Academic literature on the topic 'Lipases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lipases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lipases"
Sun, Jingjing, Yiling Chen, Jun Sheng, and Mi Sun. "Immobilization ofYarrowia lipolyticaLipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction." BioMed Research International 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/139179.
Full textWei, Xianqin, Jiaxing Li, Tao Wang, Jinhua Xiao, and Dawei Huang. "Genome-Wide Identification and Analysis of Lipases in Fig Wasps (Chalcidoidea, Hymenoptera)." Insects 13, no. 5 (April 24, 2022): 407. http://dx.doi.org/10.3390/insects13050407.
Full textBassegoda, Arnau, F. I. Javier Pastor, and Pilar Diaz. "Rhodococcus sp. Strain CR-53 LipR, the First Member of a New Bacterial Lipase Family (Family X) Displaying an Unusual Y-Type Oxyanion Hole, Similar to the Candida antarctica Lipase Clan." Applied and Environmental Microbiology 78, no. 6 (January 6, 2012): 1724–32. http://dx.doi.org/10.1128/aem.06332-11.
Full textWang, Jiale, Jiqiang Song, Qi Fang, Hongwei Yao, Fang Wang, Qisheng Song, and Gongyin Ye. "Insight into the Functional Diversification of Lipases in the Endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) by Genome-scale Annotation and Expression Analysis." Insects 11, no. 4 (April 5, 2020): 227. http://dx.doi.org/10.3390/insects11040227.
Full textChen, Mei, Tongtong Jin, Binbin Nian, and Wenjun Cheng. "Solvent Tolerance Improvement of Lipases Enhanced Their Applications: State of the Art." Molecules 29, no. 11 (May 22, 2024): 2444. http://dx.doi.org/10.3390/molecules29112444.
Full textAhmad, Sana, Aliya Riaz, Hina Abbasi, Reeja Eijaz, and Muhammad Noman Syed. "Modification of Process Parameters for Enhanced Lipase Induction from Bacillus SR1." RADS Journal of Biological Research & Applied Sciences 10, no. 1 (July 16, 2019): 14–17. http://dx.doi.org/10.37962/jbas.v10i1.137.
Full textWang, Shang, Yan Xu, and Xiao-Wei Yu. "Micro-Aqueous Organic System: A Neglected Model in Computational Lipase Design?" Biomolecules 11, no. 6 (June 7, 2021): 848. http://dx.doi.org/10.3390/biom11060848.
Full textBracco, Paula, Nelleke van Midden, Epifanía Arango, Guzman Torrelo, Valerio Ferrario, Lucia Gardossi, and Ulf Hanefeld. "Bacillus subtilis Lipase A—Lipase or Esterase?" Catalysts 10, no. 3 (March 7, 2020): 308. http://dx.doi.org/10.3390/catal10030308.
Full textCheng, Wenjun, and Binbin Nian. "Computer-Aided Lipase Engineering for Improving Their Stability and Activity in the Food Industry: State of the Art." Molecules 28, no. 15 (August 3, 2023): 5848. http://dx.doi.org/10.3390/molecules28155848.
Full textJoshi, Ritika, and Arindam Kuila. "Lipase and their different industrial applications: A review." Brazilian Journal of Biological Sciences 5, no. 10 (2018): 237–47. http://dx.doi.org/10.21472/bjbs.051004.
Full textDissertations / Theses on the topic "Lipases"
Sias, Barbara. "Etude de deux lipases apparentées aux lipases pancréatiques : lipase pancréatique humaine apparentée de type 2 et la lipase du plasma seminal caprin." Aix-Marseille 2, 2005. http://www.theses.fr/2005AIX22003.
Full textInfanzón, Ramos Belén. "Novel Lipases: Expression and Improvement for Applied Biocatalysis = Nuevas lipasas: expresión y mejoras para biocatálisis aplicada." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/456674.
Full textEsta tesis se centra en la identificación y mejora de lipasas para aplicaciones biotecnológicas. El objetivo principal de este trabajo fue: "Caracterizar, expresar y mejorar las nuevas lipasas bacterianas para procesos industriales sostenibles". La primera actividad realizada fue explorar y caracterizar una nueva esterasa, Est23, de P. barcinonensis. Se aisló de P. barcinonensis el gen correspondiente a Est23 y su clonación en un vector adecuado para realizar la expresión y purificación para caracterización bioquímica. Además, se construyó un árbol filogenético para asignar Est23 a una de las familias de hidrolasas bacterianas descritas por Arpingy y Jaeger, y debido a que Est23 tiene un oxyanion-hole de tipo GGG (A) X, ampliamente descrito como motivo implicado en la resolución del alcohol terciario, se evaluó la capacidad de Est23 en dichas reacciones. Luego se buscó mejorar la actividad sobre sustratos de cadena larga de la lipasa LipR de Rhodococcus sp. por ingeniería de proteínas. Diferentes enfoques de ingeniería enzimática se realizaron para cambiar los aminoácidos que forman parte del atípico oxyanion-hole de LipR. Estas mutaciones también permitieron estudiar el papel de los aminoácidos que forman este motivo. La actividad hidrolítica de las variantes obtenidas fue ensayada sobre sustratos de cadena corta, media y larga. La variante LipR Asp111Gly produjo un cambio en la preferencia de LipR de longitud de cadena. Sin embargo, LipR y LipR_YGS necesitan un aumento de expresión para aplicarlos a reacciones de transesterificación. La estabilización de tres lipasas de Pseudomonas, LipA, LipC y LipCmut, se mejoró por inmovilización con el fin de aplicar estas enzimas en las reacciones de transesterificación. Por lo tanto, se estableció un procedimiento de inmovilización por adsorción rápido y económico. Finalmente, se usaron las tres lipasa inmovilizadas y una lipasa comercial para probar materias primas alternativas para la transesterificación de triglicéridos. Se probaron un total de cuatro aceites: trioleína comercial, aceite de soja desgomado, aceite de cocina de desecho y aceite de Mucor circinelloides. Además se realizó la caracterización de las materias primas ensayadas en términos de la medida de los ácidos grasos, tri, di y monoglicéridos.
Fernandez, Sylvie. "Lipolyse d'excipients lipidiques destinés à l'administration par voie orale de substances actives hydrophobes." Aix-Marseille 2, 2008. http://theses.univ-amu.fr.lama.univ-amu.fr/2008AIX22024.pdf.
Full textLabrasol® and Gelucire® 44/14 are macrogolglycerides which are used for the oral drug delivery of poorly water-soluble drugs. They are composed of acylglycerols and PEG esters potential substrates of digestive lipases. We studied the in vitro lipolysis of these excipients by digestive lipases. We showed that the human pancreatic lipase (HPL), the main lipase involved in the lipolysis of dietary triacylglycerols, was not able to hydrolyze either of these excipients contrary to dog gastric lipase (DGL), human pancreatic lipase-related protein 2 (HPLRP2), and carboxyl ester hydrolase (CEH). The study of digestive lipases specificity showed that HPL and DGL possessed specificity toward di- and triacylglycerols, whereas HPLRP2 and CEH hydrolyzed PEG esters but did not present a marked specificity. We developed an in vitro method to simulate the gastrointestinal lipolysis of these excipients. At the end of the gastric phase, the composition of both of these excipients was significantly modified underlining the importance of gastric lipolysis in vivo. We also studied the influence of excipients’ lipolysis on the concentration of two poorly water-soluble drugs, piroxicam and cinnarizine, in the aqueous phase. It seems that the gastrointestinal lipolysis of these excipients did not undergo piroxicam precipitation whereas it was a prerequisite to maintain cinnarizine in aqueous solution when formulated with Labrasol®
El, Kouhen Karim. "Identification et caractérisation d'une lipase chez Arabidopsis thaliana." Aix-Marseille 2, 2005. http://theses.univ-amu.fr.lama.univ-amu.fr/2005AIX22046.pdf.
Full textMallett, Lucy E. "Thermostable esterases and lipases." Thesis, University of Exeter, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432880.
Full textCarulla, i. Sanmartí Pere. "Isoformes de pI de la lipoproteïna lipasa: Origen, distribució i funció." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/462027.
Full textWe have described has been the presence and distribution of the pI isoforms of LPL. We have worked with adult rat tissues: heart, WAT, BAT and muscle. The results have shown that all tissues have LPL isoforms. In 15-days old rats, the LPL expressed in the liver LPL has turned out to be a protein that is hard to purify. However, we have been able to clearly describe the presence of isoforms of LPL in heart and BAT. We have designed a method for modelling the isoform pattern of each tissue, determined by the number of isoforms, and the pI and the relative abundance of each isoform. This modelling has allowed us to compare the patterns and to determine the similarity of isoform patterns. We have studied the function of the pI isoforms of LPL. The expression and activity of the LPL is dependent on each tissue and the physiological situation in which the animal is found. We have described the LPL patterns of different rat tissues (heart, TAB and TAM) in physiological situations in which LPL activity is known to vary markedly (cold, fasting and refeeding) compared to the control animals. By means of the pI and the relative abundance of the isoforms of all the rat tissues, we have designed a system of classification of the isoforms in populations according to clusters. This characterization of isoforms in clusters allows describing the variations that exist between different situations or tissues from a totally different approach to the one treated until now. At the same time, we have studied the affinity of the pI isoforms of LPL for the anchor (heparin) and the substrate. Among the different isoforms we have not described differences in affinity and all isoforms are active. We have described the presence of pI isoforms of LPL and its distribution pattern of the WAT of Macaca fascicularis. In addition, they are also partially due to glycosylation of the protein. We have described 74% of the sequence of the LPL. In this coverage, we have been able to confirm the presence of asparagine 44 and tyrosine 95 and 165. These amino acids are described in other species as targets for posttranslational modifications.
Souza, Maria Cristiane Martins de. "ImobilizaÃÃo de lipase de Candida antarctica do tipo B em nanopartÃculas magnÃticas visando a aplicaÃÃo na sÃntese de Ãsteres." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9381.
Full textNeste trabalho, nanopartÃculas magnÃticas de ferro (Fe3O4) (NPM) foram avalia- das como suporte para a imobilizaÃÃo de lipase de Candida antarctica do tipo B (CALB). O biocatalisador (CALB-NPM) foi analisado na catÃlise dos Ãsteres: oleato de etila (biodiesel), butirato de metila e etila. NanopartÃculas magnÃticas sÃo particularmente interessantes para imobilizaÃÃo enzimÃtica devido as suas propriedades magnÃticas favorecerem a fÃcil separaÃÃo da mistura reacional atravÃs do uso de magnetismo. A enzima CALB à uma enzima capaz de atuar em diversas reaÃÃes, como, hidrÃlises e transesterificaÃÃes. Contudo, um dos problemas do uso de enzimas como catalisadores homogÃneos à a sua recuperaÃÃo. Assim, à necessÃrio o uso de suportes que retenham a enzima, mantendo suas caracterÃsticas catalÃticas. As na- nopartÃculas foram produzidas pelo mÃtodo de co-precipitaÃÃo. Determinou-se o tamanho das nanopartÃculas (11 nm) atravÃs da tÃcnica de difraÃÃo de raios-X (DRX) com posterior refi- namento das fases obtidas pelo mÃtodo Rietveld. Espectros de infravermelho foram obtidos para anÃlise de presenÃa de hidroxilas usando pastilhas de KBr das ferritas magnÃticas. O espectro foi medido na regiÃo entre 400 e 4000 cm−1. ModificaÃÃes foram realizadas na su- perfÃcie das mesmas com γ-aminopropiltrietoxissilano (APTS) e glutaraldeÃdo. No processo de imobilizaÃÃo, a influÃncia da velocidade de agitaÃÃo (20-250 rpm), carga enzimÃtica (45-200 UpNPB.g−1), tempo de contato enzima-suporte (0,5-5 h), concentraÃÃo de glutaraldeÃdo (2,5 e 25 % (m/v)), aditivo dodecil sulfato de sÃdio (SDS 0,23 %) e reutilizaÃÃo do biocatalisador fo- ram avaliadas. A imobilizaÃÃo foi realizada na presenÃa de 100 mM de tampÃo bicarbonato de sÃdio, pH 10, a 25 ÂC. ApÃs a imobilizaÃÃo, a enzima imobilizada exibiu melhor estabilidade tÃrmica e operacional do que na forma solÃvel. As condiÃÃes Ãtimas de imobilizaÃÃo foram: velocidade de agitaÃÃo de 45 rpm, carga enzimÃtica (80 UpNPB.g−1), tempo de imobilizaÃÃo de 1 h, soluÃÃo de glutaraldeÃdo (25 % (m/v)), possibilitando um rendimento de imobilizaÃÃo de 41,8 % e atividade enzimÃtica do derivado de 29,1 UpNPB/g. AlÃm disso, o biocatalisador manteve aproximadamente, 53% de atividade catalÃtica inicial apÃs cinco ciclos consecutivos de reaÃÃo hidrolÃtica. ApÃs a imobilizaÃÃo, a estabilidade tÃrmica dos derivados foi realizada a partir da reaÃÃo de hidrÃlise com 0,01 g de CALB-NPM. atividade catalÃtica da enzima livre e imobilizada foi analisada a 60 ÂC. A produÃÃo de esteres foi realizada com o biocatalisador na melhor condiÃÃo catalÃtica. AlÃm das nanopartÃculas foram analisadas a bioconversÃo de esteres por resinas acrÃlicas comerciais (CALB imobilizada). A conversÃo de oleato de etila foi de aproximadamente 90% para os biocatalisadores testados. Os ciclos de reaÃÃo consecutivos (14) mostram a manutenÃÃo da produÃÃo de biodiesel. A mÃxima conversÃo de buitrato de etila (96,8%) e metila (93,9%) foram obtidos apÃs 8 h de reaÃÃo a 25 ÂC com CALB imobilizada em nanopartÃculas magnÃticas. Os ciclos de reaÃÃo consecutivos (12) mostram a manutenÃÃo da produÃÃo dos Ãsteres (aproximadamente 76% para as nanopartÃculas e 79% para a resina acrÃlica).
In this work, magnetic nanoparticles of iron (Fe3O4) (NPM) were evaluated as a support for the immobilization of lipase Candida antarctica B (CALB). The biocatalyst (CALB- NPM) was analyzed in the catalysis of esters: ethyl oleate (biodiesel), methyl and ethyl buty- rate. Magnetic nanoparticles are particularly interesting for enzyme immobilization due to their magnetic properties favoring the easy separation from the reaction mixture by use of magne- tism. The CALB enzyme is an enzyme capable of acting in various reactions, such as hydrolysis and transesterifications. However, one problem of using enzymes as homogeneous catalysts is their recovery. Thus, it is necessary to use brackets that retain the enzyme while maintaining its catalytic characteristics. Nanoparticles were produced by co-precipitation method. We de- termined the size of the nanoparticles (11 nm) using the technique of X-ray diffraction (XRD) with subsequent refining of the phases obtained by the Rietveld method. Infrared spectra were obtained for analysis of the presence of hydroxyls using KBr pellets of magnetic ferrites. The spectrum was measured in the region between 400 and 4000 cm −1. Modifications were car- ried out on the nanoparticlesâ surfaces with γ-aminopropyltriethoxysilane (APTS) and glutaral- dehyde. The influence of stirring speed (20-250 rpm), enzyme load (45-200 UpNPB/gsupport), immobilization time (0.5-5 h), glutaraldehyde solution (2.5 and 25%), additive (SDS 0.23%) and reuse of the biocatalyst (six hydrolytic cycles reactions) were evaluated. The immobiliza- tion was performed in the presence of 100mMsodium bicarbonate buffer, pH 10, at 25 ÂC. After immobilization, CALB exhibited improved thermal and operational stabilities. The best result (Immobilization yield: 53% and immobilized enzyme activity: 29.1 UpNPB/gsupport) was obtained at 45 rpm, using 200 UpNPB/gsupport and 1h of immobilization. Furthermore, immo- bilized Calb maintained approximately 41.8 % of initial activity after five cycles of hydrolysis. The ethyl oleate production was analyzed with the best condition and compared to commercial acrylic resins (CALB immobilized). The ethyl oleate conversion was approximately 90 % for the two biocatalyst at 48 h. The consecutive reaction cycles (14) show the maintenance in the production of biodiesel. Maximum conversion of methyl butyrate (93.9 %) and ethyl butyrate (96.8 %) were achieved after 8 h of reaction at 25 ÂC for CALB immobilized onto magnetic nanoparticles. The consecutive reaction cycles (12) show the maintenance in the production of esters (approximately 76 % for nanoparticles and 79 % for acrylic resin).
Nini, Lylia. "Etude du comportement cinétique des lipases de différentes origines sur les esters vinyliques et les triacylglycérols en solution et en émulsion : comparaison entre lipases et estérases." Aix-Marseille 3, 2002. http://www.theses.fr/2002AIX30038.
Full textIt is admitted that lipases, in contrast to esterases, act at interfaces display a high increase in activity in the presence of emulsified substrate (interfacial activation). The structure of several lipases show the existence of a peptide loop (lid) which prevents access to the active site. The lid domain has been considered as a typical feature of lipases. The study of the kinetic behaviour of lipases from R. Oryzae, M. Miehei, P. Camembertii, H. Lanuginosa, C. Rugosa, C. Antarctica, human and guinea pig pancreas, hepatic esterase, acetylcholinesterase and cutinase, with vinyl esters and triacylglycerols has shown that all lipases, some of which do not posses a lid domain and esterases are active on solutions of esters without showing interfacial activation. Esterases have a high affinity for esters in solution and differentiate from lipases by their inability to hydrolyse emulsions of triolein, trioctanoin and vinyl laurate
Paques, Fernanda Wiermann. "Extração e caracterização da fração lipolitica de residuos de processamento de mamão formosa." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256634.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-04T03:46:25Z (GMT). No. of bitstreams: 1 Paques_FernandaWiermann_M.pdf: 6189981 bytes, checksum: 77524f7ec14f477316b84c8a78558b65 (MD5) Previous issue date: 2005
Mestrado
Ciência de Alimentos
Mestre em Ciência de Alimentos
Martins, Mariana Provedel. "Biotransformação de epóxidos com fungos de origem marinha e síntese de cloroidrinas." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/75/75131/tde-14102008-095435/.
Full textIn this work carried out itself the first study biocatalytic involving reactions of reduction of cetonas with fungi of marine origin. They were utilized 7 cetonas commercial as substratos and 8 fungi derived little seas like biocatalisadores. The fungi were isolated of the sponges little seas Geodia corticostylifera (Trichoderma sp Gc1, Penicillium miczynskii Gc5, Aspergillus sydowii Gc12) and Chelonaplysylla erect (Bionectria sp Ce5, Aspergillus sydowii Ce15, Penicillium raistrickii Ce16 and Aspergillus sydowii Ce19). The reduction 2-chloro-1-phenylethanone (1) was studied under several conditions of reaction (changes of pH, addition or absence of glucose) and the best result was with fungus P. miczynskii Gc5, therefore itself obteve an isolated performance of 60% and excess enantiomeric of 50% for the (S)- 2-chloro-1- phenylethanol (1a). The interesting one in these studies was that all of the fungi utilized in the selection with the 2-chloro-1-phenylethanone (1) presented selectivity anti- Prelog. In the literature is common obtain reduction enzymatic with selectivity Prelog. To 2-bromo-1-phenylethanone (2) was biotransformaded by the fungus A. sydowii Ce19 you correspond composed: (S)-2-bromo-1-phenylethanol (2a), (S)-2-cloro-1- phenylethanol (1a), whereas to (2c), 2-chloro-1-phenylethanone (1) and the 2- phenyloxirane (2b) were obtained by reactions not enzymatic. To 2-bromo-1-(4- bromophenyl)ethanone (3) and to 2-bromo-1-(4-nitrophenyl)ethanone (4) were entirely biodegradadas by the fungus A. sydowii Ce19. The reduction biocatalytic of the 1-(2- iodophenyl)ethanol (5) and 1-(3-iodophenyl)ethanol (6) with the fungus Trichoderma sp Gc1 supplied the 1-(2-iodophenyl)ethanol (5a) and the 1-(3-iodophenyl)ethanol (6a) with excellent excesses enantiomeric (e.e. > 99%). It stayed verified also that the fungi derived little seas for promote the reactions of reduction by biocatalysis are going to be cultivated in water of the artificial sea.
Books on the topic "Lipases"
Paul, Woolley, Petersen Steffen B, and Nordisk industrifond, eds. Lipases: Their structure, biochemistry, and application. Cambridge [England]: Cambridge University Press, 1994.
Find full textXavier, Malcata F., North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Engineering of/with Lipases (1995 : Póvoa de Varzim, Portugal), eds. Engineering of/with lipases. Dordrecht: Kluwer Academic, 1996.
Find full textSandoval, Georgina, ed. Lipases and Phospholipases. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-600-5.
Full textSandoval, Georgina, ed. Lipases and Phospholipases. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8672-9.
Full textMalcata, F. Xavier, ed. Engineering of/with Lipases. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1671-5.
Full textMackness, M. I., and M. Clerc, eds. Esterases, Lipases, and Phospholipases. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-0993-0.
Full textN, Schumaker Verne, ed. Lipoproteins, apolipoproteins, and lipases. San Diego: Academic Press, 1994.
Find full textBook chapters on the topic "Lipases"
Miller, Laura T., Lionel Stange, Charles MacVean, Jorge R. Rey, J. H. Frank, R. F. Mizell, John B. Heppner, et al. "Lipases." In Encyclopedia of Entomology, 2207. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_2059.
Full textKademi, Ali, Danielle Leblanc, and Alain Houde. "Lipases." In Enzyme Technology, 297–318. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-35141-4_15.
Full textJohri, B. N., and S. Ahmad. "Lipases." In Thermophilic Moulds in Biotechnology, 219–43. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9206-2_9.
Full textDivakar, Soundar. "Lipases." In Enzymatic Transformation, 23–38. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-0873-0_3.
Full textSahu, Anita, and Ruth Birner-Gruenberger. "Lipases." In Encyclopedia of Metalloproteins, 1198–207. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1533-6_49.
Full textRivera, Ivanna, Juan Carlos Mateos-Díaz, and Georgina Sandoval. "Plant Lipases: Partial Purification of Carica papaya Lipase." In Lipases and Phospholipases, 115–22. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-600-5_7.
Full textGodtfredsen, Sven Erik. "Microbial Lipases." In Microbial Enzymes and Biotechnology, 255–74. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0765-2_7.
Full textMoura, Marcelo Victor Holanda, Rafael Alves de Andrade, Leticia Dobler, Karina de Godoy Daiha, Gabriela Coelho Brêda, Cristiane Dinis AnoBom, and Rodrigo Volcan Almeida. "Extremophilic Lipases." In Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy, 249–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54684-1_13.
Full textSari, T. P., Vivek Kumar Gaur, Ayon Tarafdar, Ranjana Sirohi, Raveendran Sindhu, and Amit Kumar Rai. "Microbial Lipases." In Microbial Enzymes and Metabolites for Health and Well-Being, 75–90. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003369295-6.
Full textKonwar, B. K., and Kalpana Sagar. "Application of Lipases." In Lipase, 25–34. Toronto ; New Jersey : Apple Academic Press, 2018.: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781315159232-2.
Full textConference papers on the topic "Lipases"
Bhushan, Indu. "Efficient media for high production of microbial lipase from Bacillus subtilis (BSK-L) using response surface methodology for enantiopure synthesis of drug molecules." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.044.
Full textGonçalves, Thalita Carvalho de, Dayane Silva Cavalcante, Martina Cerqueira Pinto, Eliane Pereira Cipolatti, and Evelin Andrade Manoel. "APLICAÇÕES INDUSTRIAIS DE LIPASES IMOBILIZADAS: UM ESTUDO QUANTITATIVO." In I Congresso de Engenharia de Biotecnologia. Revista Multidisciplinar de Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1392.
Full textSilveira, Rafaela Lopes, Adeline Cristina Pereira Rocha, and Vivian Machado Benassi. "IMPORTÂNCIA BIOTECNOLÓGICA DAS LIPASES." In I Congresso de Engenharia de Biotecnologia. Revista Multidisciplinar de Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1330.
Full textCavalcante, Dayane Silva, Thalita Carvalho, Martina Costa Cerqueira Pinto, Eliane Pereira Cipolatti, and Evelin Andrade Manoel. "UTILIZAÇÃO DE LIPASES IMOBILIZADAS NA INDÚSTRIA FARMACÊUTICA." In I Congresso de Engenharia de Biotecnologia. Revista Multidisciplinar de Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1336.
Full textSilva, Jaqueline M. R. da, Maria G. Nascimento, and Sandra P. Zanotto. "Chemo-enzymatic epoxidation of -caryophyllene mediated lipases and by mycelium-bound lipases." In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0187-2.
Full textPinotti, Laura Marina, Marina de Oliveira, Juliano Xavier Lacerda, Rogério Teixeira, Celson Rodrigues, and Sérvio Túlio Alves Cassini. "PRODUÇÃO DE LIPASES POR CEPAS FÚNGICAS." In Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassa. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.17648/sinaferm-2015-32449.
Full textLIMA, R. C., H. N. L. SILVA, and L. M. PINOTTI. "PRODUÇÃO DE LIPASES POR Penicillium sp." In X Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/chemeng-cobec-ic-07-eb-138.
Full textSILVA, H. N. L., R. C. LIMA, and L. M. PINOTTI. "PRODUÇÃO DE LIPASES POR Bacillus megaterium." In X Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/chemeng-cobec-ic-07-eb-136.
Full textOLIVEIRA, M. M., and L. M. PINOTTI. "PRODUÇÃO DE LIPASES POR RHIZOMUCOR SP." In XI Congresso Brasileiro de Engenharia Química em Iniciação Científica. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeqic2015-047-31966-262447.
Full textDuarte, Amanda Alves, Renata Andrade De Oliveira, Eliane Pereira Cipolatti, Evelin Andrade Manoel, and Martina Costa Cerqueira. "COMPARAÇÃO DO DESEMPENHO DE LIPASE COMERCIAL E RECOMBINANTE DE CANDIDA ANTARCTICA FRAÇÃO B EM PARTÍCULAS DE PMMA." In I Congresso de Engenharia de Biotecnologia. Revista Multidisciplinar de Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1356.
Full textReports on the topic "Lipases"
Quiroga, Ariel D., and Richard Lehner. Acylglycerol Lipases (Neutral Lipid Hydrolysis). AOCS, June 2011. http://dx.doi.org/10.21748/lipidlibrary.39188.
Full textNarayan, K. A., Amalia Neidhardt, Susan Sundaram, and Jason Kupperschmidt. Factors Influencing the Digestibility of Solid Fats: Mammalian and Plant Lipases--Glyceride Structure and Solvent. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada265840.
Full textWARWICK UNIV COVENTRY (UNITED KINGDOM). Lipases: Structure, Function and Applications in Biotransformations: A Descriptive Summary of an International Conference Held in Coventry (United Kingdom) on 16-18 July 1991. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada243010.
Full textXiao, Shan, Wangang Zhang, and Dong U. Ahn. Changes of Hormone Sensitive Lipase, Adipose Tissue Triglyceride Lipase, and Free Fatty Acids in Subcutaneous Adipose Tissues throughout the Ripening Process of Dry-cured Ham. Ames (Iowa): Iowa State University, January 2011. http://dx.doi.org/10.31274/ans_air-180814-1025.
Full textYang, Lin, Yanzhu Liu, Trudy M. Forte, Jeffrey W. Chisholm, John S. Parks, and Neil S. Shachter. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/886608.
Full textLópez Tejero, M. Dolores. La Lipoproteína Lipasa: una enzima peculiar y cinco problemas metabólicos que resolver. Sociedad Española de Bioquímica y Biología Molecular (SEBBM), November 2016. http://dx.doi.org/10.18567/sebbmdiv_rpc.2016.11.1.
Full text