To see the other types of publications on this topic, follow the link: Linear transformations.

Journal articles on the topic 'Linear transformations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Linear transformations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Michálek, Jiří. "Linear transformations of locally stationary processes." Applications of Mathematics 34, no. 1 (1989): 57–66. http://dx.doi.org/10.21136/am.1989.104334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laffey, Thomas J., and Raphael Loewy. "Linear transformations." Linear and Multilinear Algebra 26, no. 3 (February 1990): 181–86. http://dx.doi.org/10.1080/03081089008817974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pąk, Karol. "Linear Map of Matrices." Formalized Mathematics 16, no. 3 (January 1, 2008): 269–75. http://dx.doi.org/10.2478/v10037-008-0032-0.

Full text
Abstract:
Linear Map of MatricesThe paper is concerned with a generalization of concepts introduced in [13], i.e. introduced are matrices of linear transformations over a finitedimensional vector space. Introduced are linear transformations over a finitedimensional vector space depending on a given matrix of the transformation. Finally, I prove that the rank of linear transformations over a finite-dimensional vector space is the same as the rank of the matrix of that transformation.
APA, Harvard, Vancouver, ISO, and other styles
4

Pąk, Karol. "Linear Transformations of Euclidean Topological Spaces." Formalized Mathematics 19, no. 2 (January 1, 2011): 103–8. http://dx.doi.org/10.2478/v10037-011-0016-3.

Full text
Abstract:
Linear Transformations of Euclidean Topological Spaces We introduce linear transformations of Euclidean topological spaces given by a transformation matrix. Next, we prove selected properties and basic arithmetic operations on these linear transformations. Finally, we show that a linear transformation given by an invertible matrix is a homeomorphism.
APA, Harvard, Vancouver, ISO, and other styles
5

Sullivan, R. P. "Products of nilpotent linear transformations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 124, no. 6 (1994): 1135–50. http://dx.doi.org/10.1017/s0308210500030158.

Full text
Abstract:
In this paper we characterise the linear transformations of an infinite-dimensional vector space that can be written as the product of nilpotent transformations. This and a linear version of Malcev's congruence on transformation semigroups are then used to construct a new class of congruence-free semigroups.
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Chunpeng, and Jason P. Fine. "Linear Transformation Model With Parametric Covariate Transformations." Journal of the American Statistical Association 108, no. 502 (June 2013): 701–12. http://dx.doi.org/10.1080/01621459.2013.770707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WANG, LU, and YIQIANG ZHOU. "‘DECOMPOSING LINEAR TRANSFORMATIONS’." Bulletin of the Australian Mathematical Society 85, no. 1 (November 4, 2011): 172–73. http://dx.doi.org/10.1017/s0004972711002644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

WANG, LU, and YIQIANG ZHOU. "DECOMPOSING LINEAR TRANSFORMATIONS." Bulletin of the Australian Mathematical Society 83, no. 2 (September 14, 2010): 256–61. http://dx.doi.org/10.1017/s0004972710001711.

Full text
Abstract:
AbstractLet R be the ring of linear transformations of a right vector space over a division ring D. Three results are proved: (1) if |D|>4, then for any a∈R there exists a unit u of R such that a+u,a−u and a−u−1 are units of R; (2) if |D|>3 , then for any a∈R there exists a unit u of R such that both a+u and a−u−1 are units of R; (3) if |D|>2 , then for any a∈R there exists a unit u of R such that both a−u and a−u−1 are units of R. The second result extends the main result in H. Chen, [‘Decompositions of countable linear transformations’, Glasg. Math. J. (2010), doi:10.1017/S0017089510000121] and the third gives an affirmative answer to the question raised in the same paper.
APA, Harvard, Vancouver, ISO, and other styles
9

Friantika, Khasnah Aris, Harina O. L. Monim, and Rium Hilum. "MATRIKS BAKU UNTUK TRANSFORMASI LINIER PADA RUANG VEKTOR DIMENSI TIGA." Jurnal Natural 15, no. 2 (October 1, 2019): 88–93. http://dx.doi.org/10.30862/jn.v15i2.140.

Full text
Abstract:
The linear transformation is a function relating the vector ke . If , then the transformation is called a linear operator. Several examples of linear operators have been introduced since SMA such as reflexive, rotation, compression and expansion and shear. Apart from being introduced in SMA, these linear operators were also introduced to the linear algebra course. Linear transformations studied at the university level include linear transformation in finite dimension vector spaces . The discussion includes how to determine the standard matrix for reflexive linear transformations, rotation, compression and expansion and given shear. Through the column vectors of reflexive, rotation, compression and expansion and shear, a standard matrix of 2x2 size is formed for the corresponding linear transformation. however, in this study, the authors studied linear transformations in dimensioned vector spaces . The results of this study are if known is a vector space with finite and the standard matrix for reflexivity, rotation, expansion, compression and shear is obtained. Each of these linear transformations is performed on x-axis, y-axis and z-axis on to get column vectors. The column vectors as a result of the linear transformation at form the standard matrix for the corresponding linear transformation in the vector space. The standard matrix for linear transformations in the vector space is obtained by determining reflexivity, rotation, expansion, compression and shear. The process of obtaining a standard matrix for linear transformation is carried out by rewriting the standard basis, determining the column vectors, and rearranging them as the standard matrix for each linear transformation in the vector space
APA, Harvard, Vancouver, ISO, and other styles
10

Čadek, Martin. "Form of general pointwise transformations of linear differential equations." Czechoslovak Mathematical Journal 35, no. 4 (1985): 617–24. http://dx.doi.org/10.21136/cmj.1985.102052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Loperfido, Nicola. "Linear transformations to symmetry." Journal of Multivariate Analysis 129 (August 2014): 186–92. http://dx.doi.org/10.1016/j.jmva.2014.04.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Alexa, Marc. "Linear combination of transformations." ACM Transactions on Graphics 21, no. 3 (July 2002): 380–87. http://dx.doi.org/10.1145/566654.566592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Glynn, David G., T. Aaron Gulliver, and Manish K. Gupta. "Linear transformations on codes." Discrete Mathematics 306, no. 16 (August 2006): 1871–80. http://dx.doi.org/10.1016/j.disc.2006.03.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Richman, Fred. "Polynomials and linear transformations." Linear Algebra and its Applications 131 (April 1990): 131–37. http://dx.doi.org/10.1016/0024-3795(90)90379-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kunicki, Catherine M., and Richard D. Hill. "Normal-preserving linear transformations." Linear Algebra and its Applications 170 (June 1992): 107–15. http://dx.doi.org/10.1016/0024-3795(92)90413-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Abobala, Mohammad. "On the Representation of Neutrosophic Matrices by Neutrosophic Linear Transformations." Journal of Mathematics 2021 (February 24, 2021): 1–5. http://dx.doi.org/10.1155/2021/5591576.

Full text
Abstract:
The objective of this paper is to study the representation of neutrosophic matrices defined over a neutrosophic field by neutrosophic linear transformations between neutrosophic vector spaces, where it proves that every neutrosophic matrix can be represented uniquely by a neutrosophic linear transformation. Also, this work proves that every neutrosophic linear transformation must be an AH-linear transformation; i.e., it can be represented by classical linear transformations.
APA, Harvard, Vancouver, ISO, and other styles
17

Morrell, Christopher H., Jay D. Pearson, and Larry J. Brant. "Linear Transformations of Linear Mixed-Effects Models." American Statistician 51, no. 4 (November 1997): 338. http://dx.doi.org/10.2307/2685902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Morrell, Christopher H., Jay D. Pearson, and Larry J. Brant. "Linear Transformations of Linear Mixed-Effects Models." American Statistician 51, no. 4 (November 1997): 338–43. http://dx.doi.org/10.1080/00031305.1997.10474409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fialkow, Aaron. "Linear dependence of linear transformations and images." Linear Algebra and its Applications 126 (December 1989): 15–37. http://dx.doi.org/10.1016/0024-3795(89)90003-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

López, Julio, Rubén López, and C. Héctor Ramírez. "Characterizing -linear transformations for semidefinite linear complementarity problems." Nonlinear Analysis: Theory, Methods & Applications 75, no. 3 (February 2012): 1441–48. http://dx.doi.org/10.1016/j.na.2011.07.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bharti, Puja, and Jagmohan Tanti. "Similarity Classes of Linear Transformations." Journal of the Indian Mathematical Society 87, no. 3-4 (July 1, 2020): 148. http://dx.doi.org/10.18311/jims/2020/25448.

Full text
Abstract:
In this paper, we investigate the similarity classes of linear transformations on a vector space using structure theorem for finitely generated modules over a principal ideal domain. We also establish formulae to count similarity classes with a given polynomial as a characteristic polynomial and to count total number of classes when the scalar field is finite.
APA, Harvard, Vancouver, ISO, and other styles
22

Bresar, Matej, and Peter Semrl. "Linear Transformations Preserving Potent Matrices." Proceedings of the American Mathematical Society 119, no. 1 (September 1993): 81. http://dx.doi.org/10.2307/2159827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Heckmann, Reinhold. "Contractivity of linear fractional transformations." Theoretical Computer Science 279, no. 1-2 (May 2002): 65–82. http://dx.doi.org/10.1016/s0304-3975(00)00427-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lord, Nick, and Ali R. Amir-Moez. "Extreme Properties of Linear Transformations." Mathematical Gazette 76, no. 477 (November 1992): 436. http://dx.doi.org/10.2307/3618425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rahimi-Alangi, M., and Bamdad R. Yahaghi. "On modules of linear transformations." Linear Algebra and its Applications 445 (March 2014): 127–37. http://dx.doi.org/10.1016/j.laa.2013.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

CHEN, HUANYIN. "DECOMPOSITIONS OF COUNTABLE LINEAR TRANSFORMATIONS." Glasgow Mathematical Journal 52, no. 3 (March 22, 2010): 427–33. http://dx.doi.org/10.1017/s0017089510000121.

Full text
Abstract:
AbstractLet V be a countably generated right vector space over a division ring D. If D ≇ ℤ/2ℤ, ℤ/3ℤ, then for any γ ∈ EndD(V), there exists α ∈ AutD(V) such that γ+α, γ−α−1 ∈ AutD(V). This gives a generalization of [D. Zelinsky, Proc. Amer. Math. Soc. 5 (1954), 627–630, Theorem].
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Yi. "Linear transformations preserving log-concavity." Linear Algebra and its Applications 359, no. 1-3 (January 2003): 161–67. http://dx.doi.org/10.1016/s0024-3795(02)00438-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Godjali, Ali. "Hessenberg pairs of linear transformations." Linear Algebra and its Applications 431, no. 9 (October 2009): 1579–86. http://dx.doi.org/10.1016/j.laa.2009.05.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lešnjak, Gorazd. "Semigroups of EP linear transformations." Linear Algebra and its Applications 304, no. 1-3 (January 2000): 109–18. http://dx.doi.org/10.1016/s0024-3795(99)00192-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Reynolds, M. A., and R. P. Sullivan. "Products of idempotent linear transformations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 100, no. 1-2 (1985): 123–38. http://dx.doi.org/10.1017/s0308210500013688.

Full text
Abstract:
SynopsisIn 1966, J. M. Howie characterised the transformations of an arbitrary set that can be written as a product (under composition) of idempotent transformations of the same set. In 1967, J. A. Erdos considered the analogous problem for linear transformations of a finite-dimensional vector space and in 1983, R. J. Dawlings investigated the corresponding idea for bounded operators on a separable Hilbert space. In this paper we study the case of arbitrary vector spaces.
APA, Harvard, Vancouver, ISO, and other styles
31

Nicholson, W. K., and K. Varadarajan. "Countable linear transformations are clean." Proceedings of the American Mathematical Society 126, no. 1 (1998): 61–64. http://dx.doi.org/10.1090/s0002-9939-98-04397-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Dayong, Avi Pe’er, Asher A. Friesem, and Adolf W. Lohmann. "General linear optical coordinate transformations." Journal of the Optical Society of America A 17, no. 10 (October 1, 2000): 1864. http://dx.doi.org/10.1364/josaa.17.001864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ittharat, Jirasook, and R. P. Sullivan. "Factorisable Semigroups of Linear Transformations." Algebra Colloquium 13, no. 02 (June 2006): 295–306. http://dx.doi.org/10.1142/s1005386706000265.

Full text
Abstract:
Let P(X) be the semigroup of all partial transformations of a set X. A subsemigroup S of P(X) is factorisable if S = GE = EH, where G, H are subgroups of S and E is the set of idempotents in S. In 2001, Jampachon, Saichalee and Sullivan proved a simple result that generalized most of the previous work on factorisable subsemigroups of P(X). They also determined when the semigroup T(V) of all linear transformations of a vector space V is factorisable. In this paper, we extend that work to partial linear transformations of V and consider the notion of locally factorisable for such semigroups.
APA, Harvard, Vancouver, ISO, and other styles
34

Iosifidis, Damianos. "Linear transformations on affine-connections." Classical and Quantum Gravity 37, no. 8 (March 19, 2020): 085010. http://dx.doi.org/10.1088/1361-6382/ab778d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Carnicer, J. M., J. M. Peña, and A. Pinkus. "On Zero-Preserving Linear Transformations." Journal of Mathematical Analysis and Applications 266, no. 1 (February 2002): 237–58. http://dx.doi.org/10.1006/jmaa.2001.7745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lenk, Peter J., and Chih-Ling Tsai. "Transformations and dynamic linear models." Journal of Forecasting 9, no. 3 (May 1990): 219–32. http://dx.doi.org/10.1002/for.3980090303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zahorian, Stephen A., and Amir J. Jagharghi. "Linear transformations for vowel normalization." Journal of the Acoustical Society of America 85, S1 (May 1989): S51. http://dx.doi.org/10.1121/1.2027008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Jiankui, and Zhidong Pan. "Algebraic reflexivity of linear transformations." Proceedings of the American Mathematical Society 135, no. 6 (November 29, 2006): 1695–99. http://dx.doi.org/10.1090/s0002-9939-06-08632-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Leont’ev, V. K. "Boolean polynomials and linear transformations." Doklady Mathematics 79, no. 2 (April 2009): 216–18. http://dx.doi.org/10.1134/s1064562409020185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Makovicky, Emil. "Hans Hinterreiter's non-linear transformations." Acta Crystallographica Section A Foundations of Crystallography 66, a1 (August 29, 2010): s321. http://dx.doi.org/10.1107/s0108767310092652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Braza, Peter, Jingcheng Tong, and Mei-Qin Zhan. "Linear transformations on Pythagorean triples." International Journal of Mathematical Education in Science and Technology 35, no. 5 (September 2004): 755–62. http://dx.doi.org/10.1080/0020739042000232574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Brešar, Matej, and Peter Šemrl. "Linear transformations preserving potent matrices." Proceedings of the American Mathematical Society 119, no. 1 (January 1, 1993): 81. http://dx.doi.org/10.1090/s0002-9939-1993-1154242-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Park, Chull, and David Skoug. "Linear transformations of Wiener integrals." Proceedings of the American Mathematical Society 116, no. 2 (February 1, 1992): 445. http://dx.doi.org/10.1090/s0002-9939-1992-1107274-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Buslaev, V. I., and S. F. Buslaeva. "Compositions of linear-fractional transformations." Mathematical Notes 61, no. 3 (March 1997): 272–77. http://dx.doi.org/10.1007/bf02355408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kushnir, Alexey, and Shuo Liu. "On Linear Transformations of Intersections." Set-Valued and Variational Analysis 28, no. 3 (January 21, 2020): 475–89. http://dx.doi.org/10.1007/s11228-019-00525-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Croke, Sarah, Stephen M. Barnett, and Stig Stenholm. "Linear transformations of quantum states." Annals of Physics 323, no. 4 (April 2008): 893–906. http://dx.doi.org/10.1016/j.aop.2007.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dani, S. G., and K. Gowri Navada. "Harmonious orbits of linear transformations." Monatshefte f�r Mathematik 121, no. 3 (September 1996): 181–88. http://dx.doi.org/10.1007/bf01298948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vassiliou, E. "Transformations of linear connections, II." Periodica Mathematica Hungarica 17, no. 1 (March 1986): 1–11. http://dx.doi.org/10.1007/bf01848223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Duffner, M. Antónia. "Linear transformations that preserve immanants." Linear Algebra and its Applications 197-198 (January 1994): 567–88. http://dx.doi.org/10.1016/0024-3795(94)90504-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Brezinski, Claude, and Stefan Paszkowski. "Optimal linear contractive sequence transformations." Journal of Computational and Applied Mathematics 38, no. 1-3 (December 1991): 45–59. http://dx.doi.org/10.1016/0377-0427(91)90160-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography