Academic literature on the topic 'Linear topological vector space'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear topological vector space.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear topological vector space"
Khurana, Surjit Singh. "Vector Measures on Topological Spaces." gmj 14, no. 4 (December 2007): 687–98. http://dx.doi.org/10.1515/gmj.2007.687.
Full textKatsaras, A. K., and V. Benekas. "Sequential Convergence in Topological Vector Spaces." gmj 2, no. 2 (April 1995): 151–64. http://dx.doi.org/10.1515/gmj.1995.151.
Full textGarcía-Pacheco, Francisco Javier, and Francisco Javier Pérez-Fernández. "Pre-Schauder Bases in Topological Vector Spaces." Symmetry 11, no. 8 (August 9, 2019): 1026. http://dx.doi.org/10.3390/sym11081026.
Full textYılmaz, Yılmaz, Sümeyye Çakan, and Şahika Aytekin. "Topological Quasilinear Spaces." Abstract and Applied Analysis 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/951374.
Full textMaslyuchenko, V. K., and V. V. Nesterenko. "Weak Darboux property and transitivity of linear mappings on topological vector spaces." Carpathian Mathematical Publications 5, no. 1 (June 20, 2013): 79–88. http://dx.doi.org/10.15330/cmp.5.1.79-88.
Full textVILLENA, A. R. "UNIQUENESS OF THE TOPOLOGY ON SPACES OF VECTOR-VALUED FUNCTIONS." Journal of the London Mathematical Society 64, no. 2 (October 2001): 445–56. http://dx.doi.org/10.1112/s0024610701002423.
Full textNakasho, Kazuhisa, Yuichi Futa, and Yasunari Shidama. "Topological Properties of Real Normed Space." Formalized Mathematics 22, no. 3 (September 1, 2014): 209–23. http://dx.doi.org/10.2478/forma-2014-0024.
Full textGarcía-Pacheco, Francisco Javier, Soledad Moreno-Pulido, Enrique Naranjo-Guerra, and Alberto Sánchez-Alzola. "Non-Linear Inner Structure of Topological Vector Spaces." Mathematics 9, no. 5 (February 25, 2021): 466. http://dx.doi.org/10.3390/math9050466.
Full textPark, Sehie. "Best approximation theorems for composites of upper semicontinuous maps." Bulletin of the Australian Mathematical Society 51, no. 2 (April 1995): 263–72. http://dx.doi.org/10.1017/s000497270001409x.
Full textHejazian, Shirin, Madjid Mirzavaziri, and Omid Zabeti. "Bounded operators on topological vector spaces and their spectral radii." Filomat 26, no. 6 (2012): 1283–90. http://dx.doi.org/10.2298/fil1206283h.
Full textDissertations / Theses on the topic "Linear topological vector space"
Nielsen, Mark J. "Tilings of topological vector spaces /." Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/5763.
Full textVera, Mendoza Rigoberto. "Linear operations on locally convex topological vector spaces." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186699.
Full textToolan, Timothy M. "Advances in sliding window subspace tracking /." View online ; access limited to URI, 2005. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3206257.
Full textRamsey, John Karl. "Vector-space implementation of Hamilton's law of varying action for linear and nonlinear systems /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488196234909189.
Full textRees, Michael K. "Topological uniqueness results for the special linear and other classical Lie Algebras." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc3000/.
Full textFontenele, Francisca ClÃudia Fernandes. "Fedathi sequence in teaching of linear algebra: the case of the concept of base of a vector space." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11351.
Full textThis research examined the teaching of concept of base of a vector space according to the premises mediated by Fedathi Sequence during the discipline âIntroduction to Algebraâ in the course of Engineering of Teleinformatic at Federal University of CearÃ. The objective was to determine whether the use of Fedathi Sequence specifically in classes about the concept of base provides resources capable of becoming Meta Lever, allowing students an education based on the reflection on the worked contents. In this sense, the investigation was conducted in the form of case study, having as subject the teacher of discipline, which allowed the observation during his classes and planning, as well as having granted an interview. The results indicated that the Fedathi Sequence favored the use of resources that could become Meta Lever for students, being decisive in mediating the teacher, once the teacher behavior to use it in the classroom motivates students to reflection. We consider theories ML and FS, in this research, are complementary, and therefore we indicate that the teacher know such tools and their potential for use in teaching of concept of base, awakening the teacher an awareness of the role of mediation suggested by Fedathi Sequence.
Esta pesquisa analisou o ensino da noÃÃo de base de um espaÃo vetorial mediado segundo os pressupostos da SequÃncia Fedathi durante a disciplina de IntroduÃÃo à Ãlgebra do curso de Engenharia de TeleinformÃtica da Universidade Federal do CearÃ. Objetivou-se verificar se o uso da SequÃncia Fedathi, especificamente, nas aulas sobre o conceito de base, proporciona recursos passÃveis de se tornarem Alavanca Meta, permitindo aos alunos um ensino baseado na reflexÃo sobre os conteÃdos trabalhados. Nesse sentido, a investigaÃÃo foi conduzida na forma de estudo de caso, tendo como sujeito o professor da disciplina, que permitiu a observaÃÃo durante suas aulas e planejamentos, alÃm de ter concedido uma entrevista. Os resultados encontrados apontaram que a SequÃncia Fedathi favoreceu o uso de recursos passÃveis de se tornarem Alavancas Meta para os alunos, sendo determinante na mediaÃÃo do professor, de modo que a postura docente ao utilizÃ-la em sala de aula motivava os alunos à reflexÃo. Consideramos que as teorias AM e SF, nessa pesquisa, se complementaram, e, portanto, indicamos que o professor conheÃa tais ferramentas e seu potencial de uso no ensino de base, despertando no professor uma consciÃncia do papel da mediaÃÃo preconizada pela SequÃncia Fedathi.
Stover, Derrick D. "Continuous Mappings and Some New Classes of Spaces." View abstract, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3371579.
Full textLima, Diego Ponciano de Oliveira. "Variedades afins e aplicaÃÃes." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10665.
Full textNeste trabalho, consideramos variedades afins no espaÃo vetorial para analisar e compreender o comportamento geomÃtrico de conjuntos soluÃÃes de sistemas de equaÃÃes lineares, de soluÃÃes de equaÃÃes diferenciais ordinÃrias lineares de segunda ordem resultantes de modelagens matemÃticas de sistemas, etc. Verificamos caracterÃsticas das variedades afins em espaÃos vetoriais como um subespaÃo vetorial transladado de qualquer vetor pertencente à variedade afim e fazemos uma comparaÃÃo das representaÃÃes geomÃtricas dos conjuntos soluÃÃes das situaÃÃes-problema, citados acima, com tais caracterÃsticas.
"Some sort of barrelledness in topological vector spaces." Chinese University of Hong Kong, 1990. http://library.cuhk.edu.hk/record=b5886544.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1990.
Bibliography: leaves 66-67.
Chapter §0 --- Introduction
Chapter §1 --- Preliminaries and notations
Chapter §2 --- A summary on ultra-(DF)-spaces and order-ultra-(DF)-spaces
Chapter §3 --- " ""Dual"" properties between projective and inductive topologies in topological vector spaces"
Chapter §4 --- Application of barrelledness on continuity of bilinear mappings and projective tensor product
Chapter §5 --- Countably order-quasiultrabarrelled spaces
Helmstedt, Janet Margaret. "Closed graph theorems for locally convex topological vector spaces." Thesis, 2015. http://hdl.handle.net/10539/18010.
Full textLet 4 be the class of pairs of loc ..My onvex spaces (X,V) “h ‘ch are such that every closed graph linear ,pp, 1 from X into V is continuous. It B is any class of locally . ivex l.ausdortf spaces. let & w . (X . (X.Y) e 4 for ,11 Y E B). " ‘his expository dissertation, * (B) is investigated, firstly i r arbitrary B . secondly when B is the class of C,-complete paces and thirdly whon B is a class of locally convex webbed s- .ces
Books on the topic "Linear topological vector space"
1940-, Beckenstein Edward, ed. Topological vector spaces. New York: M. Dekker, 1985.
Find full textNarici, Lawrence. Topological vector spaces. 2nd ed. Boca Raton, FL: CRC Press, 2011.
Find full text1940-, Beckenstein Edward, ed. Topological vector spaces. 2nd ed. Boca Raton: Taylor & Francis, 2011.
Find full textWong, Yau-Chuen. Introductory theory of topological vector spaces. New York: Dekker, 1992.
Find full textHorváth, John. Topological vector spaces and distributions. Mineola, N.Y: Dover Publications, 2012.
Find full textTopological vector spaces and distributions. Mineola, N.Y: Dover Publications, 2012.
Find full textKadelburg, Zoran. Subspaces and quotients of topological and ordered vector spaces. Novi Sad: University of Novi Sad, Institute of Mathematics, 1997.
Find full textBook chapters on the topic "Linear topological vector space"
Schaefer, H. H., and M. P. Wolff. "Linear Mappings." In Topological Vector Spaces, 73–121. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7_4.
Full textBourbaki, Nicolas. "Spaces of continuous linear mappings." In Topological Vector Spaces, 127–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-61715-7_3.
Full textGrosse-Erdmann, Karl-G., and Alfred Peris Manguillot. "Linear dynamics in topological vector spaces." In Universitext, 331–50. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-4471-2170-1_12.
Full textTikhomirov, V. M. "On the Linear Dimension of Topological Vector Spaces." In Selected Works of A. N. Kolmogorov, 388–92. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3030-1_57.
Full textRao, K. N. Srinivasa. "Linear Vector Space." In Texts and Readings in Physical Sciences, 39–122. Gurgaon: Hindustan Book Agency, 2006. http://dx.doi.org/10.1007/978-93-86279-32-3_3.
Full textShah, Nita H., and Urmila B. Chaudhari. "Linear Transformations of Euclidean Vector Space." In Linear Transformation, 1–13. First edition. | Boca Raton : CRC Press, 2021. |: CRC Press, 2020. http://dx.doi.org/10.1201/9781003105206-1.
Full textLee, Gue Myung, and Sangho Kum. "Vector Variational Inequalities in a Hausdorff Topological Vector Space." In Vector Variational Inequalities and Vector Equilibria, 307–20. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4613-0299-5_17.
Full textRomano, Antonio, and Addolorata Marasco. "Vector Space and Linear Maps." In Classical Mechanics with Mathematica®, 3–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77595-1_1.
Full textRomano, Antonio. "Vector Space and Linear Maps." In Classical Mechanics with Mathematica®, 3–15. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8352-8_1.
Full textDalecky, Yu L., and S. V. Fomin. "Measures in linear topological spaces." In Measures and Differential Equations in Infinite-Dimensional Space, 83–107. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-2600-7_4.
Full textConference papers on the topic "Linear topological vector space"
Bao, Yuanlu, Zhenan Liu, and Jin Qu. "An effective topological adjustment on vector maps for AVL." In International Conference on Space information Technology, edited by Cheng Wang, Shan Zhong, and Xiulin Hu. SPIE, 2005. http://dx.doi.org/10.1117/12.657414.
Full textGu, Guomin, and Weihong Wang. "Improved Vector Route Algorithm Bases on Raster Topological Space Model." In TENCON 2005 - 2005 IEEE Region 10 Conference. IEEE, 2005. http://dx.doi.org/10.1109/tencon.2005.301072.
Full textPucci, Marcello. "State space-vector model of linear induction motors." In 2012 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2012. http://dx.doi.org/10.1109/ecce.2012.6342390.
Full text"Non-linear Transformations of Vector Space Embedded Graphs." In 8th International Workshop on Pattern Recognition in Information Systems. SciTePress - Science and and Technology Publications, 2008. http://dx.doi.org/10.5220/0001744301730183.
Full textKokubu, Masatoshi. "Linear Weingarten Surfaces in Hyperbolic Three-space." In INTERNATIONAL WORKSHOP ON COMPLEX STRUCTURES, INTEGRABILITY AND VECTOR FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3567125.
Full textMohamed, Essam E. M., Mahmoud A. Sayed, and Tarek Hassan Mohamed. "Sliding mode control of linear induction motors using space vector controlled inverter." In 2013 International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2013. http://dx.doi.org/10.1109/icrera.2013.6749835.
Full textBoutet, P., J. Dubouloy, M. Soulard, and J. Pinho. "Fully Integrated QPSK Linear Vector Modulator for Space Applications in Ku Band." In 28th European Microwave Conference, 1998. IEEE, 1998. http://dx.doi.org/10.1109/euma.1998.338183.
Full textBaby, Renjith, C. Santhosh Kumar, Kuruvachan K. George, and Ashish Panda. "Noise compensation in i-vector space using linear regression for robust speaker verification." In 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). IEEE, 2017. http://dx.doi.org/10.1109/mspct.2017.8363996.
Full textPal, Krishan, and Mayank Sharma. "Performance evaluation of non-linear techniques UMAP and t-SNE for data in higher dimensional topological space." In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE, 2020. http://dx.doi.org/10.1109/i-smac49090.2020.9243502.
Full textKou, Baoquan, Feng Xing, Chaoning Zhang, Lu Zhang, and Hao Yan. "Synchronous control of dual linear motors based on advanced space voltage vector switch table." In 2014 17th International Symposium on Electromagnetic Launch Technology (EML). IEEE, 2014. http://dx.doi.org/10.1109/eml.2014.6920673.
Full textReports on the topic "Linear topological vector space"
Frigo, Nicholas J., Vincent J. Urick, and Frank Bucholtz. Modeling Interferometric Structures with Birefringent Elements: A Linear Vector-Space Formalism. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada594532.
Full text