Academic literature on the topic 'Linear voltage regulator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear voltage regulator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear voltage regulator"
Wang, San-Fu. "A 5 V-to-3.3 V CMOS Linear Regulator with Three-Output Temperature-Independent Reference Voltages." Journal of Sensors 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/1436371.
Full textKargarrazi, Saleh, Luigia Lanni, Stefano Saggini, Ana Rusu, and Carl-Mikael Zetterling. "500 °C Bipolar SiC Linear Voltage Regulator." IEEE Transactions on Electron Devices 62, no. 6 (June 2015): 1953–57. http://dx.doi.org/10.1109/ted.2015.2417097.
Full textSu, Chiahung, Syed K. Islam, Kai Zhu, and Liang Zuo. "A high-temperature, high-voltage, fast response linear voltage regulator." Analog Integrated Circuits and Signal Processing 72, no. 2 (June 8, 2012): 405–17. http://dx.doi.org/10.1007/s10470-012-9877-9.
Full textMurphree, R. C., S. Ahmed, M. Barlow, A. Rahman, H. A. Mantooth, and A. M. Francis. "A CMOS SiC Linear Voltage Regulator for High Temperature Applications." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2016, HiTEC (January 1, 2016): 000106–11. http://dx.doi.org/10.4071/2016-hitec-106.
Full textAdell, P. C., R. D. Schrimpf, W. T. Holman, J. L. Todd, S. Caveriviere, R. R. Cizmarik, and K. F. Galloway. "Total dose effects in a linear Voltage regulator." IEEE Transactions on Nuclear Science 51, no. 6 (December 2004): 3816–21. http://dx.doi.org/10.1109/tns.2004.839194.
Full textCrovetti, Paolo S., and Franco L. Fiori. "A Linear Voltage Regulator Model for EMC Analysis." IEEE Transactions on Power Electronics 22, no. 6 (November 2007): 2282–92. http://dx.doi.org/10.1109/tpel.2007.909295.
Full textMartínez-García, Herminio, and Alireza Saberkari. "Four-quadrant linear-assisted DC/DC voltage regulator." Analog Integrated Circuits and Signal Processing 88, no. 1 (April 23, 2016): 151–60. http://dx.doi.org/10.1007/s10470-016-0747-8.
Full textChang, Yi Tsun, Yu Da Shiau, Po Chun Wu, Ren Hao Xue, and Po Yu Cheng. "LDO of High Power Supply Rejection with Two-Stage Error Amplifiers and Buffer Compensation." Advanced Materials Research 989-994 (July 2014): 3236–39. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.3236.
Full textHo, Tay Quang, and Hoang Duc Ngo. "A LOW DROPOUT LINEAR VOLTAGE REGULATOR CHIP, THE TH7150." Science and Technology Development Journal 12, no. 16 (October 15, 2009): 51–62. http://dx.doi.org/10.32508/stdj.v12i16.2355.
Full textDuan, Quanzhen, Weidong Li, Shengming Huang, Yuemin Ding, Zhen Meng, and Kai Shi. "A Two-Module Linear Regulator with 3.9–10 V Input, 2.5 V Output, and 500 mA Load." Electronics 8, no. 10 (October 10, 2019): 1143. http://dx.doi.org/10.3390/electronics8101143.
Full textDissertations / Theses on the topic "Linear voltage regulator"
Nghe, Brandon K. "Cascaded Linear Regulator with Positive Voltage Tracking Switching Regulator." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2173.
Full textLei, Ernest. "Cascaded Linear Regulator with Negative Voltage Tracking Switching Regulator." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2176.
Full textBryndza, Ivan. "Návrh interního napěťového regulátoru pro automobilové aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318167.
Full textŠojdr, Marek. "Návrh nízko-příkonového interního napěťového regulátoru pro automobilové aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-399493.
Full textŠtibraný, Miroslav. "Řízený laboratorní zdroj." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-240809.
Full textBurgardt, Ismael. "Conversor SEPIC empregando um snubber regenerativo associado a um regulador linear de corrente para acionar e controlar LEDs de potência." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1467.
Full textEste trabalho apresenta um sistema eletrônico com entrada universal utilizando um retificador SEPIC não isolado para fornecer e controlar a corrente de LEDs de potência. Um Snubber regenerativo que reduz as perdas de comutação e melhora a eficiência do sistema é proposto. Para realizar a dimerização, bem como reduzir a ondulação da corrente nos LEDs, um regulador linear de corrente é conectado na saída do conversor SEPIC. A utilização do regulador linear também permite que o conversor opere com entrada universal sem a utilização de circuitos adicionais. Para evitar perdas excessivas, o regulador é configurado para operar na região limiar da regulação. O ponto de perda mínimo do regulador é ajustado através de um circuito detector de mínimo com o sistema operando em malha fechada. As etapas de operação, as formas de onda e as principais equações do snubber regenerativo aplicado ao SEPIC são descritas no trabalho. Para verificar e validar a análise teórica são apresentados dois protótipos com potências de saída de 42 W e 145 W, variando de 15% a 100%, para o conversor operando com tensão de entrada de 90 a 240 V e alimentado 35 LEDs conectados em série.
This paper presents a universal-input AC electronic lighting system using a non-isolated SEPIC PFC rectifier to drive and control power LEDs currents. One energy regenerative snubber for reducing the converter switching losses and improve the system efficiency is proposed. The dimmable flicker-free current in the LEDs array is obtained through a linear current regulator placed in the SEPIC’s output terminals. In order to reduce the efficiency impairment, the conditions for achieving minimum energy loss in the current regulator are also detailed. Point of minimum energy loss in the linear regulator is adjusted through valley detector circuit in closed loop system operation. The operation stages as well as the theoretical waveforms and main equations at steady state of the proposed SEPIC rectifier using the regenerative snubber are described. To verify the theoretical analysis carried out, experimental results of two prototypes (42 W and 145 W) operating from 90 to 240 V and output power from 15 to 100% for 35 LEDs are also presented.
Tejmlová, Lenka. "Laboratorní zdroj s vysokou účinností." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219100.
Full textTwining, Erika. "Voltage compensation in weak distribution networks using shunt connected voltage source converters." Monash University, Dept. of Electrical and Computer Systems Engineering, 2004. http://arrow.monash.edu.au/hdl/1959.1/9701.
Full textResener, Mariana. "Modelo linearizado para problemas de planejamento da expansão de sistemas de distribuição." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/156487.
Full textThis work presents a linearized model to be used in short-term expansion planning problems of power distribution systems (PDS) with distributed generation (DG). The steady state operation point is calculated through a linearized model of the network, being the loads and generators modeled as constant current injections, which makes it possible to calculate the branch currents and bus voltages through linear expressions. The alternatives considered for expansion are: (i) capacitor banks placement; (ii) voltage regulators placement; and (iii) reconductoring. Furthermore, the model considers the possibility of adjusting the taps of the distribution transformers as an alternative to reduce voltage violations. The flexibility of the model enables solutions that includes the contribution of DGs in the control of voltage and reactive power without the need to specify the substation voltage. The optimization model proposed to solve these problems uses a linear objective function, along with linear constraints, binary and continuous variables. Thus, the optimization model can be represented as a mixed integer linear programming problem (MILP) The objective function considers the minimization of the investment costs (acquisition, installation and removal of equipment and acquisition of conductors) and the operation costs, which corresponds to the annual maintenance cost plus the costs related to energy losses and violation of voltage limits. The load variation is represented by discrete load duration curves and the costs of losses and voltage violations are weighted by the duration of each load level. Using a MILP approach, it is known that there are sufficient conditions that guarantee the optimality of a given feasible solution, besides allowing the solution to be obtained by classical optimization methods. The proposed model was written in the programming language OPL and solved by the commercial solver CPLEX. The model was validated through the comparison of the results obtained for five distribution systems with the results obtained through conventional load flow. The analyzed cases and the obtained results show the accuracy of the proposed model and its potential for application.
Hajraoui, Abderrahmane. "Architecture multi-processeurs en automatisme non linéaire." Rouen, 1989. http://www.theses.fr/1989ROUES023.
Full textBooks on the topic "Linear voltage regulator"
SGS-Thomson. Linear & switching voltage regulators application manual. [s.l.]: SGS-Thomson, 1993.
Find full textRincón-Mora, Gabriel A. Analog IC design with low-dropout regulators. New York: McGraw-Hill, 2009.
Find full textLinear Circuits: Voltage Regulators-Supervisors Comparators, Special Functions and Building Block Data Book. Texas Instruments, 1991.
Find full textDasgupta, Anindya, and Parthasarathi Sensarma. Design and Control of Matrix Converters: Regulated 3-Phase Power Supply and Voltage Sag Mitigation for Linear Loads. Springer, 2017.
Find full textDasgupta, Anindya, and Parthasarathi Sensarma. Design and Control of Matrix Converters: Regulated 3-Phase Power Supply and Voltage Sag Mitigation for Linear Loads. Springer, 2018.
Find full textBook chapters on the topic "Linear voltage regulator"
Cserveny, Stefan. "Low-Power Adaptive Bias Amplifier for a Large Supply-Range Linear Voltage Regulator." In Lecture Notes in Computer Science, 137–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11847083_14.
Full textLópez, Toni, Reinhold Elferich, and Eduard Alarcón. "Model Level 1: Piecewise Linear Analytical Switching Model." In Voltage Regulators for Next Generation Microprocessors, 133–95. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7560-7_3.
Full textChatterjee, Shamik, Vikram Kumar Kamboj, and Bhavana Jangid. "PID Plus Second Order Derivative Controller for Automatic Voltage Regulator Using Linear Quadratic Regulator." In AI Techniques for Reliability Prediction for Electronic Components, 262–87. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1464-1.ch015.
Full text"Creating a Linear Voltage-Regulated Power Supply." In Intermediate Robot Building, 107–30. Berkeley, CA: Apress, 2010. http://dx.doi.org/10.1007/978-1-4302-2755-7_7.
Full textGross, Tom. "Very low dropout (VLDO) linear regulators supply low voltage outputs." In Analog Circuit Design, 347–48. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-800001-4.00165-4.
Full textFekik, Arezki, Hakim Denoun, Ahmad Taher Azar, Mustapha Zaouia, Nabil Benyahia, Mohamed Lamine Hamida, Nacereddine Benamrouche, and Sundarapandian Vaidyanathan. "Artificial Neural Network for PWM Rectifier Direct Power Control and DC Voltage Control." In Advances in System Dynamics and Control, 286–316. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4077-9.ch010.
Full textFekik, Arezki, Hakim Denoun, Ahmad Taher Azar, Mustapha Zaouia, Nabil Benyahia, Mohamed Lamine Hamida, Nacereddine Benamrouche, and Sundarapandian Vaidyanathan. "Artificial Neural Network for PWM Rectifier Direct Power Control and DC Voltage Control." In Research Anthology on Artificial Neural Network Applications, 440–70. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-2408-7.ch021.
Full textPostolati, Vitali Mihail, and Elena Vitalii Bicova. "Innovative 10–110 kV Compact Controlled Overhead Lines." In Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, 310–26. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3867-7.ch013.
Full textConference papers on the topic "Linear voltage regulator"
Fiori and Crovetti. "Linear voltage regulator susceptibility to conducted EMI." In Proceedings of the IEEE International Symposium on Industrial Electronics ISIE-02. IEEE, 2002. http://dx.doi.org/10.1109/isie.2002.1025999.
Full textJia, Chen, Bo Qin, and Zhiliang Chen. "A Linear Voltage Regulator for PLL in SOC Application." In 2006 International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2006. http://dx.doi.org/10.1109/wicom.2006.164.
Full textMatsushima, Tohlu, Hidetoshi Miyahara, Takashi Hisakado, and Osami Wada. "Immunity macro model for linear regulator considering internal terminal voltage." In 2016 International Symposium on Electromagnetic Compatibility - EMC EUROPE. IEEE, 2016. http://dx.doi.org/10.1109/emceurope.2016.7739228.
Full textDanhui Wang, Yuanfu Zhao, and Suge Yue. "A wide input voltage range, output-capacitorless linear voltage regulator in 0.25UM BCD process." In 2015 China Semiconductor Technology International Conference (CSTIC). IEEE, 2015. http://dx.doi.org/10.1109/cstic.2015.7153481.
Full textJackum, Thomas, Gerhard Maderbacher, Wolfgang Pribyl, and Roman Riederer. "Fast transient response capacitor-free linear voltage regulator in 65nm CMOS." In 2011 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2011. http://dx.doi.org/10.1109/iscas.2011.5937713.
Full textJackum, Thomas, Gerhard Maderbacher, Wolfgang Pribyl, and Roman Riederer. "A digitally controlled linear voltage regulator in a 65nm CMOS process." In 2010 17th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icecs.2010.5724678.
Full textOyedeji, Okikioluwa E., and Viranjay M. Srivastava. "CSDG MOSFET Based Linear Voltage Regulator: A Mixed Signal Device Perspective." In 2019 IEEE Conference on Information and Communication Technology (CICT). IEEE, 2019. http://dx.doi.org/10.1109/cict48419.2019.9066174.
Full textWijesooriya, Priyanwada Nimesha, Nihal Kularatna, Jayathu Fernando, and D. Alistair Steyn-Ross. "Linear AC Voltage Regulator: Implementation Details of a Multi-Winding Approach." In 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE). IEEE, 2018. http://dx.doi.org/10.1109/isie.2018.8433841.
Full textWijesooriya, Priyanwada Nimesha, Nihal Kularatna, Jayathu Fernando, and D. Alistair Steyn-Ross. "Fast acting linear AC voltage regulator for consumer applications: Implementation options." In 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). IEEE, 2018. http://dx.doi.org/10.1109/ieses.2018.8349888.
Full textCosp-Vilella, Jordi, and Herminio Martinez-Garcia. "Design of an on-chip linear-assisted DC-DC voltage regulator." In 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). IEEE, 2013. http://dx.doi.org/10.1109/icecs.2013.6815427.
Full textReports on the topic "Linear voltage regulator"
Sereno, N. S. APS linac klystron and accelerating structure gain measurements and klystron PFN voltage regulation requirements. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/501502.
Full text