To see the other types of publications on this topic, follow the link: Linear-time Temporal Logic.

Journal articles on the topic 'Linear-time Temporal Logic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Linear-time Temporal Logic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Henriksen, Jesper G., and P. S. Thiagarajan. "Dynamic linear time temporal logic." Annals of Pure and Applied Logic 96, no. 1-3 (1999): 187–207. http://dx.doi.org/10.1016/s0168-0072(98)00039-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wansing, Heinrich, and Norihiro Kamide. "Synchronized Linear-Time Temporal Logic." Studia Logica 99, no. 1-3 (2011): 365–88. http://dx.doi.org/10.1007/s11225-011-9357-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kamide, Norihiro, and Heinrich Wansing. "A Paraconsistent Linear-time Temporal Logic." Fundamenta Informaticae 106, no. 1 (2011): 1–23. http://dx.doi.org/10.3233/fi-2011-374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frigeri, Achille, Liliana Pasquale, and Paola Spoletini. "Fuzzy Time in Linear Temporal Logic." ACM Transactions on Computational Logic 15, no. 4 (2014): 1–22. http://dx.doi.org/10.1145/2629606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

INDRZEJCZAK, ANDRZEJ. "LINEAR TIME IN HYPERSEQUENT FRAMEWORK." Bulletin of Symbolic Logic 22, no. 1 (2016): 121–44. http://dx.doi.org/10.1017/bsl.2016.2.

Full text
Abstract:
AbstractHypersequent calculus (HC), developed by A. Avron, is one of the most interesting proof systems suitable for nonclassical logics. Although HC has rather simple form, it increases significantly the expressive power of standard sequent calculi (SC). In particular, HC proved to be very useful in the field of proof theory of various nonclassical logics. It may seem surprising that it was not applied to temporal logics so far. In what follows, we discuss different approaches to formalization of logics of linear frames and provide a cut-free HC formalization ofKt4.3, the minimal temporal log
APA, Harvard, Vancouver, ISO, and other styles
6

Giero, Mariusz. "The Axiomatization of Propositional Linear Time Temporal Logic." Formalized Mathematics 19, no. 2 (2011): 113–19. http://dx.doi.org/10.2478/v10037-011-0018-1.

Full text
Abstract:
The Axiomatization of Propositional Linear Time Temporal Logic The article introduces propositional linear time temporal logic as a formal system. Axioms and rules of derivation are defined. Soundness Theorem and Deduction Theorem are proved [9].
APA, Harvard, Vancouver, ISO, and other styles
7

Shi, Jianqi, Jiawen Xiong, and Yanhong Huang. "General past-time linear temporal logic specification mining." CCF Transactions on High Performance Computing 3, no. 4 (2021): 393–406. http://dx.doi.org/10.1007/s42514-021-00079-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tonetta, Stefano. "Linear-time Temporal Logic with Event Freezing Functions." Electronic Proceedings in Theoretical Computer Science 256 (September 6, 2017): 195–209. http://dx.doi.org/10.4204/eptcs.256.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fisher, Michael. "A model checker for linear time temporal logic." Formal Aspects of Computing 4, no. 3 (1992): 299–319. http://dx.doi.org/10.1007/bf01212306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jonsson, Bengt, and Tsay Yih-Kuen. "Assumption/guarantee specifications in linear-time temporal logic." Theoretical Computer Science 167, no. 1-2 (1996): 47–72. http://dx.doi.org/10.1016/0304-3975(96)00069-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Giero, Mariusz. "Weak Completeness Theorem for Propositional Linear Time Temporal Logic." Formalized Mathematics 20, no. 3 (2012): 227–34. http://dx.doi.org/10.2478/v10037-012-0027-8.

Full text
Abstract:
Summary We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every formula which negation is not derivable (Satisfiability Theorem). The contrapositive of that theorem leads to derivability of every valid formula. We build a tree of consistent and complete PNPs wh
APA, Harvard, Vancouver, ISO, and other styles
12

Kröger, Fred, and Stephan Merz. "Temporal Logic and Recursion." Fundamenta Informaticae 14, no. 2 (1991): 261–81. http://dx.doi.org/10.3233/fi-1991-14207.

Full text
Abstract:
We propose a temporal logic based on structures divided into several layers of linear “time scales” and give a sound and complete derivation system. The logic is applied to the formulation and verification of assertions about sequential recursive programs.
APA, Harvard, Vancouver, ISO, and other styles
13

Huang, Samuel, and Rance Cleaveland. "A tableau construction for finite linear-time temporal logic." Journal of Logical and Algebraic Methods in Programming 125 (February 2022): 100743. http://dx.doi.org/10.1016/j.jlamp.2021.100743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Giordano, L. "Reasoning about actions in dynamic linear time temporal logic." Logic Journal of IGPL 9, no. 2 (2001): 273–88. http://dx.doi.org/10.1093/jigpal/9.2.273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kamide, Norihiro, and Heinrich Wansing. "Combining linear-time temporal logic with constructiveness and paraconsistency." Journal of Applied Logic 8, no. 1 (2010): 33–61. http://dx.doi.org/10.1016/j.jal.2009.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kamide, Norihiro. "Bounded linear-time temporal logic: A proof-theoretic investigation." Annals of Pure and Applied Logic 163, no. 4 (2012): 439–66. http://dx.doi.org/10.1016/j.apal.2011.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Xiong, Liping, та Sumei Guo. "Representation and Reasoning about Strategic Abilities with ω-Regular Properties". Mathematics 9, № 23 (2021): 3052. http://dx.doi.org/10.3390/math9233052.

Full text
Abstract:
Specification and verification of coalitional strategic abilities have been an active research area in multi-agent systems, artificial intelligence, and game theory. Recently, many strategic logics, e.g., Strategy Logic (SL) and alternating-time temporal logic (ATL*), have been proposed based on classical temporal logics, e.g., linear-time temporal logic (LTL) and computational tree logic (CTL*), respectively. However, these logics cannot express general ω-regular properties, the need for which are considered compelling from practical applications, especially in industry. To remedy this proble
APA, Harvard, Vancouver, ISO, and other styles
18

AGUADO, FELICIDAD, PEDRO CABALAR, GILBERTO PÉREZ, CONCEPCIÓN VIDAL, and MARTÍN DIÉGUEZ. "Temporal logic programs with variables." Theory and Practice of Logic Programming 17, no. 2 (2016): 226–43. http://dx.doi.org/10.1017/s1471068416000570.

Full text
Abstract:
AbstractIn this note, we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic, an extension of Answer Set Programming for dealing with linear-time modal operators. To this aim, we provide a definition of a first-order version of Temporal Equilibrium Logic that shares the syntax of first-order Linear-time Temporal Logic but has different semantics, selecting some Linear-time Temporal Logic models we call temporal stable models. Then, we consider a subclass of theories (called splittable temporal logic programs) that are close
APA, Harvard, Vancouver, ISO, and other styles
19

Kaneiwa, Ken, and Norihiro Kamide. "SEQUENCE-INDEXED LINEAR-TIME TEMPORAL LOGIC: PROOF SYSTEM AND APPLICATION." Applied Artificial Intelligence 24, no. 10 (2010): 896–913. http://dx.doi.org/10.1080/08839514.2010.514231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kojima, Kensuke, and Atsushi Igarashi. "Constructive linear-time temporal logic: Proof systems and Kripke semantics." Information and Computation 209, no. 12 (2011): 1491–503. http://dx.doi.org/10.1016/j.ic.2010.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Torfah, Hazem, and Martin Zimmermann. "The complexity of counting models of linear-time temporal logic." Acta Informatica 55, no. 3 (2016): 191–212. http://dx.doi.org/10.1007/s00236-016-0284-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Thiagarajan, P. S., and I. Walukiewicz. "An Expressively Complete Linear Time Temporal Logic for Mazurkiewicz Traces." Information and Computation 179, no. 2 (2002): 230–49. http://dx.doi.org/10.1006/inco.2001.2956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Giordano, Laura, and Alberto Martelli. "Tableau-based automata construction for dynamic linear time temporal logic*." Annals of Mathematics and Artificial Intelligence 46, no. 3 (2006): 289–315. http://dx.doi.org/10.1007/s10472-006-9020-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Котикова, Е. А., and М. Н. Рыбаков. "Kripke Incompleteness of First-order Calculi with Temporal Modalities of CTL and Near Logics." Logical Investigations 21, no. 1 (2015): 86–99. http://dx.doi.org/10.21146/2074-1472-2015-21-1-86-99.

Full text
Abstract:
We study an expressive power of temporal operators used in such logics of branching time as computational tree logic or alternating-time temporal logic. To do this we investigate calculi in the first-order language enriched with the temporal operators used in such logics. We show that the resulting languages are so powerful that many ‘natural’ calculi in the languages are not Kripke complete; for example, if a calculus in such language is correct with respect to the class of all serial linear Kripke frames (even just with constant domains) then it is not Kripke complete. Some near questions ar
APA, Harvard, Vancouver, ISO, and other styles
25

Demri, Stéphane. "Linear-time temporal logics with Presburger constraints: an overview ★." Journal of Applied Non-Classical Logics 16, no. 3-4 (2006): 311–47. http://dx.doi.org/10.3166/jancl.16.311-347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

von KARGER, BURGHARD. "Temporal algebra." Mathematical Structures in Computer Science 8, no. 3 (1998): 277–320. http://dx.doi.org/10.1017/s0960129598002540.

Full text
Abstract:
We develop temporal logic from the theory of complete lattices, Galois connections and fixed points. In particular, we prove that all seventeen axioms of Manna and Pnueli's sound and complete proof system for linear temporal logic can be derived from just two postulates, namely that ([oplus ], &[ominus ]tilde;) is a Galois connection and that ([ominus ], [oplus ]) is a perfect Galois connection. We also obtain a similar result for the branching time logic CTL.A surprising insight is that most of the theory can be developed without the use of negation. In effect, we are studying intuitionis
APA, Harvard, Vancouver, ISO, and other styles
27

Kamide, Norihiro. "Logical foundations of hierarchical model checking." Data Technologies and Applications 52, no. 4 (2018): 539–63. http://dx.doi.org/10.1108/dta-01-2018-0002.

Full text
Abstract:
Purpose The purpose of this paper is to develop new simple logics and translations for hierarchical model checking. Hierarchical model checking is a model-checking paradigm that can appropriately verify systems with hierarchical information and structures. Design/methodology/approach In this study, logics and translations for hierarchical model checking are developed based on linear-time temporal logic (LTL), computation-tree logic (CTL) and full computation-tree logic (CTL*). A sequential linear-time temporal logic (sLTL), a sequential computation-tree logic (sCTL), and a sequential full comp
APA, Harvard, Vancouver, ISO, and other styles
28

GIORDANO, LAURA, ALBERTO MARTELLI, and DANIELE THESEIDER DUPRÉ. "Reasoning about actions with Temporal Answer Sets." Theory and Practice of Logic Programming 13, no. 2 (2012): 201–25. http://dx.doi.org/10.1017/s1471068411000639.

Full text
Abstract:
AbstractIn this paper, we combine Answer Set Programming (ASP) with Dynamic Linear Time Temporal Logic (DLTL) to define a temporal logic programming language for reasoning about complex actions and infinite computations. DLTL extends propositional temporal logic of linear time with regular programs of propositional dynamic logic, which are used for indexing temporal modalities. The action language allows general DLTL formulas to be included in domain descriptions to constrain the space of possible extensions. We introduce a notion of Temporal Answer Set for domain descriptions, based on the us
APA, Harvard, Vancouver, ISO, and other styles
29

Wen, Zhi Cheng, and Zhi Gang Chen. "Extending Linear Temporal Logic with Clocks to Object-Z." Applied Mechanics and Materials 513-517 (February 2014): 927–30. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.927.

Full text
Abstract:
Object-Z, an extension to formal specification language Z, is good for describing large scale Object-Oriented software specification. While Object-Z has found application in a number of areas, its utility is limited by its inability to specify continuous variables and real-time constraints. Linear temporal logic can describe real-time system, but it can not deal with time variables well and also can not describe formal specification modularly. This paper extends linear temporal logic with clocks (LTLC) and presents an approach to adding linear temporal logic with clocks to Object-Z. Extended O
APA, Harvard, Vancouver, ISO, and other styles
30

CABALAR, PEDRO, MARTÍN DIÉGUEZ, TORSTEN SCHAUB, and ANNA SCHUHMANN. "Towards Metric Temporal Answer Set Programming." Theory and Practice of Logic Programming 20, no. 5 (2020): 783–98. http://dx.doi.org/10.1017/s1471068420000307.

Full text
Abstract:
AbstractWe elaborate upon the theoretical foundations of a metric temporal extension of Answer Set Programming. In analogy to previous extensions of ASP with constructs from Linear Temporal and Dynamic Logic, we accomplish this in the setting of the logic of Here-and-There and its non-monotonic extension, called Equilibrium Logic. More precisely, we develop our logic on the same semantic underpinnings as its predecessors and thus use a simple time domain of bounded time steps. This allows us to compare all variants in a uniform framework and ultimately combine them in a common implementation.
APA, Harvard, Vancouver, ISO, and other styles
31

KAMIDE, NORIHIRO. "Embedding theorems for LTL and its variants." Mathematical Structures in Computer Science 25, no. 1 (2014): 83–134. http://dx.doi.org/10.1017/s0960129514000048.

Full text
Abstract:
In this paper, we prove some embedding theorems for LTL (linear-time temporal logic) and its variants:viz. some generalisations, extensions and fragments of LTL. Using these embedding theorems, we give uniform proofs of the completeness, cut-elimination and/or decidability theorems for LTL and its variants. The proposed embedding theorems clarify the relationships between some LTL-variations (for example, LTL, a dynamic topological logic, a fixpoint logic, a spatial logic, Prior's logic, Davies' logic and an NP-complete LTL) and some traditional logics (for example, classical logic, intuitioni
APA, Harvard, Vancouver, ISO, and other styles
32

Zanma, Tadanao, Shigeru Aoyama, and Muneaki Ishida. "Diagnosis of Discrete Event System with Linear-Time Temporal Logic Proposition." IEEJ Transactions on Electronics, Information and Systems 125, no. 3 (2005): 486–95. http://dx.doi.org/10.1541/ieejeiss.125.486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Reynolds, Mark. "Axiomatising first-order temporal logic: Until and since over linear time." Studia Logica 57, no. 2-3 (1996): 279–302. http://dx.doi.org/10.1007/bf00370836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gnatenko, Anton Romanovich, and Vladimir Anatolyevich Zakharov. "On the Satisfiability and Model Checking for one Parameterized Extension of Linear-time Temporal Logic." Modeling and Analysis of Information Systems 28, no. 4 (2021): 356–71. http://dx.doi.org/10.18255/1818-1015-2021-4-356-371.

Full text
Abstract:
Sequential reactive systems are computer programs or hardware devices which process the flows of input data or control signals and output the streams of instructions or responses. When designing such systems one needs formal specification languages capable of expressing the relationships between the input and output flows. Previously, we introduced a family of such specification languages based on temporal logics $LTL$, $CTL$ and $CTL^*$ combined with regular languages. A characteristic feature of these new extensions of conventional temporal logics is that temporal operators and basic predica
APA, Harvard, Vancouver, ISO, and other styles
35

Kamide, Norihiro. "Relating first-order monadic omega-logic, propositional linear-time temporal logic, propositional generalized definitional reflection logic and propositional infinitary logic." Journal of Logic and Computation 27, no. 7 (2017): 2271–301. http://dx.doi.org/10.1093/logcom/exx006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Cheng-Chia, and I.-Peng Lin. "The computational complexity of satisfiability of temporal Horn formulas in propositional linear-time temporal logic." Information Processing Letters 45, no. 3 (1993): 131–36. http://dx.doi.org/10.1016/0020-0190(93)90014-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

CABALAR, PEDRO, MARTÍN DIÉGUEZ, and CONCEPCIÓN VIDAL. "An infinitary encoding of temporal equilibrium logic." Theory and Practice of Logic Programming 15, no. 4-5 (2015): 666–80. http://dx.doi.org/10.1017/s1471068415000307.

Full text
Abstract:
AbstractThis paper studies the relation between two recent extensions of propositional Equilibrium Logic, a well-known logical characterisation of Answer Set Programming. In particular, we show how Temporal Equilibrium Logic, which introduces modal operators as those typically handled in Linear-Time Temporal Logic (LTL), can be encoded into Infinitary Equilibrium Logic, a recent formalisation that allows the use of infinite conjunctions and disjunctions. We prove the correctness of this encoding and, as an application, we further use it to show that the semantics of the temporal logic programm
APA, Harvard, Vancouver, ISO, and other styles
38

Jiang, S., and R. Kumar. "Failure Diagnosis of Discrete-Event Systems With Linear-Time Temporal Logic Specifications." IEEE Transactions on Automatic Control 49, no. 6 (2004): 934–45. http://dx.doi.org/10.1109/tac.2004.829616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Reynolds, M. "The complexity of the temporal logic with “until” over general linear time." Journal of Computer and System Sciences 66, no. 2 (2003): 393–426. http://dx.doi.org/10.1016/s0022-0000(03)00005-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Evangelista, S., C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. "Verifying linear time temporal logic properties of concurrent Ada programs with quasar." ACM SIGAda Ada Letters XXIV, no. 1 (2004): 17–24. http://dx.doi.org/10.1145/992211.958424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lacerda, Bruno, and Pedro Lima. "Linear-time temporal logic control of discrete event models of cooperative robots." Journal of Physical Agents (JoPha) 2, no. 1 (2008): 53–61. http://dx.doi.org/10.14198/jopha.2008.2.1.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Szalas, Andrzej. "A complete axiomatic characterization of first-order temporal logic of linear time." Theoretical Computer Science 54, no. 2-3 (1987): 199–214. http://dx.doi.org/10.1016/0304-3975(87)90129-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Dietrich, F., X. Logean, and J. P. Hubaux. "Modeling and testing object-oriented distributed systems with linear-time temporal logic." Concurrency and Computation: Practice and Experience 13, no. 5 (2001): 385–420. http://dx.doi.org/10.1002/cpe.571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

TAKAHASHI, Satoshi, Toshimitsu USHIO, and Masakazu ADACHI. "Detection of Automation Surprises for a Manual Modeled by Linear-Time Temporal Logic." Transactions of the Institute of Systems, Control and Information Engineers 19, no. 9 (2006): 350–57. http://dx.doi.org/10.5687/iscie.19.350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ito, Sohei, Takuma Ichinose, Masaya Shimakawa, Naoko Izumi, Shigeki Hagihara, and Naoki Yonezaki. "Modular analysis of gene networks by linear temporal logic." Journal of Integrative Bioinformatics 10, no. 2 (2013): 12–23. http://dx.doi.org/10.1515/jib-2013-216.

Full text
Abstract:
Summary Despite a lot of advances in biology and genomics, it is still difficult to utilise such valuable knowledge and information to understand and analyse large biological systems due to high computational complexity. In this paper we propose a modular method with which from several small network analyses we analyse a large network by integrating them. This method is based on the qualitative framework proposed by authors in which an analysis of gene networks is reduced to checking satisfiability of linear temporal logic formulae. The problem of linear temporal logic satisfiability checking
APA, Harvard, Vancouver, ISO, and other styles
46

DEMRI, STÉPHANE, and DAVID NOWAK. "REASONING ABOUT TRANSFINITE SEQUENCES." International Journal of Foundations of Computer Science 18, no. 01 (2007): 87–112. http://dx.doi.org/10.1142/s0129054107004589.

Full text
Abstract:
We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability and model-checking for the logics working on ωk-sequences is EXPSPACE-complete wh
APA, Harvard, Vancouver, ISO, and other styles
47

Ramakrishna, Y. S., L. E. Moser, L. K. Dillon, P. M. Melliar-Smith, and G. Kutty. "An Automata-Theoretic Decision Procedure for Propositional Temporal Logic with Since and Until1." Fundamenta Informaticae 17, no. 3 (1992): 271–82. http://dx.doi.org/10.3233/fi-1992-17307.

Full text
Abstract:
We present an automata-theoretic decision procedure for Since/Until Temporal Logic (SUTL), a linear-time propositional temporal logic with strong non-strict since and until operators. The logic, which is intended for specifying and reasoning about computer systems, employs neither next nor previous operators. Such operators obstruct the use of hierarchical abstraction and refinement and make reasoning about concurrency difficult. A proof of the soundness and completeness of the decision procedure is given, and its complexity is analyzed.
APA, Harvard, Vancouver, ISO, and other styles
48

Feldman, Irina Alexandra. "Ruina/basural: Lógicas temporales y espaciales de la ciudad de La Paz en Saenz y Viscarra." Bolivian Studies Journal 26 (December 10, 2021): 158–80. http://dx.doi.org/10.5195/bsj.2021.253.

Full text
Abstract:
This article analyzes spatio-temporal logics in the representation of the city of La Paz in Imágenes Paceñas by Jaime Saenz and the urban chronicles of Víctor Hugo Viscarra. Juxtaposing the concepts of chrononormativity and queer time, it explores how linear temporal logic remains insufficient for the understanding of the city and its inhabitants in the two narrative projects. The article postulates that the marginal spaces of architectural ruins and garbage dumps, and the marginalized people who inhabit queer space-time are key to “revealing the hidden city” and understanding its contradictor
APA, Harvard, Vancouver, ISO, and other styles
49

Wolter, Frank, and Michael Zakharyaschev. "A logic for metric and topology." Journal of Symbolic Logic 70, no. 3 (2005): 795–828. http://dx.doi.org/10.2178/jsl/1122038915.

Full text
Abstract:
AbstractWe propose a logic for reasoning about metric spaces with the induced topologies. It combines the ‘qualitative’ interior and closure operators with ‘quantitative’ operators ‘somewhere in the sphere of radius r’ including or excluding the boundary. We supply the logic with both the intended metric space semantics and a natural relational semantics, and show that the latter (i) provides finite partial representations of (in general) infinite metric models and (ii) reduces the standard ‘ε-definitions’ of closure and interior to simple constraints on relations. These features of the relati
APA, Harvard, Vancouver, ISO, and other styles
50

Hustadt, Ullrich, Ana Ozaki, and Clare Dixon. "Theorem Proving for Pointwise Metric Temporal Logic Over the Naturals via Translations." Journal of Automated Reasoning 64, no. 8 (2020): 1553–610. http://dx.doi.org/10.1007/s10817-020-09541-4.

Full text
Abstract:
Abstract We study translations from metric temporal logic (MTL) over the natural numbers to linear temporal logic (LTL). In particular, we present two approaches for translating from MTL to LTL which preserve the complexity of the satisfiability problem for MTL. In each of these approaches we consider the case where the mapping between states and time points is given by (i) a strict monotonic function and by (ii) a non-strict monotonic function (which allows multiple states to be mapped to the same time point). We use this logic to model examples from robotics, traffic management, and scheduli
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!