: On the present work we study the system of stochastic differential equations obtained from the linearization of the propagation model of acoustic waves. More specifically we analyze methods for the solution of the system of differential equations used in the linear acoustics, where the matrix with random data and a vector of random functions defining initial conditions. In addition to the traditional Monte Carlo Method we apply the Variable Transformations of Random Method and the Galerkin Stochastic Method. We present results obtained using different probability distributions of problem data. We also compared the methods through the distribution of probabilities and statistical moments of the solution
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
APA, Harvard, Vancouver, ISO, and other styles
11

Kumar, Chaman. "Explicit numerical schemes of SDEs driven by Lévy noise with super-linear coeffcients and their application to delay equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15946.

Full text
Abstract:
We investigate an explicit tamed Euler scheme of stochastic differential equation with random coefficients driven by Lévy noise, which has super-linear drift coefficient. The strong convergence property of the tamed Euler scheme is proved when drift coefficient satisfies one-sided local Lipschitz condition whereas diffusion and jump coefficients satisfy local Lipschitz conditions. A rate of convergence for the tamed Euler scheme is recovered when local Lipschitz conditions are replaced by global Lipschitz conditions and drift satisfies polynomial Lipschitz condition. These findings are consistent with those of the classical Euler scheme. New methodologies are developed to overcome challenges arising due to the jumps and the randomness of the coefficients. Moreover, as an application of these findings, a tamed Euler scheme is proposed for the stochastic delay differential equation driven by Lévy noise with drift coefficient that grows super-linearly in both delay and non-delay variables. The strong convergence property of the tamed Euler scheme for such SDDE driven by Lévy noise is studied and rate of convergence is shown to be consistent with that of the classical Euler scheme. Finally, an explicit tamed Milstein scheme with rate of convergence arbitrarily close to one is developed to approximate the stochastic differential equation driven by Lévy noise (without random coefficients) that has super-linearly growing drift coefficient.
APA, Harvard, Vancouver, ISO, and other styles
12

Elsayad, Amr Lotfy. "Numerical solution of Markov Chains." CSUSB ScholarWorks, 2002. https://scholarworks.lib.csusb.edu/etd-project/2056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wu, Yue. "Pathwise anticipating random periodic solutions of SDEs and SPDEs with linear multiplicative noise." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15991.

Full text
Abstract:
In this thesis, we study the existence of pathwise random periodic solutions to both the semilinear stochastic differential equations with linear multiplicative noise and the semilinear stochastic partial differential equations with linear multiplicative noise in a Hilbert space. We identify them as the solutions of coupled forward-backward infinite horizon stochastic integral equations in general cases, and then perform the argument of the relative compactness of Wiener-Sobolev spaces in C([0, T],L2Ω,Rd)) or C([0, T],L2(Ω x O)) and Schauder's fixed point theorem to show the existence of a solution of the coupled stochastic forward-backward infinite horizon integral equations.
APA, Harvard, Vancouver, ISO, and other styles
14

Hatzesberger, Simon [Verfasser], Thomas [Akademischer Betreuer] Müller-Gronbach, and Sotirios [Akademischer Betreuer] Sabanis. "Strongly Asymptotically Optimal Methods for the Pathwise Global Approximation of Stochastic Differential Equations with Coefficients of Super-linear Growth / Simon Hatzesberger ; Thomas Müller-Gronbach, Sotirios Sabanis." Passau : Universität Passau, 2020. http://d-nb.info/1213520320/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Shuo. "Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82717.

Full text
Abstract:
Stochastic effects in cellular systems are usually modeled and simulated with Gillespie's stochastic simulation algorithm (SSA), which follows the same theoretical derivation as the chemical master equation (CME), but the low efficiency of SSA limits its application to large chemical networks. To improve efficiency of stochastic simulations, Haseltine and Rawlings proposed a hybrid of ODE and SSA algorithm, which combines ordinary differential equations (ODEs) for traditional deterministic models and SSA for stochastic models. In this dissertation, accuracy analysis, efficient implementation strategies, and application of of Haseltine and Rawlings's hybrid method (HR) to a budding yeast cell cycle model are discussed. Accuracy of the hybrid method HR is studied based on a linear chain reaction system, motivated from the modeling practice used for the budding yeast cell cycle control mechanism. Mathematical analysis and numerical results both show that the hybrid method HR is accurate if either numbers of molecules of reactants in fast reactions are above certain thresholds, or rate constants of fast reactions are much larger than rate constants of slow reactions. Our analysis also shows that the hybrid method HR allows for a much greater region in system parameter space than those for the slow scale SSA (ssSSA) and the stochastic quasi steady state assumption (SQSSA) method. Implementation of the hybrid method HR requires a stiff ODE solver for numerical integration and an efficient event-handling strategy for slow reaction firings. In this dissertation, an event-handling strategy is developed based on inverse interpolation. Performances of five wildly used stiff ODE solvers are measured in three numerical experiments. Furthermore, inspired by the strategy of the hybrid method HR, a hybrid of ODE and SSA stochastic models for the budding yeast cell cycle is developed, based on a deterministic model in the literature. Simulation results of this hybrid model match very well with biological experimental data, and this model is the first to do so with these recently available experimental data. This study demonstrates that the hybrid method HR has great potential for stochastic modeling and simulation of large biochemical networks.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
16

Scotti, Simone. "Applications of the error theory using Dirichlet forms." Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00349241.

Full text
Abstract:
This thesis is devoted to the study of the applications of the error theory using Dirichlet forms. Our work is split into three parts. The first one deals with the models described by stochastic differential equations. After a short technical chapter, an innovative model for order books is proposed. We assume that the bid-ask spread is not an imperfection, but an intrinsic property of exchange markets instead. The uncertainty is carried by the Brownian motion guiding the asset. We find that spread evolutions can be evaluated using closed formulae and we estimate the impact of the underlying uncertainty on the related contingent claims. Afterwards, we deal with the PBS model, a new model to price European options. The seminal idea is to distinguish the market volatility with respect to the parameter used by traders for hedging. We assume the former constant, while the latter volatility being an erroneous subjective estimation of the former. We prove that this model anticipates a bid-ask spread and a smiled implied volatility curve. Major properties of this model are the existence of closed formulae for prices, the impact of the underlying drift and an efficient calibration strategy. The second part deals with the models described by partial differential equations. Linear and non-linear PDEs are examined separately. In the first case, we show some interesting relations between the error and wavelets theories. When non-linear PDEs are concerned, we study the sensitivity of the solution using error theory. Except when exact solution exists, two possible approaches are detailed: first, we analyze the sensitivity obtained by taking "derivatives" of the discrete governing equations. Then, we study the PDEs solved by the sensitivity of the theoretical solutions. In both cases, we show that sharp and bias solve linear PDE depending on the solution of the former PDE itself and we suggest algorithms to evaluate numerically the sensitivities. Finally, the third part is devoted to stochastic partial differential equations. Our analysis is split into two chapters. First, we study the transmission of an uncertainty, present on starting conditions, on the solution of SPDE. Then, we analyze the impact of a perturbation of the functional terms of SPDE and the coefficient of the related Green function. In both cases, we show that the sharp and bias verify linear SPDE depending on the solution of the former SPDE itself
APA, Harvard, Vancouver, ISO, and other styles
17

Schwarz, Daniel Christopher. "Price modelling and asset valuation in carbon emission and electricity markets." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7de118d2-a61b-4125-a615-29ff82ac7316.

Full text
Abstract:
This thesis is concerned with the mathematical analysis of electricity and carbon emission markets. We introduce a novel, versatile and tractable stochastic framework for the joint price formation of electricity spot prices and allowance certificates. In the proposed framework electricity and allowance prices are explained as functions of specific fundamental factors, such as the demand for electricity and the prices of the fuels used for its production. As a result, the proposed model very clearly captures the complex dependency of the modelled prices on the aforementioned fundamental factors. The allowance price is obtained as the solution to a coupled forward-backward stochastic differential equation. We provide a rigorous proof of the existence and uniqueness of a solution to this equation and analyse its behaviour using asymptotic techniques. The essence of the model for the electricity price is a carefully chosen and explicitly constructed function representing the supply curve in the electricity market. The model we propose accommodates most regulatory features that are commonly found in implementations of emissions trading systems and we analyse in detail the impact these features have on the prices of allowance certificates. Thereby we reveal a weakness in existing regulatory frameworks, which, in rare cases, can lead to allowance prices that do not conform with the conditions imposed by the regulator. We illustrate the applicability of our model to the pricing of derivative contracts, in particular clean spread options and numerically illustrate its ability to "see" relationships between the fundamental variables and the option contract, which are usually unobserved by other commonly used models in the literature. The results we obtain constitute flexible tools that help to efficiently evaluate the financial impact current or future implementations of emissions trading systems have on participants in these markets.
APA, Harvard, Vancouver, ISO, and other styles
18

Bahar, Arifah. "Applications of stochastic differential equations and stochastic delay differential equations in population dynamics." Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.

Full text
Abstract:
In this work we present some new results concerning stochastic partial differential and integro-differential equations (SPDEs and SPIDEs) that appear in non-linear filtering. We prove existence and uniqueness of solutions of SPIDEs, we give a comparison principle and we suggest an approximation scheme for the non-local integral operators. Regarding SPDEs, we use techniques motivated by the work of De Giorgi, Nash, and Moser, in order to derive global and local supremum estimates, and a weak Harnack inequality.
APA, Harvard, Vancouver, ISO, and other styles
20

Abourashchi, Niloufar. "Stability of stochastic differential equations." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Qi. "Stationary solutions of stochastic partial differential equations and infinite horizon backward doubly stochastic differential equations." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/34040.

Full text
Abstract:
In this thesis we study the existence of stationary solutions for stochastic partial differential equations. We establish a new connection between solutions of backward doubly stochastic differential equations (BDSDEs) on infinite horizon and the stationary solutions of the SPDEs. For this, we prove the existence and uniqueness of the L2ρ (Rd; R1) × L2ρ (Rd; Rd) valued solutions of BDSDEs with Lipschitz nonlinear term on both finite and infinite horizons, so obtain the solutions of initial value problems and the stationary weak solutions (independent of any initial value) of SPDEs. Also the L2ρ (Rd; R1) × L2ρ (Rd; Rd) valued BDSDE with non-Lipschitz term is considered. Moreover, we verify the time and space continuity of solutions of real-valued BDSDEs, so obtain the stationary stochastic viscosity solutions of real-valued SPDEs. The connection of the weak solutions of SPDEs and BDSDEs has independent interests in the areas of both SPDEs and BSDEs.
APA, Harvard, Vancouver, ISO, and other styles
22

Mu, Tingshu. "Backward stochastic differential equations and applications : optimal switching, stochastic games, partial differential equations and mean-field." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1023.

Full text
Abstract:
Cette thèse est relative aux Equations Différentielles Stochastique Rétrogrades (EDSRs) réfléchies avec deux obstacles et leurs applications aux jeux de switching de somme nulle, aux systèmes d’équations aux dérivées partielles, aux problèmes de mean-field. Il y a deux parties dans cette thèse. La première partie porte sur le switching optimal stochastique et est composée de deux travaux. Dans le premier travail, nous montrons l’existence de la solution d’un système d’EDSR réfléchies à obstacles bilatéraux interconnectés dans le cadre probabiliste général. Ce problème est lié à un jeu de switching de somme nulle. Ensuite nous abordons la question de l’unicité de la solution. Et enfin nous appliquons les résultats obtenus pour montrer que le système d’EDP associé à une unique solution au sens viscosité, sans la condition de monotonie habituelle. Dans le second travail, nous considérons aussi un système d’EDSRs réfléchies à obstacles bilatéraux interconnectés dans le cadre markovien. La différence avec le premier travail réside dans le fait que le switching ne s’opère pas de la même manière. Cette fois-ci quand le switching est opéré, le système est mis dans l’état suivant importe peu lequel des joueurs décide de switcher. Cette différence est fondamentale et complique singulièrement le problème de l’existence de la solution du système. Néanmoins, dans le cadre markovien nous montrons cette existence et donnons un résultat d’unicité en utilisant principalement la méthode de Perron. Ensuite, le lien avec un jeu de switching spécifique est établi dans deux cadres. Dans la seconde partie nous étudions les EDSR réfléchies unidimensionnelles à deux obstacles de type mean-field. Par la méthode du point fixe, nous montrons l’existence et l’unicité de la solution dans deux cadres, en fonction de l’intégrabilité des données
This thesis is related to Doubly Reflected Backward Stochastic Differential Equations (DRBSDEs) with two obstacles and their applications in zero-sum stochastic switching games, systems of partial differential equations, mean-field problems.There are two parts in this thesis. The first part deals with optimal stochastic switching and is composed of two works. In the first work we prove the existence of the solution of a system of DRBSDEs with bilateral interconnected obstacles in a probabilistic framework. This problem is related to a zero-sum switching game. Then we tackle the problem of the uniqueness of the solution. Finally, we apply the obtained results and prove that, without the usual monotonicity condition, the associated PDE system has a unique solution in viscosity sense. In the second work, we also consider a system of DRBSDEs with bilateral interconnected obstacles in the markovian framework. The difference between this work and the first one lies in the fact that switching does not work in the same way. In this second framework, when switching is operated, the system is put in the following state regardless of which player decides to switch. This difference is fundamental and largely complicates the problem of the existence of the solution of the system. Nevertheless, in the Markovian framework we show this existence and give a uniqueness result by the Perron’s method. Later on, two particular switching games are analyzed.In the second part we study a one-dimensional Reflected BSDE with two obstacles of mean-field type. By the fixed point method, we show the existence and uniqueness of the solution in connection with the integrality of the data
APA, Harvard, Vancouver, ISO, and other styles
23

Hofmanová, Martina. "Degenerate parabolic stochastic partial differential equations." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.

Full text
Abstract:
In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyperbolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the second part, we consider hyperbolic conservation laws with stochastic forcing and study their approximations in the sense of Bhatnagar-Gross-Krook. In particular, we describe the conservation laws as a hydrodynamic limit of the stochastic BGK model as the microscopic scale vanishes. In the last part, we provide a new and fairly elementary proof of Skorkhod's classical theorem on existence of weak solutions to SDEs with continuous coefficients satisfying a suitable Lyapunov condition.
APA, Harvard, Vancouver, ISO, and other styles
24

Curry, Charles. "Algebraic structures in stochastic differential equations." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2791.

Full text
Abstract:
We define a new numerical integration scheme for stochastic differential equations driven by Levy processes with uniformly lower mean square remainder than that of the scheme of the same strong order of convergence obtained by truncating the stochastic Taylor series. In doing so we generalize recent results concerning stochastic differential equations driven by Wiener processes. The aforementioned works studied integration schemes obtained by applying an invertible mapping to the stochastic Taylor series, truncating the resulting series and applying the inverse of the original mapping. The shuffle Hopf algebra and its associated convolution algebra play important roles in the their analysis, arising from the combinatorial structure of iterated Stratonovich integrals. It was recently shown that the algebra generated by iterated It^o integrals of independent Levy processes is isomorphic to a quasi-shuffle algebra. We utilise this to consider map-truncate-invert schemes for Levy processes. To facilitate this, we derive a new form of stochastic Taylor expansion from those of Wagner & Platen, enabling us to extend existing algebraic encodings of integration schemes. We then derive an alternative method of computing map-truncate-invert schemes using a single step, resolving diffculties encountered at the inversion step in previous methods.
APA, Harvard, Vancouver, ISO, and other styles
25

Rajotte, Matthew. "Stochastic Differential Equations and Numerical Applications." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3383.

Full text
Abstract:
We will explore the topic of stochastic differential equations (SDEs) first by developing a foundation in probability theory and It\^o calculus. Formulas are then derived to simulate these equations analytically as well as numerically. These formulas are then applied to a basic population model as well as a logistic model and the various methods are compared. Finally, we will study a model for low dose anthrax exposure which currently implements a stochastic probabilistic uptake in a deterministic differential equation, and analyze how replacing the probablistic uptake with an SDE alters the dynamics.
APA, Harvard, Vancouver, ISO, and other styles
26

Rassias, Stamatiki. "Stochastic functional differential equations and applications." Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486536.

Full text
Abstract:
The general truth that the principle of causality, that is, the future state of a system is independent of its past history, cannot support all the cases under consideration, leads to the introduction of the FDEs. However, the strong need of modelling real life problems, demands the inclusion of stochasticity. Thus, the appearance of the SFDEs (special case of which is the SDDEs) is necessary and definitely unavoidable. It has been almost a century since Langevin's model that the researchers incorporate noise terms into their work. Two of the main research interests are linked with the existence and uniqueness of the solution of the pertinent SFDE/SDDE which describes the problem under consideration, and the qualitative behaviour of the solution. This thesis, explores the SFDEs and their applications. According to the scientific literature, Ito's work (1940) contributed fundamentally into the formulation and study of the SFDEs. Khasminskii (1969), introduced a powerful test for SDEs to have non-explosion solutions without the satisfaction of the linear growth condition. Mao (2002), extended the idea so as to approach the SDDEs. However, Mao's test cannot be applied in specific types of SDDEs. Through our research work we establish an even more general Khasminskii-type test for SDDEs which covers a wide class of highly non-linear SDDEs. Following the proof of the non-explosion of the pertinent solution, we focus onto studying its qualitative behaviour by computing some moment and almost sure asymptotic estimations. In an attempt to apply and extend our theoretical results into real life problems we devote a big part of our research work into studying two very interesting problems that arise : from the area of the population dynamks and from·a problem related to the physical phenomenon of ENSO (EI Nino - Southern Oscillation)
APA, Harvard, Vancouver, ISO, and other styles
27

Nie, Tianyang. "Stochastic differential equations with constraints on the state : backward stochastic differential equations, variational inequalities and fractional viability." Thesis, Brest, 2012. http://www.theses.fr/2012BRES0047.

Full text
Abstract:
Le travail de thèse est composé de trois thèmes principaux : le premier étudie l'existence et l'unicité pour des équations différentielles stochastiques (EDS) progressives-rétrogrades fortement couplées avec des opérateurs sous-différentiels dans les deux équations, dans l’équation progressive ainsi que l’équation rétrograde, et il discute également un nouveau type des inégalités variationnelles partielles paraboliques associées, avec deux opérateurs sous-différentiels, l’un agissant sur le domaine de l’état, l’autre sur le co-domaine. Le second thème est celui des EDS rétrogrades sans ainsi qu’avec opérateurs sous-différentiels, régies par un mouvement brownien fractionnaire avec paramètre de Hurst H> ½. Il étend de manière rigoureuse les résultats de Hu et Peng (SICON, 2009) aux inégalités variationnelles stochastiques rétrogrades. Enfin, le troisième thème met l’accent sur la caractérisation déterministe de la viabilité pour les EDS régies par un mouvement brownien fractionnaire. Ces trois thèmes de recherche mentionnés ci-dessus ont en commun d’étudier des EDS avec contraintes sur le processus d’état. Chacun des trois sujets est basé sur une publication et des manuscrits soumis pour publication, respectivement
This PhD thesis is composed of three main topics: The first one studies the existence and the uniqueness for fully coupled forward-backward stochastic differential equations (SDEs) with subdifferential operators in both the forward and the backward equations, and it discusses also a new type of associated parabolic partial variational inequalities with two subdifferential operators, one acting over the state domain and the other over the co-domain. The second topic concerns the investigation of backward SDEs without as well as with subdifferential operator, both driven by a fractional Brownian motion with Hurst parameter H> 1/2. It extends in a rigorous manner the results of Hu and Peng (SICON, 2009) to backward stochastic variational inequalities. Finally, the third topic focuses on a deterministic characterisation of the viability for SDEs driven by a fractional Brownian motion. The three research topics mentioned above have in common to study SDEs with state constraints. The discussion of each of the three topics is based on a publication and on submitted manuscripts, respectively
APA, Harvard, Vancouver, ISO, and other styles
28

Furlan, Marco. "Structures contrôlées pour les équations aux dérivées partielles." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED008/document.

Full text
Abstract:
Le projet de thèse comporte différentes directions possibles: a) Améliorer la compréhension des relations entre la théorie des structures de régularité développée par M. Hairer et la méthode des Distributions Paracontrolées développée par Gubinelli, Imkeller et Perkowski, et éventuellement fournir une synthèse des deux. C'est très spéculatif et, pour le moment, il n'y a pas de chemin clair vers cet objectif à long terme. b) Utiliser la théorie des Distributions Paracontrolées pour étudier différents types d'équations aux dérivés partiels: équations de transport et équations générales d'évolution hyperbolique, équations dispersives, systèmes de lois de conservation. Ces EDP ne sont pas dans le domaine des méthodes actuelles qui ont été développées principalement pour gérer les équations d'évolution semi-linéaire parabolique. c) Une fois qu'une théorie pour l'équation de transport perturbée par un signal irregulier a été établie, il sera possible de se dédier à l'étude des phénomènes de régularisation par le bruit qui, pour le moment, n'ont étés étudiés que dans le contexte des équations de transport perturbées par le mouvement brownien, en utilisant des outils standard d'analyse stochastique. d) Les techniques du Groupe de Renormalisation (GR) et les développements multi-échelles ont déjà été utilisés à la fois pour aborder les EDP et pour définir des champs quantiques euclidiens. La théorie des Distributions Paracontrolées peut être comprise comme une sorte d'analyse multi-échelle des fonctionnels non linéaires et il serait intéressant d'explorer l'interaction des techniques paradifférentielles avec des techniques plus standard, comme les "cluster expansions" et les méthodes liées au GR
The thesis project has various possible directions: a) Improve the understanding of the relations between the theory of Regularity Structures developed by M.Hairer and the method of Paracontrolled Distributions developed by Gubinelli, Imkeller and Perkowski, and eventually to provide a synthesis. This is highly speculative and at the moment there are no clear path towards this long term goal. b) Use the theory of Paracontrolled Distributions to study different types of PDEs: transport equations and general hyperbolic evolution equation, dispersive equations, systems of conservation laws. These PDEs are not in the domain of the current methods which were developed mainly to handle parabolic semilinear evolution equations. c) Once a theory of transport equation driven by rough signals have been established it will become possible to tackle the phenomena of regularization by transport noise which for the moment has been studied only in the context of transport equations driven by Brownian motion, using standard tools of stochastic analysis. d) Renormalization group (RG) techniques and multi-scale expansions have already been used both to tackle PDE problems and to define Euclidean Quantum Field Theories. Paracontrolled Distributions theory can be understood as a kind of mul- tiscale analysis of non-linear functionals and it would be interesting to explore the interplay of paradifferential techniques with more standard techniques like cluster expansions and RG methods
APA, Harvard, Vancouver, ISO, and other styles
29

Ouzina, Mostafa. "Théorème du support en théorie du filtrage non-linéaire." Rouen, 1998. http://www.theses.fr/1998ROUES029.

Full text
Abstract:
La thèse comporte essentiellement quatre parties. Dans la première partie, la preuve simple de A. Millet et Marta-Sanz-Sole du théorème du support de Stroock-Varadhan dans le cas indépendant du temps est étendue au cas dépendant du temps. Dans la seconde partie, soit (x#t) la solution de l'équation différentielle stochastique x#t = x + #r#i# #=# #1#t#0#i(x#s)dw#i#s + #l#j# #=# #1#t#0$$#j(x#s)odw$$#j#s + #t#0b(x#s)ds nous considérons cette solution comme fonction de w a valeurs dans l'espace l#p des fonctions de w$$ a valeurs dans l'espace des fonctions continues. Le résultat concernant le théorème du support dans ce contexte est établi. Le reste de la thèse est une application de ces idées au filtrage non linéaire : le support de l’espérance conditionnelle déterminée soit par l'équation de Zakai soit par l'équation de Stratonovich est établi, puis nous donnons également le support de la loi conditionnelle du signal x sachant l'observation y, ou le couple (x,y) est donne par dx#t = #r#i# #=# #1#i(x#t)odw#i#t + #l#j# #=# #1$$#j(x#t)ody#j#t + b(x#t)dt dy#t = (x#t)dt + d$$#t, x#0 = x, y#0 = 0, t , 0. 1; dans deux situations différentes. Dans la première on suppose que l'algèbre de lie l($$#1,,$$#l) est commutative. Dans la seconde on suppose que les champs de vecteurs $$#j sont à support compact. Dans la dernière partie on étudie le principe de grandes déviations pour le filtre normalise perturbe obtenu en remplaçant y par y avec tend vers zero.
APA, Harvard, Vancouver, ISO, and other styles
30

Yalman, Hatice. "Change Point Estimation for Stochastic Differential Equations." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5748.

Full text
Abstract:

A stochastic differential equationdriven by a Brownian motion where the dispersion is determined by a parameter is considered. The parameter undergoes a change at a certain time point. Estimates of the time change point and the parameter, before and after that time, is considered.The estimates were presented in Lacus 2008. Two cases are considered: (1) the drift is known, (2) the drift is unknown and the dispersion space-independent. Applications to Dow-Jones index 1971-1974  and Goldmann-Sachs closings 2005-- May 2009 are given.

APA, Harvard, Vancouver, ISO, and other styles
31

Leng, Weng San. "Backward stochastic differential equations and option pricing." Thesis, University of Macau, 2003. http://umaclib3.umac.mo/record=b1447308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tunc, Vildan. "Two Studies On Backward Stochastic Differential Equations." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614541/index.pdf.

Full text
Abstract:
Backward stochastic differential equations appear in many areas of research including mathematical finance, nonlinear partial differential equations, financial economics and stochastic control. The first existence and uniqueness result for nonlinear backward stochastic differential equations was given by Pardoux and Peng (Adapted solution of a backward stochastic differential equation. System and Control Letters, 1990). They looked for an adapted pair of processes {x(t)
y(t)}
t is in [0
1]} with values in Rd and Rd×
k respectively, which solves an equation of the form: x(t) + int_t^1 f(s,x(s),y(s))ds + int_t^1 [g(s,x(s)) + y(s)]dWs = X. This dissertation studies this paper in detail and provides all the steps of the proofs that appear in this seminal paper. In addition, we review (Cvitanic and Karatzas, Hedging contingent claims with constrained portfolios. The annals of applied probability, 1993). In this paper, Cvitanic and Karatzas studied the following problem: the hedging of contingent claims with portfolios constrained to take values in a given closed, convex set K. Processes intimately linked to BSDEs naturally appear in the formulation of the constrained hedging problem. The analysis of Cvitanic and Karatzas is based on a dual control problem. One of the contributions of this thesis is an algorithm that numerically solves this control problem in the case of constant volatility. The algorithm is based on discretization of time. The convergence proof is also provided.
APA, Harvard, Vancouver, ISO, and other styles
33

Zettervall, Niklas. "Multi-scale methods for stochastic differential equations." Thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-53704.

Full text
Abstract:
Standard Monte Carlo methods are used extensively to solve stochastic differential equations. This thesis investigates a Monte Carlo (MC) method called multilevel Monte Carlo that solves the equations on several grids, each with a specific number of grid points. The multilevel MC reduces the computational cost compared to standard MC. When using a fixed computational cost the variance can be reduced by using the multilevel method compared to the standard one. Discretization and statistical error calculations are also being conducted and the possibility to evaluate the errors coupled with the multilevel MC creates a powerful numerical tool for calculating equations numerically. By using the multilevel MC method together with the error calculations it is possible to efficiently determine how to spend an extended computational budget.
Standard Monte Carlo metoder används flitigt för att lösa stokastiska differentialekvationer. Denna avhandling undersöker en Monte Carlo-metod (MC) kallad multilevel Monte Carlo som löser ekvationerna på flera olika rutsystem, var och en med ett specifikt antal punkter. Multilevel MC reducerar beräkningskomplexiteten jämfört med standard MC. För en fixerad beräkningskoplexitet kan variansen reduceras genom att multilevel MC-metoden används istället för standard MC-metoden. Diskretiserings- och statistiska felberäkningar görs också och möjligheten att evaluera de olika felen, kopplat med multilevel MC-metoden skapar ett kraftfullt verktyg för numerisk beräkning utav ekvationer. Genom att använda multilevel MC tillsammans med felberäkningar så är det möjligt att bestämma hur en utökad beräkningsbudget speneras så effektivt som möjligt.
APA, Harvard, Vancouver, ISO, and other styles
34

Reiss, Markus. "Nonparametric estimation for stochastic delay differential equations." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964782480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hashemi, Seyed Naser. "Singular perturbations in coupled stochastic differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ65244.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hollingsworth, Blane Jackson Schmidt Paul G. "Stochastic differential equations a dynamical systems approach /." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Mathematics_and_Statistics/Dissertation/Hollingsworth_Blane_43.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Matsikis, Iakovos. "High gain control of stochastic differential equations." Thesis, University of Exeter, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gauthier, Genevieve Carleton University Dissertation Mathematics and Statistics. "Multilevel bilinear system of stochastic differential equations." Ottawa, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Reiß, Markus. "Nonparametric estimation for stochastic delay differential equations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14741.

Full text
Abstract:
Sei (X(t), t>= -r) ein stationärer stochastischer Prozess, der die affine stochastische Differentialgleichung mit Gedächtnis dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, löst, wobei sigma>0, (W(t), t>=0) eine Standard-Brownsche Bewegung und L ein stetiges lineares Funktional auf dem Raum der stetigen Funktionen auf [-r,0], dargestellt durch ein endliches signiertes Maß a, bezeichnet. Wir nehmen an, dass eine Trajektorie (X(t), -r 0, konvergiert. Diese Rate ist schlechter als in vielen klassischen Fällen. Wir beweisen jedoch eine untere Schranke, die zeigt, dass keine Schätzung eine bessere Rate im Minimax-Sinn aufweisen kann. Für zeit-diskrete Beobachtungen von maximalem Abstand Delta konvergiert die Galerkin-Schätzung immer noch mit obiger Rate, sofern Delta is in etwa von der Ordnung T^(-1/2). Hingegen wird bewiesen, dass für festes Delta unabhängig von T die Rate sich signifikant verschlechtern muss, indem eine untere Schranke von T^(-s/(2s+6)) gezeigt wird. Außerdem wird eine adaptive Schätzung basierend auf Wavelet-Thresholding-Techniken für das assoziierte schlechtgestellte Problem konstruiert. Diese nichtlineare Schätzung erreicht die obige Minimax-Rate sogar für die allgemeinere Klasse der Besovräume B^s_(p,infinity) mit p>max(6/(2s+3),1). Die Restriktion p>=max(6/(2s+3),1) muss für jede Schätzung gelten und ist damit inhärent mit dem Schätzproblem verknüpft. Schließlich wird ein Hypothesentest mit nichtparametrischer Alternative vorgestellt, der zum Beispiel für das Testen auf Gedächtnis verwendet werden kann. Dieser Test ist anwendbar für eine L^2-Trennungsrate zwischen Hypothese und Alternative der Ordnung T^(-s/(2s+2.5)). Diese Rate ist wiederum beweisbar optimal für jede mögliche Teststatistik. Für die Beweise müssen die Parameterabhängigkeit der stationären Lösungen sowie die Abbildungseigenschaften der assoziierten Kovarianzoperatoren detailliert bestimmt werden. Weitere Resultate von allgemeinem Interessen beziehen sich auf die Mischungseigenschaft der stationären Lösung, eine Fallstudie zu exponentiellen Gewichtsfunktionen sowie der Approximation des stationären Prozesses durch autoregressive Prozesse in diskreter Zeit.
Let (X(t), t>= -r) be a stationary stochastic process solving the affine stochastic delay differential equation dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, with sigma>0, (W(t), t>=0) a standard one-dimensional Brownian motion and with a continuous linear functional L on the space of continuous functions on [-r,0], represented by a finite signed measure a. Assume that a trajectory (X(t), -r 0. This rate is worse than those obtained in many classical cases. However, we prove a lower bound, stating that no estimator can attain a better rate of convergence in a minimax sense. For discrete time observations of maximal distance Delta, the Galerkin estimator still attains the above asymptotic rate if Delta is roughly of order T^(-1/2). In contrast, we prove that for observation intervals Delta, with Delta independent of T, the rate must deteriorate significantly by providing the rate estimate T^(-s/(2s+6)) from below. Furthermore, we construct an adaptive estimator by applying wavelet thresholding techniques to the corresponding ill-posed inverse problem. This nonlinear estimator attains the above minimax rate even for more general classes of Besov spaces B^s_(p,infinity) with p>max(6/(2s+3),1). The restriction p >= 6/(2s+3) is shown to hold for any estimator, hence to be inherently associated with the estimation problem. Finally, a hypothesis test with a nonparametric alternative is constructed that could for instance serve to decide whether a trajectory has been generated by a stationary process with or without time delay. The test works for an L^2-separation rate between hypothesis and alternative of order T^(-s/(2s+2.5)). This rate is again shown to be optimal among all conceivable tests. For the proofs, the parameter dependence of the stationary solutions has to be studied in detail and the mapping properties of the associated covariance operators have to be determined exactly. Other results of general interest concern the mixing properties of the stationary solution, a case study for exponential weight functions and the approximation of the stationary process by discrete time autoregressive processes.
APA, Harvard, Vancouver, ISO, and other styles
40

Althubiti, Saeed. "STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE MEMORY." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1544.

Full text
Abstract:
In this dissertation, we discuss the existence and uniqueness of Ito-type stochastic functional differential equations with infinite memory using fixed point theorem technique. We also address the properties of the solution which are an upper bound for the pth moments of the solution and the Lp-regularity. Then, we provide an analysis to show the local asymptotic L2-stability of the trivial solution using fixed point theorem technique, and we give an approximation of the solution using Euler-Maruyama method providing the global error followed by simulating examples.
APA, Harvard, Vancouver, ISO, and other styles
41

Spantini, Alessio. "Preconditioning techniques for stochastic partial differential equations." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82507.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.
This thesis was scanned as part of an electronic thesis pilot project.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 149-155).
This thesis is about preconditioning techniques for time dependent stochastic Partial Differential Equations arising in the broader context of Uncertainty Quantification. State-of-the-art methods for an efficient integration of stochastic PDEs require the solution field to lie on a low dimensional linear manifold. In cases when there is not such an intrinsic low rank structure we must resort on expensive and time consuming simulations. We provide a preconditioning technique based on local time stretching capable to either push or keep the solution field on a low rank manifold with substantial reduction in the storage and the computational burden. As a by-product we end up addressing also classical issues related to long time integration of stochastic PDEs.
by Alessio Spantini.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
42

Kolli, Praveen C. "Topics in Rank-Based Stochastic Differential Equations." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1205.

Full text
Abstract:
In this thesis, we tackle two problems. In the first problem, we study fluctuations of a system of diffusions interacting through the ranks when the number of diffusions goes to infinity. It is known that the empirical cumulative distribution function of such diffusions converges to a non-random limiting cumulative distribution function which satisfies the porous medium PDE. We show that the fluctuations of the empirical cumulative distribution function around its limit are governed by a suitable SPDE. In the second problem, we introduce common noise that has a rank preserving structure into systems of diffusions interacting through the ranks and study the behaviour of such diffusion processes as the number of diffusions goes to infinity. We show that the limiting distribution function is no longer deterministic and furthermore, it satisfies a suitable SPDE. iii
APA, Harvard, Vancouver, ISO, and other styles
43

Prerapa, Surya Mohan. "Projection schemes for stochastic partial differential equations." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/342800/.

Full text
Abstract:
The focus of the present work is to develop stochastic reduced basis methods (SRBMs) for solving partial differential equations (PDEs) defined on random domains and nonlinear stochastic PDEs (SPDEs). SRBMs have been extended in the following directions: Firstly, an h-refinement strategy referred to as Multi-Element-SRBMs (ME-SRBMs) is developed for local refinement of the solution process. The random space is decomposed into subdomains where SRBMs are employed in each subdomain resulting in local response statistics. These local statistics are subsequently assimilated to compute the global statistics. Two types of preconditioning strategies namely global and local preconditioning strategies are discussed due to their merits such as degree of parallelizability and better convergence trends. The improved accuracy and convergence trends of ME-SRBMs are demonstrated by numerical investigation of stochastic steady state elasticity and stochastic heat transfer applications. The second extension involves the development of a computational approach employing SRBMs for solving linear elliptic PDEs defined on random domains. The key idea is to carry out spatial discretization of the governing equations using finite element (FE) methods and mesh deformation strategies. This results in a linear random algebraic system of equations whose coefficients of expansion can be computed nonintrusively either at the element or the global level. SRBMs are subsequently applied to the linear random algebraic system of equations to obtain the response statistics. We establish conditions that the input uncertainty model must satisfy to ensure the well-posedness of the problem. The proposed formulation is demonstrated on two and three dimensional model problems with uncertain boundaries undergoing steady state heat transfer. A large scale study involving a three-dimensional gas turbine model with uncertain boundary, has been presented in this context. Finally, a numerical scheme that combines SRBMs with the Picard iteration scheme is proposed for solving nonlinear SPDEs. The governing equations are linearized using the response process from the previous iteration and spatially discretized. The resulting linear random algebraic system of equations are solved to obtain the new response process which acts as a guess for the next iteration. These steps of linearization, spatial discretization, solving the system of equations and updating the current guess are repeated until the desired accuracy is achieved. The effectiveness and the limitations of the formulation are demonstrated employing numerical studies in nonlinear heat transfer and the one-dimensional Burger’s equation.
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Xiling. "On numerical approximations for stochastic differential equations." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28931.

Full text
Abstract:
This thesis consists of several problems concerning numerical approximations for stochastic differential equations, and is divided into three parts. The first one is on the integrability and asymptotic stability with respect to a certain class of Lyapunov functions, and the preservation of the comparison theorem for the explicit numerical schemes. In general, those properties of the original equation can be lost after discretisation, but it will be shown that by some suitable modification of the Euler scheme they can be preserved to some extent while keeping the strong convergence rate maintained. The second part focuses on the approximation of iterated stochastic integrals, which is the essential ingredient for the construction of higher-order approximations. The coupling method is adopted for that purpose, which aims at finding a random variable whose law is easy to generate and is close to the target distribution. The last topic is motivated by the simulation of equations driven by Lévy processes, for which the main difficulty is to generalise some coupling results for the one-dimensional central limit theorem to the multi-dimensional case.
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Ge. "Statistical Inference for Multivariate Stochastic Differential Equations." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1562966204796479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Matetski, Kanstantsin. "Discretisations of rough stochastic partial differential equations." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/81460/.

Full text
Abstract:
This thesis consists of two parts, in both of which we consider approximations of rough stochastic PDEs and investigate convergence properties of the approximate solutions. In the first part we use the theory of (controlled) rough paths to define a solution for one-dimensional stochastic PDEs of Burgers type driven by an additive space-time white noise. We prove that natural numerical approximations of these equations converge to the solution of a corrected continuous equation and that their optimal convergence rate in the uniform topology (in probability) is arbitrarily close to 1/2 . In the second part of the thesis we develop a general framework for spatial discretisations of parabolic stochastic PDEs whose solutions are provided in the framework of the theory of regularity structures and which are functions in time. As an application, we show that the dynamical �43 model on the dyadic grid converges after renormalisation to its continuous counterpart. This result in particular implies that, as expected, the �43 measure is invariant for this equation and that the lifetime of its solutions is almost surely infinite for almost every initial condition.
APA, Harvard, Vancouver, ISO, and other styles
47

Zangeneh, Bijan Z. "Semilinear stochastic evolution equations." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/31117.

Full text
Abstract:
Let H be a separable Hilbert space. Suppose (Ω, F, Ft, P) is a complete stochastic basis with a right continuous filtration and {Wt,t ∈ R} is an H-valued cylindrical Brownian motion with respect to {Ω, F, Ft, P). U(t, s) denotes an almost strong evolution operator generated by a family of unbounded closed linear operators on H. Consider the semilinear stochastic integral equation [formula omitted] where • f is of monotone type, i.e., ft(.) = f(t, w,.) : H → H is semimonotone, demicon-tinuous, uniformly bounded, and for each x ∈ H, ft(x) is a stochastic process which satisfies certain measurability conditions. • gs(.) is a uniformly-Lipschitz predictable functional with values in the space of Hilbert-Schmidt operators on H. • Vt is a cadlag adapted process with values in H. • X₀ is a random variable. We obtain existence, uniqueness, boundedness of the solution of this equation. We show the solution of this equation changes continuously when one or all of X₀, f, g, and V are varied. We apply this result to find stationary solutions of certain equations, and to study the associated large deviation principles. Let {Zt,t ∈ R} be an H-valued semimartingale. We prove an Ito-type inequality and a Burkholder-type inequality for stochastic convolution [formula omitted]. These are the main tools for our study of the above stochastic integral equation.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
48

Pätz, Torben [Verfasser]. "Segmentation of Stochastic Images using Stochastic Partial Differential Equations / Torben Pätz." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2012. http://d-nb.info/1035219735/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Moon, Kyoung-Sook. "Adaptive Algorithms for Deterministic and Stochastic Differential Equations." Doctoral thesis, KTH, Numerical Analysis and Computer Science, NADA, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jeisman, Joseph Ian. "Estimation of the parameters of stochastic differential equations." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16205/.

Full text
Abstract:
Stochastic di®erential equations (SDEs) are central to much of modern finance theory and have been widely used to model the behaviour of key variables such as the instantaneous short-term interest rate, asset prices, asset returns and their volatility. The explanatory and/or predictive power of these models depends crucially on the particularisation of the model SDE(s) to real data through the choice of values for their parameters. In econometrics, optimal parameter estimates are generally considered to be those that maximise the likelihood of the sample. In the context of the estimation of the parameters of SDEs, however, a closed-form expression for the likelihood function is rarely available and hence exact maximum-likelihood (EML) estimation is usually infeasible. The key research problem examined in this thesis is the development of generic, accurate and computationally feasible estimation procedures based on the ML principle, that can be implemented in the absence of a closed-form expression for the likelihood function. The overall recommendation to come out of the thesis is that an estimation procedure based on the finite-element solution of a reformulation of the Fokker-Planck equation in terms of the transitional cumulative distribution function(CDF) provides the best balance across all of the desired characteristics. The recommended approach involves the use of an interpolation technique proposed in this thesis which greatly reduces the required computational effort.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography