To see the other types of publications on this topic, follow the link: Lipiddoppelschichten.

Dissertations / Theses on the topic 'Lipiddoppelschichten'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 23 dissertations / theses for your research on the topic 'Lipiddoppelschichten.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kell, Henny. "Wechselwirkung des Lipoheptapeptides Surfactin mit Lipiddoppelschichten aus DMPC und DPPC." [S.l.] : [s.n.], 2006. http://opus.kobv.de/tuberlin/volltexte/2007/1463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Batroff, Ellen [Verfasser]. "Synthese neuer funktionalisierter Glycosphingolipide zur Anwendung in Lipiddoppelschichten / Ellen Batroff." Konstanz : Bibliothek der Universität Konstanz, 2016. http://d-nb.info/1164969447/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elsner, Katharina [Verfasser]. "Synthese von Glykodendrimeren und Glykokonjugaten als Bausteine zur Untersuchung von glykosylierten Lipiddoppelschichten / Katharina Elsner." Kiel : Universitätsbibliothek Kiel, 2008. http://d-nb.info/1019553413/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Théato, Patrick. "Synthese und Untersuchung von neuen [alpha], w-funktionalisierten [alpha, omega-funktionalisierten] Lipopolymeren zum Aufbau von polymerunterstützten Lipiddoppelschichten." [S.l. : s.n.], 2001. http://ArchiMeD.uni-mainz.de/pub/2002/0010/diss.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bernitzki, Kai Max [Verfasser], Thomas Akademischer Betreuer] Schrader, and Gebhard [Akademischer Betreuer] [Haberhauer. "Von schaltbaren FRET-Rezeptoren in Lipiddoppelschichten zur echten künstlichen Signaltransduktion / Kai Max Bernitzki. Gutachter: Gebhard Haberhauer. Betreuer: Thomas Schrader." Duisburg, 2012. http://d-nb.info/101993011X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Renner, Lars. "Polymer Supported Lipid Bilayer Membranes for the Integration of Transmembrane Proteins." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1241457489091-02157.

Full text
Abstract:
This work reports on the successful formation of supported multicomponent lipid bilayer membranes (sLBMs) from natural occurring lipids as well as synthetic lipids on a set of polymer cushions consisting of alternating maleic acid copolymers. Maleic acid copolymers provide a versatile platform to adjust the physico-chemical behaviour by the choice of the comonomer unit. The formation of sLBMs was triggered by a transient reduction of the electrostatic repulsion between the polymer cushions and the lipid vesicles by lowering the solutions pH to 4. Upon formation the stability of sLBMs was not affected by subsequent variations of the environmental pH to 7.2. Even drastic changes in the environmental pH (between pH 2 and pH 9) did not lead to delamination and proved the stability of the polymer sLBM. The degree of hydrophilicity and swelling of the anionic polymer cushions was found to determine both the kinetics of the membrane formation and the mobility of the lipid bilayer with lipid diffusion coefficients in the range from 0.26 to 2.6 µm2 s-1. An increase in cushion hydrophilicity correlated with a strong increase in the diffusion coefficient of the lipids. This trend was found to correlate with the kinetics of bilayer formation in the process of vesicle spreading. The observations strongly support the important role of the support’s polarity for the fluidity of the sLBM, which is probably related to the presence of a water layer between support and bilayer. The investigated polymer cushions are considered to open new options for the in situ modulation of lipid bilayer membranes characteristics to match the requirements for the successful integration of functional transmembrane proteins (TMPs). As each cushion exhibits different physico-chemical properties, the resulting behaviour of the sLBMs and TMPs could be exactly adjusted to the specific requirements of biological samples. This is exemplarily shown by the integration of the TMP beta amyloid precursor protein cleaving enzyme (BACE). Integrated BACE was observed to be mobile on all polymer cushions. On the contrary, no lateral mobility of BACE was found in solid sLBM. Furthermore, the activity of integrated BACE was analysed by the cleavage of an amyloid precursor protein analogue. Remarkably, the polymer cushions did not only enhance the mobility but were also found to increase the activity of BACE by a factor of 1.5 to 2.5 in comparison to solid sLBM. From the obtained results it is obvious that even small cytoplasmic domains of transmembrane proteins might not be preserved upon the integration in silica sLBM. The observed beneficial effects of the utilised polymer cushions on the mobility and activity of transmembrane proteins motivate further studies to clarify the general applicability of the polymer platform. Altogether, this polymer platform provides valuable options to form sLBM with varying characteristics to reconstitute transmembrane proteins for a wide range of possible future applications in biology
Die vorliegende Arbeit beschreibt die Bildung von polymer unterstützten Lipiddoppelschichten zur Integration von transmembranen Proteinen. Das Polymerkissensystem besteht aus alternierenden Maleinsäurecopolymeren. Lipiddoppelschichten wurden durch die Steuerung der elektrostatischen Repulsion erzeugt: die Verringerung des pH-Wertes auf 4 wurde eine Erhöhung der adsorbierten Vesikelmenge auf den Polymeroberflächen induziert. Nach der erfolgten Bildung der Lipiddoppelschichten kann der pH-Wert beliebig variiert werden, ohne dass die Stabilität der Lipiddoppelschichten beeinflusst wird. Auch drastische Veränderungen des pH-Milieus (pH 2 - pH 9) führten zu keinen Veränderungen in der Membranintegrität. Der Grad der Hydrophilie und der Quellung der anionischen Polymerschichten beeinflusst sowohl die Bildung der Modellmembranen als auch die Mobilität der integrierten Lipidmoleküle. Dabei reichen die erzielten Lipiddiffusionskoeffizienten von 0.26 bis 2.6 µm2 s-1. Dabei ist die Mobilität direkt von der Hydrophilie des Substrates abhängig. Die beobachteten Ergebnisse zeigen deutlich die entscheidende Rolle der Polarität der verwendeten Substratoberflächen auf die Lipidmobilität, die sehr wahrscheinlich mit der Präsenz einer variablen Wasserschicht zusammenhängt. Die untersuchten Polymerkissen eröffnen neue Möglichkeiten für die insitu Modulierung der Charakteristika von Lipidschichten, um funktionale transmembrane Proteine zu integrieren. Aufgrund der unterschiedlichen physiko-chemischen Eigenschaften kann das Verhalten der Lipidschichten und der transmembranen Proteine nach den spezifischen Anforderungen des Modellsystems angepasst werden. Die funktionale Integration wurde am Beispiel des transmembranen Proteins BACE nachempfunden. Die Mobilität des integrierten BACE wurde auf allen Polymerkissen beobachtet. Im Gegensatz dazu wurde auf harten Substraten keine BACE Mobilität gefunden. Die Aktivität des integrierten BACE wurde durch die enzymatische Spaltung eines APP-Analogons nachgewiesen. Bemerkenswerteweise wurde ein Anstieg der BACE Aktivität auf den Polymerkissen um den Faktor 1,5 bis 2,5 im Vergleich zu den auf harten Substraten integrierten BACE beobachtet. Zusammenfassend, die verwendeten Polymerkissen bieten vielfältige Möglichkeiten Lipidschichten mit variierenden Eigenschaften für die Integration von transmembranen Proteinen zu erzeugen
APA, Harvard, Vancouver, ISO, and other styles
7

Johann, Christoph. "Theoretische und experimentelle Untersuchungen von Mischungsphänomenen in fluiden Lipiddoppelschichten Anwendung der 2H-NMR- und FTIR-Spektroskopie zur Untersuchung von pseudobinären Phosphatidycholin/Phosphatidyglycerin- und Phosphatidycholin/Phosphatidylethanolamin-Systemen sowie Einsatz von Monte-Carlo-Methoden zur Computersimulation von lateralen Lipidwechselwirkungen /." [S.l.] : [s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=95768522X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Woiterski, Lydia. "Meeting at the Membrane – Confined Water at Cationic Lipids & Neuronal Growth on Fluid Lipid Bilayers." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-132933.

Full text
Abstract:
Die Zellmembran dient der Zelle nicht nur als äußere Hülle, sondern ist auch an einer Vielzahl von lebenswichtigen Prozessen wie Signaltransduktion oder Zelladhäsion beteiligt. Wasser als integraler Bestandteil von Zellen und der extrazellulären Matrix hat sowohl einen großen Einfluss auf die Struktur von Biomolekülen, als auch selbst besondere Merkmale in eingschränkter Geometrie. Im Rahmen dieser Arbeit wurden zwei Effekte an Modellmembranen untersucht: Erstens der Einfluss des Gegenions an kationischen Lipiden (DODAX, X = F, Cl, Br, I) auf die Eigenschaften des Grenzflächenwassers und zweitens das Vermögen durch Viskositätsänderungen das Wachstum von Nervenzellen anzuregen sowie die einzelnen Stadien der Bildung von neuronalen Netzwerken und deren Optimierung zu charakterisieren. Lipidmultischichten und darin adsorbiertes Grenzflächenwasser wurden mittels Infrarotspektroskopie mit abgeschwächter Totalreflexion untersucht. Nach Charakterisierung von Phasenverhalten und Wasserkapazität der Lipide wurden die Eigenschaften des Wassers durch kontrollierte Hydratisierung bei einem Wassergehalt von einem Wassermolekül pro Lipid verglichen. Durch die geringe Wasserkapazität können in diesem besonderen System direkte Wechselwirkungen zwischen Lipiden und Wasser aus der ersten Hydratationsschale beobachtet werden. Bemerkenswert strukturierte OH-Streckschwingungsbanden in Abhängigkeit des Anions und niedrige IR-Ordnungsparameter zeigen, dass stark geordnete, in ihrer Mobilität eingeschränkte Wassermoleküle an DODAX in verschiedenen Populationen mit unterschiedlich starken Wasserstoffbrückenbindungen existieren und sich vermutlich in kleinen Clustern anordnen. Die zweite Fragestellung hatte zum Ziel, das Wachstum von Nervenzellen auf Membranen zu beleuchten. Auf der Ebene einzelner Zellen wurde untersucht, ob sich in Analogie zu den bisher verwendeten elastischen Substraten, die Viskosität von Membranen als neuartiger physikalischer Stimulus dafür eignet, das mechanosensitive Verhalten von Neuronen zu modulieren. Das Wachstum der Neuronen wurde auf substrat- und polymergestützten Lipiddoppelschichten mittels Phasenkontrastmikroskopie beobachtet. Die Quantifizierung der Neuritenlängen, -auswuchsgeschwindigkeiten und -verzweigungen zeigten kaum signifikante Unterschiede. Diffusionsmessungen (FRAP) ergaben, dass entgegen der Erwartungen, die Substrate sehr ähnliche Fluiditäten aufweisen. Die Betrachtung der zeitlichen Entwicklung des kollektiven Neuronenwachstums, also der Bildung von komplexen Netzwerken, offenbarte robuste „Kleine-Welt“-Eigenschaften und darüber hinaus unterschiedliche Stadien. Diese wurden durch graphentheoretische Analyse beschrieben, um anhand typischer Größen wie dem Clusterkoeffizienten und der kürzesten Pfadlänge zu zeigen, wie sich die Neuronen in einem frühen Stadium vernetzen, im Verlauf eine maximale Komplexität erreichen und letztlich das Netzwerk durch effiziente Umstrukturierung hinsichtlich kurzer Pfadlängen optimiert wird.
APA, Harvard, Vancouver, ISO, and other styles
9

Schweizer, Jakob. "Min-Protein Waves on Geometrically Structured Artificial Membranes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-105880.

Full text
Abstract:
Das stäbchenförmige Bakterium Escherichia coli teilt sich in zwei gleich große Tochterzellen. Dies ist nur möglich, wenn sich die Zelle in der Mitte teilt. Bei E. coli wird die Zellteilung durch den Zusammenschluss der FtsZ-Proteine an der Membran zum Z-Ring eingeleitet. Topologische Regulierung des Z-Ringes erfolgt durch räumlich-zeitliche Oszillationen von Min-Proteinen zwischen den beiden Zellpolen. MinC, MinD und MinE binden an und lösen sich von der Membran unter Hydrolyse von ATP und in antagonistischer Art und Weise, was zu einer alternierenden Ansammlung von MinC und MinD an den Zellpolen führt. Gemittelt über die Zeit ergibt sich somit ein MinD-Verteilungsprofil, das maximale Konzentration an den Zellpolen und ein Minimum in der Zellmitte aufweist. MinC bindet an MinD und folgt somit seiner Verteilung. Der Zusammenschluss von FtsZ-Proteinen wird durch MinC unterbunden, und somit kann sich der Z-ring nur an einer Position herausbilden, die ein Minimum an MinC aufweist - der Zellmitte. Das Min-system wurde in der Vergangenheit auch mit einem in-vitro-Ansatz untersucht, indem Min-Proteine in künstliche, aufliegende Lipiddoppelschichten (supported lipid bilayers, SLB) rekonstitutiert wurden. Dabei bildeten die Min-Proteine kein oszillierendes Muster aus, sondern organisierten sich vielmehr in parallelen und propagierenden Wellen (Loose, 2008, Science, 320). In diesen in-vitro-Experimenten war das Membransubstrat wesentlich größer als die Wellenlänge der Min-Proteinwellen. In vivo hingegen ist die Länge der Zelle in der gleichen Größenordnung wie die charakteristische Länge des Oszillationsmusters der Min-Proteine. Daher war es das Ziel dieser Arbeit, den Einfluß einer beschränkten Fläche und geometrischer Formgebung der künstlichen Lipiddoppelschichten auf die Wellenpropagation der Min-Protein zu untersuchen. Flächige Beschränkung künstlicher Membranen erfolgte durch Mikrostrukturtechnologie. Deckglässchen wurden mit einer Goldschicht und mikroskopischen Aussparungen unterschiedlicher geometrischer Formen strukturiert. Funktionale SLBs bildeten sich nur auf Glasflächen ohne Goldbeschichtung aus. Nach der Rekonstitution der Min-Proteine, organisierten sich diese auf den Membranstücken in parallele Wellen. Dabei bestimmte die flächige Beschränkung der künstlichen Membranen die Ausbreitungsrichtung der Min-Proteinwellen. Min-Proteinwellen konnten entlang gekrümmter Membranstreifen, in Ring- und sogar in Slalomstrukturen geleitet werden. In geraden, länglichen Strukturen richteten sich die Wellen entlang der längsten Achse aus. Kopplung von Proteinwellen auf räumlich getrennten Membranstücken in Abhängigkeit des Abstandes und des sogenannten Molecular Crowdings in der wässrigen Lösung konnte ebenfalls beobachtet werden. Diese Kopplung ist ein Indiz für inhomogene Proteinverteilungen in der Lösung oberhalb der Membran. Desweiteren konnten Min-Proteinwellen auch in diversen dreidimensionalen künstlichen Membranen rekonstitituiert werden. Im Wildtyp von E. coli ähneln die Min-Proteindynamiken der einer Oszillation mit einer charakteristischen Länge von 5 µm. Auf SLBs, bilden Min-Proteine Wellen mit einer Wellenlänge aus, die ca. zehnmal größer ist als in vivo. Dieser Unterschied zwischen der in-vivo- und der in-vitro-Welt wurde untersucht und diskutiert. In vitro konnte die Wellenlänge um 50 % durch Erhöhung des Molecular Crowding in der Lösung sowie um 33 % durch Temperaturerhöhung verkleinert werden. Das oszillierende Muster könnte dahingegen eine Folge der Kompartimentierung sein. Erste Versuche, das Min-System in geschlossene Membrankompartimente zu rekonstitutieren, wurden getestet
Escherichia coli, a rod-like bacterium, divides by binary fission. Cell division into two daughter cells of equal size requires that fission takes place at a midcell position. In E. coli, cell division is initiated by assembly of the FtsZ-proteins at the inner membrane to the Z-ring. Topological regulation of the Z-ring is achieved by spatiotemporal pole-to-pole oscillations of Min-proteins. MinC, MinD and MinE bind to and detach from - under hydrolysis of ATP - the membrane in an antagonistic manner leading to an alternating accumulation of MinC and MinD at the cell poles. Averaged over time, the distribution profile of MinD exhibits maximal concentration at the cell poles and a minimum at the cell center. MinC binds to MinD and thus follows its distribution. FtsZ assembly is inhibited by MinC and therefore the Z-ring can only form at a cell position low in MinC - at the cell center. In the past, the Min-system was also investigated in an in vitro approach by reconstitution of Min-proteins into a supported lipid bilayer (SLB). Here, Min-proteins did not self-organize into an oscillatory pattern but into parallel and propagating waves (Loose, 2008, Science, 320). In this in vitro assay, the membrane substrate was infinitely large compared to the wavelength. However, in vivo, the cell length is on the same order of magnitude as the respective length scale of the oscillatory pattern of Min-proteins. Therefore, we wished to investigate the effect of lateral confinement and geometric structuring of artificial lipid bilayers on the Min-protein wave propagation. Lateral confinement of artificial membranes was achieved by microfabrication technology. Glass slides were patterned by a gold coating with microscopic windows of different geometries, and functional SLBs were only formed on uncoated areas. Upon reconstitution, Min-proteins organized into parallel waves on the geometric membrane patches. Confinement of the artificial membranes determined the direction of propagation of Min-protein waves. Min-protein waves could be guided along curved membrane stripes, in rings and even along slalom-geometries. In elongated membrane structures, the protein waves always propagate along the longest axis. Coupling of protein waves across spatially separated membrane patches was observed, dependent on gap size and level of molecular crowding of the aqueous media above the bilayer. This indicates the existence of an inhomogeneous and dynamic protein gradient in the solution above the membrane. Furthermore, reconstitution of Min-protein waves in various three-dimensional artificial membranes was achieved. In wild-type E. coli, Min-protein dynamics resemble that of an oscillation with a characteristic length scale of 5 µm. On supported lipid bilayers, Min-proteins self-organize into waves with a wavelength approximately 10-fold larger than in vivo. These discrepancies between the in vivo and in vitro world were investigated and discussed. In vitro, the wavelength could be decreased by a factor of 50 % by increase of the molecular crowding in solution and by 33 % through temperature increase. The oscillatory pattern is thought to be a consequence of compartmentalization and first attempts to encapsulate the Min-system in closed bilayer compartments are presented
APA, Harvard, Vancouver, ISO, and other styles
10

Kaufmann, Martin. "Lipid Bilayers Supported by Multi-Stimuli Responsive Polymers." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-106231.

Full text
Abstract:
Artificial lipid bilayers formed on solid surface supports are widespread model systems to study physical, chemical, as well as biological aspects of cell membranes and fundamental interfacial interactions. The approach to use a thin polymer film representing a cushion for lipid bilayers prevents incorporated membrane proteins from pinning to the support and mimics the native environment of a lipid bilayer in certain aspects of the extracellular matrix and intracellular structures. A key component for cell anchorage to extracellular fibronectin is the transmembrane adhesion receptor alpha(5)beta(1) integrin. Its transport dynamics and clustering behavior plays a major role in the assembly of focal adhesions, which mediate mechanical forces and biochemical signals of cells with their surrounding. The system investigated herein is envisioned to use extrinsically controlled stimuli-responsive polymer cushions to tune the frictional drag between polymer cushion and mobile membranes with incorporated integrins to actively regulate lipid membrane characteristics. To attain this goal, a temperature- and pH-responsive polymer based on poly(N-isopropylacrylamide) copolymers containing varying amounts of carboxyl-group-terminated comonomers at different aliphatic spacer lengths (PNIPAAm-co-carboxyAAM) was surface-grafted to a poly(glycidyl methacrylate) anchorage layer. The swelling transitions were characterized using atomic force microscopy, ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D) and found to be tunable over a wide range of temperature and pH. In agreement with the behavior of the polymers in solution, longer alkyl spacers decreased the phase transition temperature T(P) and higher contents of carboxylic acid terminated comonomers increased T(P) at alkaline conditions and decreased T(P) at acidic conditions. Remarkably, the point where the degree of carboxyl group deprotonation balances the T(P)-lowering effect of the alkyl spacer was distinctive for each alkyl spacer length. These findings illustrate how the local and global balance of hydrophilic and hydrophobic interactions along the copolymer chain allows to adjust the swelling transition to temperatures below, comparable, or above those observed for PNIPAAm homopolymers. Additionally, it could be shown that surface-grafting leads to a decrease in T(P) for PNIPAAm homopolymers (7°C) and copolymers (5°C - 10°C). The main reason is the increase in local polymer concentration of the swollen film constrained by dense surface anchorage in comparison to the behavior of dilute free chains in solution. In accordance with the Flory-Huggins theory, T(P) decreases with increasing concentration up to the critical concentration. Biological functionalization of the PNIPAAm-co-carboxyAAm thin films was demonstrated for the cell adhesion ligand peptide cRGD via carbodiimide chemistry to mimic extracellular binding sites for the cell adhesion receptors integrin. The outcome of QCM-D measurements of cRGD-functionalized surfaces showed a maintained stimuli-responsiveness with slight reduction in T(P). A drying/rehydration procedure of a 9:1 lipid mixture of the cationic lipid dioleoyl-trimethylammoniumpropane (DOTAP) and the zwitterionic dioleoyl-phosphatidylcholine (DOPC) was utilized to form lipid bilayer membranes on PNIPAAm-co-carboxyAAM cushions. Fluorescence recovery after photobleaching (FRAP) revealed that lipid mobility was distinctively higher (6.3 - 9.6) µm2 s-1 in comparison to solid glass support ((3.0 - 5.9) µm2 s-1). In contradiction to the initial expectations, modulation of temperature and pH led to poor variations in lipid mobility that did not correlate with the PNIPAAm cushion swelling state. The results suggested a weak coupling of the lipid bilayer with PNIPAAm polymer cushions that can be slightly tuned by electrostatic interactions. The transmembrane adhesion receptor alpha(5)beta(1) integrin was reconstituted into liposomes consisting of DOPC/sphingomyelin/cholesterol 2:2:1 for the formation of polymer cushioned bilayers. PNIPAAm- co-carboxyAAM and maleic acid (MA) copolymers were used as cushions, both with the option for cRGD functionalization. On the MA copolymer cushions, fusion of proteoliposomes resulted in supported bilayers with mobile lipids as confirmed by FRAP. However, incorporated integrins were immobile. In an attempt to explain this observation, the medium-sized cytoplasmic integrin domain was accounted to hamper the movement by steric interactions with the underlying polymer chains in conjunction with electrostatic interactions of the cationic cytoplasmic domain with the oppositely charged MA copolymer. On the PNIPAAm-co-carboxyAAM cushion only a drying/rehydration procedure lead to bilayer formation. However, again the integrins were immobile, presumably due to the harsh treatment during preparation. Nevertheless, the results of the investigated set of PNIPAAm copolymer films suggest their application as temperature- and pH-responsive switchable layers to control interfacial phenomena in bio-systems at different physiological conditions. The PNIPAAm-co-carboxyAAm cushioned bilayer system represents a promising step towards extrinsically controlled membrane – substrate interactions.
APA, Harvard, Vancouver, ISO, and other styles
11

Schillers, Hermann, Timm Danker, Hans-Joachim Schnittler, Florian Lang, and Hans Oberleithner. "Plasma Membrane Plasticity of Xenopus laevis Oocyte Imaged with Atomic Force Microscopy." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-137647.

Full text
Abstract:
Proteins are known to form functional clusters in plasma membranes. In order to identify individual proteins within clusters we developed a method to visualize by atomic force microscopy (AFM) the cytoplasmic surface of native plasma membrane, excised from Xenopus laevis oocyte and spread on poly-L-lysine coated glass. After removal of the vitelline membrane intact oocytes were brought in contact with coated glass and then rolled off. Inside-out oriented plasma membrane patches left at the glass surface were first identified with the lipid fluorescent marker FM1-43 and then scanned by AFM. Membrane patches exhibiting the typical phospholipid bilayer height of 5 nm showed multiple proteins, protruding from the inner surface of the membrane, with heights of 5 to 20 nm. Modelling plasma membrane proteins as spherical structures embedded in the lipid bilayer and protruding into the cytoplasm allowed an estimation of the respective molecular masses. Proteins ranged from 35 to 2,000 kDa with a peak value of 280 kDa. The most frequently found membrane protein structure (40/μm2) had a total height of 10 nm and an estimated molecular mass of 280 kDa. Membrane proteins were found firmly attached to the poly-L-lysine coated glass surface while the lipid bilayer was found highly mobile. We detected protein structures with distinguishable subunits of still unknown identity. Since X. laevis oocyte is a generally accepted expression system for foreign proteins, this method could turn out to be useful to structurally identify specific proteins in their native environment at the molecular level
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
APA, Harvard, Vancouver, ISO, and other styles
12

Schillers, Hermann, Timm Danker, Hans-Joachim Schnittler, Florian Lang, and Hans Oberleithner. "Plasma Membrane Plasticity of Xenopus laevis Oocyte Imaged with Atomic Force Microscopy." Karger, 2000. https://tud.qucosa.de/id/qucosa%3A27745.

Full text
Abstract:
Proteins are known to form functional clusters in plasma membranes. In order to identify individual proteins within clusters we developed a method to visualize by atomic force microscopy (AFM) the cytoplasmic surface of native plasma membrane, excised from Xenopus laevis oocyte and spread on poly-L-lysine coated glass. After removal of the vitelline membrane intact oocytes were brought in contact with coated glass and then rolled off. Inside-out oriented plasma membrane patches left at the glass surface were first identified with the lipid fluorescent marker FM1-43 and then scanned by AFM. Membrane patches exhibiting the typical phospholipid bilayer height of 5 nm showed multiple proteins, protruding from the inner surface of the membrane, with heights of 5 to 20 nm. Modelling plasma membrane proteins as spherical structures embedded in the lipid bilayer and protruding into the cytoplasm allowed an estimation of the respective molecular masses. Proteins ranged from 35 to 2,000 kDa with a peak value of 280 kDa. The most frequently found membrane protein structure (40/μm2) had a total height of 10 nm and an estimated molecular mass of 280 kDa. Membrane proteins were found firmly attached to the poly-L-lysine coated glass surface while the lipid bilayer was found highly mobile. We detected protein structures with distinguishable subunits of still unknown identity. Since X. laevis oocyte is a generally accepted expression system for foreign proteins, this method could turn out to be useful to structurally identify specific proteins in their native environment at the molecular level.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
APA, Harvard, Vancouver, ISO, and other styles
13

Jacobsen, Kerstin. "Untersuchung der Struktur und Dynamik von T4 Lysozym auf planaren Oberflächen mittels ESR-Spektroskopie." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2005. http://dx.doi.org/10.18452/15326.

Full text
Abstract:
Es ist eine allgemein akzeptierte Tatsache, dass der Kontakt von Proteinen mit synthetischen Materialien üblicherweise zur Proteinadsorption an der Materialoberfläche führt. Über den stattfindenden Prozess, insbesondere das Zusammenspiel zwischen Protein-Oberflächen-Wechselwirkungen und konformellen Änderungen der adsorbierten Proteine ist jedoch bisher nur wenig bekannt. In dieser Arbeit wird die ortsgerichtete Spinmarkierungstechnik (SDSL) auf die Strukturuntersuchung adsorbierter Proteine ausgeweitet. Diese nutzt das spezifische Einbringen einer spinmarkierte Seitenkette an gewünschte Positionen der Primärstruktur zur Analyse der Struktur und Dynamik diamagnetischer Proteine mittels der Elektronenspinresonanz(ESR)-Spektroskopie. Das globuläre Protein T4 Lysozym (T4L) wurde auf planare Modelloberflächen adsorbiert und strukturelle Änderungen in Abhängigkeit der physikalischen und chemischen Eigenschaften der Oberfläche verfolgt. Die spezifische Anbindung von T4L auf quarzgestützten zwitterionische Lipiddoppelschichten führt nur zu geringfügigen strukturellen Veränderungen des Proteins. Allerdings bildet sich eine makroskopisch geordnete Proteinschicht aus. Die Vorzugsrichtung der Proteine auf der Oberfläche kann durch Analyse der winkelabhängigen ESR-Spektren bestimmt werden. Die Wechselwirkung negativ geladener Oberflächen mit dem positiv geladenen T4L führt zu drastischeren Störungen der Proteinstruktur. Hierbei wird die Reaktion des Proteins auf den Kontakt mit einer fluiden quarzgestützten Lipiddoppelschicht, die das negativ geladenen Lipid Phosphatidylserin enthält, mit derer bei Adsorption auf einer ebenfalls negativ geladenen, jedoch rigiden Quarzoberfläche verglichen. Dass der Adsorptionsprozess auch das Substrat selbst beeinflussen kann, wird durch die Beobachtung einer Phasentrennung bei Proteinadsorption des Lipidgemischs aufgezeigt, das negativ geladene Lipide enthält.
Although it is commonly accepted that the exposition of proteins to man-made materials typically results in protein adsorption on the material surface, little is known about the interplay between the protein-surface interactions involved and the resulting conformational changes of the adsorbing protein. In this study the site-directed spin labeling (SDSL) approach has been extended to the investigation of proteins adsorbed to planar surfaces. The method involves the selective introduction of an artificial spin-labeled side-chain to a predefined residue of the amino acid sequence and allows the determination of the structure and dynamics of proteins by analysis of the electron paramagnetic resonance (EPR) spectra. The globular protein T4 Lysozyme (T4L) has been adsorbed to planar model surfaces to study the correlation between conformational changes of the protein and the physical and chemical properties of the surfaces. Tethering T4L to a planar quartz-supported zwitterionic lipid bilayer shows only minor changes in the structure of the protein. Furthermore, a macroscopic order of the adsorbed protein layer is proven by angular-dependent EPR spectra which allow the determination of the protein orientation. Offering surfaces that are net negatively charged to the highly positively charged T4L leads to the observation of more drastic conformational changes. Here, the conformation of T4L adsorbing to a fluid quartz-supported lipid bilayer containing negatively charged lipids is compared to the structure of T4L adsorbed to the negatively charged but rigid quartz surface. The adsorption process may also influence the substrate itself. This can be shown by the phase separation of the negatively charged lipid bilayer upon protein adsorption.
APA, Harvard, Vancouver, ISO, and other styles
14

Kell, Henny [Verfasser]. "Wechselwirkung des Lipoheptapeptides Surfactin mit Lipiddoppelschichten aus DMPC und DPPC / vorgelegt von Henny Kell." 2006. http://d-nb.info/982975414/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Théato, Patrick [Verfasser]. "Synthese und Untersuchung von neuen α,ω-funktionalisierten [alpha, omega-funktionalisierten] Lipopolymeren zum Aufbau von polymerunterstützten Lipiddoppelschichten / Patrick Théato." 2001. http://d-nb.info/963610082/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Künneke, Stephanie [Verfasser]. "Kontaktmechanik und Strukturierung von festkörperunterstützen Lipidmembranen : eine rasterkraftmikroskopische Studie von Lipid-Protein-Wechselwirkungen und mechanischen Parametern von Lipiddoppelschichten / Stephanie Künneke." 2003. http://d-nb.info/968536360/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Renner, Lars. "Polymer Supported Lipid Bilayer Membranes for the Integration of Transmembrane Proteins." Doctoral thesis, 2008. https://tud.qucosa.de/id/qucosa%3A23741.

Full text
Abstract:
This work reports on the successful formation of supported multicomponent lipid bilayer membranes (sLBMs) from natural occurring lipids as well as synthetic lipids on a set of polymer cushions consisting of alternating maleic acid copolymers. Maleic acid copolymers provide a versatile platform to adjust the physico-chemical behaviour by the choice of the comonomer unit. The formation of sLBMs was triggered by a transient reduction of the electrostatic repulsion between the polymer cushions and the lipid vesicles by lowering the solutions pH to 4. Upon formation the stability of sLBMs was not affected by subsequent variations of the environmental pH to 7.2. Even drastic changes in the environmental pH (between pH 2 and pH 9) did not lead to delamination and proved the stability of the polymer sLBM. The degree of hydrophilicity and swelling of the anionic polymer cushions was found to determine both the kinetics of the membrane formation and the mobility of the lipid bilayer with lipid diffusion coefficients in the range from 0.26 to 2.6 µm2 s-1. An increase in cushion hydrophilicity correlated with a strong increase in the diffusion coefficient of the lipids. This trend was found to correlate with the kinetics of bilayer formation in the process of vesicle spreading. The observations strongly support the important role of the support’s polarity for the fluidity of the sLBM, which is probably related to the presence of a water layer between support and bilayer. The investigated polymer cushions are considered to open new options for the in situ modulation of lipid bilayer membranes characteristics to match the requirements for the successful integration of functional transmembrane proteins (TMPs). As each cushion exhibits different physico-chemical properties, the resulting behaviour of the sLBMs and TMPs could be exactly adjusted to the specific requirements of biological samples. This is exemplarily shown by the integration of the TMP beta amyloid precursor protein cleaving enzyme (BACE). Integrated BACE was observed to be mobile on all polymer cushions. On the contrary, no lateral mobility of BACE was found in solid sLBM. Furthermore, the activity of integrated BACE was analysed by the cleavage of an amyloid precursor protein analogue. Remarkably, the polymer cushions did not only enhance the mobility but were also found to increase the activity of BACE by a factor of 1.5 to 2.5 in comparison to solid sLBM. From the obtained results it is obvious that even small cytoplasmic domains of transmembrane proteins might not be preserved upon the integration in silica sLBM. The observed beneficial effects of the utilised polymer cushions on the mobility and activity of transmembrane proteins motivate further studies to clarify the general applicability of the polymer platform. Altogether, this polymer platform provides valuable options to form sLBM with varying characteristics to reconstitute transmembrane proteins for a wide range of possible future applications in biology.
Die vorliegende Arbeit beschreibt die Bildung von polymer unterstützten Lipiddoppelschichten zur Integration von transmembranen Proteinen. Das Polymerkissensystem besteht aus alternierenden Maleinsäurecopolymeren. Lipiddoppelschichten wurden durch die Steuerung der elektrostatischen Repulsion erzeugt: die Verringerung des pH-Wertes auf 4 wurde eine Erhöhung der adsorbierten Vesikelmenge auf den Polymeroberflächen induziert. Nach der erfolgten Bildung der Lipiddoppelschichten kann der pH-Wert beliebig variiert werden, ohne dass die Stabilität der Lipiddoppelschichten beeinflusst wird. Auch drastische Veränderungen des pH-Milieus (pH 2 - pH 9) führten zu keinen Veränderungen in der Membranintegrität. Der Grad der Hydrophilie und der Quellung der anionischen Polymerschichten beeinflusst sowohl die Bildung der Modellmembranen als auch die Mobilität der integrierten Lipidmoleküle. Dabei reichen die erzielten Lipiddiffusionskoeffizienten von 0.26 bis 2.6 µm2 s-1. Dabei ist die Mobilität direkt von der Hydrophilie des Substrates abhängig. Die beobachteten Ergebnisse zeigen deutlich die entscheidende Rolle der Polarität der verwendeten Substratoberflächen auf die Lipidmobilität, die sehr wahrscheinlich mit der Präsenz einer variablen Wasserschicht zusammenhängt. Die untersuchten Polymerkissen eröffnen neue Möglichkeiten für die insitu Modulierung der Charakteristika von Lipidschichten, um funktionale transmembrane Proteine zu integrieren. Aufgrund der unterschiedlichen physiko-chemischen Eigenschaften kann das Verhalten der Lipidschichten und der transmembranen Proteine nach den spezifischen Anforderungen des Modellsystems angepasst werden. Die funktionale Integration wurde am Beispiel des transmembranen Proteins BACE nachempfunden. Die Mobilität des integrierten BACE wurde auf allen Polymerkissen beobachtet. Im Gegensatz dazu wurde auf harten Substraten keine BACE Mobilität gefunden. Die Aktivität des integrierten BACE wurde durch die enzymatische Spaltung eines APP-Analogons nachgewiesen. Bemerkenswerteweise wurde ein Anstieg der BACE Aktivität auf den Polymerkissen um den Faktor 1,5 bis 2,5 im Vergleich zu den auf harten Substraten integrierten BACE beobachtet. Zusammenfassend, die verwendeten Polymerkissen bieten vielfältige Möglichkeiten Lipidschichten mit variierenden Eigenschaften für die Integration von transmembranen Proteinen zu erzeugen.
APA, Harvard, Vancouver, ISO, and other styles
18

Johann, Christof [Verfasser]. "Theoretische und experimentelle Untersuchungen von Mischungsphänomenen in fluiden Lipiddoppelschichten : Anwendung der 2H-NMR- und FTIR-Spektroskopie zur Untersuchung von pseudobinären Phosphatidycholin/Phosphatidyglycerin- und Phosphatidycholin/Phosphatidylethanolamin-Systemen sowie Einsatz von Monte-Carlo-Methoden zur Computersimulation von lateralen Lipidwechselwirkungen / vorgelegt von Christof Johann." 1999. http://d-nb.info/95768522X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schweizer, Jakob. "Min-Protein Waves on Geometrically Structured Artificial Membranes." Doctoral thesis, 2012. https://tud.qucosa.de/id/qucosa%3A25597.

Full text
Abstract:
Das stäbchenförmige Bakterium Escherichia coli teilt sich in zwei gleich große Tochterzellen. Dies ist nur möglich, wenn sich die Zelle in der Mitte teilt. Bei E. coli wird die Zellteilung durch den Zusammenschluss der FtsZ-Proteine an der Membran zum Z-Ring eingeleitet. Topologische Regulierung des Z-Ringes erfolgt durch räumlich-zeitliche Oszillationen von Min-Proteinen zwischen den beiden Zellpolen. MinC, MinD und MinE binden an und lösen sich von der Membran unter Hydrolyse von ATP und in antagonistischer Art und Weise, was zu einer alternierenden Ansammlung von MinC und MinD an den Zellpolen führt. Gemittelt über die Zeit ergibt sich somit ein MinD-Verteilungsprofil, das maximale Konzentration an den Zellpolen und ein Minimum in der Zellmitte aufweist. MinC bindet an MinD und folgt somit seiner Verteilung. Der Zusammenschluss von FtsZ-Proteinen wird durch MinC unterbunden, und somit kann sich der Z-ring nur an einer Position herausbilden, die ein Minimum an MinC aufweist - der Zellmitte. Das Min-system wurde in der Vergangenheit auch mit einem in-vitro-Ansatz untersucht, indem Min-Proteine in künstliche, aufliegende Lipiddoppelschichten (supported lipid bilayers, SLB) rekonstitutiert wurden. Dabei bildeten die Min-Proteine kein oszillierendes Muster aus, sondern organisierten sich vielmehr in parallelen und propagierenden Wellen (Loose, 2008, Science, 320). In diesen in-vitro-Experimenten war das Membransubstrat wesentlich größer als die Wellenlänge der Min-Proteinwellen. In vivo hingegen ist die Länge der Zelle in der gleichen Größenordnung wie die charakteristische Länge des Oszillationsmusters der Min-Proteine. Daher war es das Ziel dieser Arbeit, den Einfluß einer beschränkten Fläche und geometrischer Formgebung der künstlichen Lipiddoppelschichten auf die Wellenpropagation der Min-Protein zu untersuchen. Flächige Beschränkung künstlicher Membranen erfolgte durch Mikrostrukturtechnologie. Deckglässchen wurden mit einer Goldschicht und mikroskopischen Aussparungen unterschiedlicher geometrischer Formen strukturiert. Funktionale SLBs bildeten sich nur auf Glasflächen ohne Goldbeschichtung aus. Nach der Rekonstitution der Min-Proteine, organisierten sich diese auf den Membranstücken in parallele Wellen. Dabei bestimmte die flächige Beschränkung der künstlichen Membranen die Ausbreitungsrichtung der Min-Proteinwellen. Min-Proteinwellen konnten entlang gekrümmter Membranstreifen, in Ring- und sogar in Slalomstrukturen geleitet werden. In geraden, länglichen Strukturen richteten sich die Wellen entlang der längsten Achse aus. Kopplung von Proteinwellen auf räumlich getrennten Membranstücken in Abhängigkeit des Abstandes und des sogenannten Molecular Crowdings in der wässrigen Lösung konnte ebenfalls beobachtet werden. Diese Kopplung ist ein Indiz für inhomogene Proteinverteilungen in der Lösung oberhalb der Membran. Desweiteren konnten Min-Proteinwellen auch in diversen dreidimensionalen künstlichen Membranen rekonstitituiert werden. Im Wildtyp von E. coli ähneln die Min-Proteindynamiken der einer Oszillation mit einer charakteristischen Länge von 5 µm. Auf SLBs, bilden Min-Proteine Wellen mit einer Wellenlänge aus, die ca. zehnmal größer ist als in vivo. Dieser Unterschied zwischen der in-vivo- und der in-vitro-Welt wurde untersucht und diskutiert. In vitro konnte die Wellenlänge um 50 % durch Erhöhung des Molecular Crowding in der Lösung sowie um 33 % durch Temperaturerhöhung verkleinert werden. Das oszillierende Muster könnte dahingegen eine Folge der Kompartimentierung sein. Erste Versuche, das Min-System in geschlossene Membrankompartimente zu rekonstitutieren, wurden getestet.
Escherichia coli, a rod-like bacterium, divides by binary fission. Cell division into two daughter cells of equal size requires that fission takes place at a midcell position. In E. coli, cell division is initiated by assembly of the FtsZ-proteins at the inner membrane to the Z-ring. Topological regulation of the Z-ring is achieved by spatiotemporal pole-to-pole oscillations of Min-proteins. MinC, MinD and MinE bind to and detach from - under hydrolysis of ATP - the membrane in an antagonistic manner leading to an alternating accumulation of MinC and MinD at the cell poles. Averaged over time, the distribution profile of MinD exhibits maximal concentration at the cell poles and a minimum at the cell center. MinC binds to MinD and thus follows its distribution. FtsZ assembly is inhibited by MinC and therefore the Z-ring can only form at a cell position low in MinC - at the cell center. In the past, the Min-system was also investigated in an in vitro approach by reconstitution of Min-proteins into a supported lipid bilayer (SLB). Here, Min-proteins did not self-organize into an oscillatory pattern but into parallel and propagating waves (Loose, 2008, Science, 320). In this in vitro assay, the membrane substrate was infinitely large compared to the wavelength. However, in vivo, the cell length is on the same order of magnitude as the respective length scale of the oscillatory pattern of Min-proteins. Therefore, we wished to investigate the effect of lateral confinement and geometric structuring of artificial lipid bilayers on the Min-protein wave propagation. Lateral confinement of artificial membranes was achieved by microfabrication technology. Glass slides were patterned by a gold coating with microscopic windows of different geometries, and functional SLBs were only formed on uncoated areas. Upon reconstitution, Min-proteins organized into parallel waves on the geometric membrane patches. Confinement of the artificial membranes determined the direction of propagation of Min-protein waves. Min-protein waves could be guided along curved membrane stripes, in rings and even along slalom-geometries. In elongated membrane structures, the protein waves always propagate along the longest axis. Coupling of protein waves across spatially separated membrane patches was observed, dependent on gap size and level of molecular crowding of the aqueous media above the bilayer. This indicates the existence of an inhomogeneous and dynamic protein gradient in the solution above the membrane. Furthermore, reconstitution of Min-protein waves in various three-dimensional artificial membranes was achieved. In wild-type E. coli, Min-protein dynamics resemble that of an oscillation with a characteristic length scale of 5 µm. On supported lipid bilayers, Min-proteins self-organize into waves with a wavelength approximately 10-fold larger than in vivo. These discrepancies between the in vivo and in vitro world were investigated and discussed. In vitro, the wavelength could be decreased by a factor of 50 % by increase of the molecular crowding in solution and by 33 % through temperature increase. The oscillatory pattern is thought to be a consequence of compartmentalization and first attempts to encapsulate the Min-system in closed bilayer compartments are presented.
APA, Harvard, Vancouver, ISO, and other styles
20

Woiterski, Lydia. "Meeting at the Membrane – Confined Water at Cationic Lipids & Neuronal Growth on Fluid Lipid Bilayers: Meeting at the Membrane – Confined Water at Cationic Lipids &Neuronal Growth on Fluid Lipid Bilayers." Doctoral thesis, 2013. https://ul.qucosa.de/id/qucosa%3A12291.

Full text
Abstract:
Die Zellmembran dient der Zelle nicht nur als äußere Hülle, sondern ist auch an einer Vielzahl von lebenswichtigen Prozessen wie Signaltransduktion oder Zelladhäsion beteiligt. Wasser als integraler Bestandteil von Zellen und der extrazellulären Matrix hat sowohl einen großen Einfluss auf die Struktur von Biomolekülen, als auch selbst besondere Merkmale in eingschränkter Geometrie. Im Rahmen dieser Arbeit wurden zwei Effekte an Modellmembranen untersucht: Erstens der Einfluss des Gegenions an kationischen Lipiden (DODAX, X = F, Cl, Br, I) auf die Eigenschaften des Grenzflächenwassers und zweitens das Vermögen durch Viskositätsänderungen das Wachstum von Nervenzellen anzuregen sowie die einzelnen Stadien der Bildung von neuronalen Netzwerken und deren Optimierung zu charakterisieren. Lipidmultischichten und darin adsorbiertes Grenzflächenwasser wurden mittels Infrarotspektroskopie mit abgeschwächter Totalreflexion untersucht. Nach Charakterisierung von Phasenverhalten und Wasserkapazität der Lipide wurden die Eigenschaften des Wassers durch kontrollierte Hydratisierung bei einem Wassergehalt von einem Wassermolekül pro Lipid verglichen. Durch die geringe Wasserkapazität können in diesem besonderen System direkte Wechselwirkungen zwischen Lipiden und Wasser aus der ersten Hydratationsschale beobachtet werden. Bemerkenswert strukturierte OH-Streckschwingungsbanden in Abhängigkeit des Anions und niedrige IR-Ordnungsparameter zeigen, dass stark geordnete, in ihrer Mobilität eingeschränkte Wassermoleküle an DODAX in verschiedenen Populationen mit unterschiedlich starken Wasserstoffbrückenbindungen existieren und sich vermutlich in kleinen Clustern anordnen. Die zweite Fragestellung hatte zum Ziel, das Wachstum von Nervenzellen auf Membranen zu beleuchten. Auf der Ebene einzelner Zellen wurde untersucht, ob sich in Analogie zu den bisher verwendeten elastischen Substraten, die Viskosität von Membranen als neuartiger physikalischer Stimulus dafür eignet, das mechanosensitive Verhalten von Neuronen zu modulieren. Das Wachstum der Neuronen wurde auf substrat- und polymergestützten Lipiddoppelschichten mittels Phasenkontrastmikroskopie beobachtet. Die Quantifizierung der Neuritenlängen, -auswuchsgeschwindigkeiten und -verzweigungen zeigten kaum signifikante Unterschiede. Diffusionsmessungen (FRAP) ergaben, dass entgegen der Erwartungen, die Substrate sehr ähnliche Fluiditäten aufweisen. Die Betrachtung der zeitlichen Entwicklung des kollektiven Neuronenwachstums, also der Bildung von komplexen Netzwerken, offenbarte robuste „Kleine-Welt“-Eigenschaften und darüber hinaus unterschiedliche Stadien. Diese wurden durch graphentheoretische Analyse beschrieben, um anhand typischer Größen wie dem Clusterkoeffizienten und der kürzesten Pfadlänge zu zeigen, wie sich die Neuronen in einem frühen Stadium vernetzen, im Verlauf eine maximale Komplexität erreichen und letztlich das Netzwerk durch effiziente Umstrukturierung hinsichtlich kurzer Pfadlängen optimiert wird.
APA, Harvard, Vancouver, ISO, and other styles
21

Kaufmann, Martin. "Lipid Bilayers Supported by Multi-Stimuli Responsive Polymers." Doctoral thesis, 2012. https://tud.qucosa.de/id/qucosa%3A26659.

Full text
Abstract:
Artificial lipid bilayers formed on solid surface supports are widespread model systems to study physical, chemical, as well as biological aspects of cell membranes and fundamental interfacial interactions. The approach to use a thin polymer film representing a cushion for lipid bilayers prevents incorporated membrane proteins from pinning to the support and mimics the native environment of a lipid bilayer in certain aspects of the extracellular matrix and intracellular structures. A key component for cell anchorage to extracellular fibronectin is the transmembrane adhesion receptor alpha(5)beta(1) integrin. Its transport dynamics and clustering behavior plays a major role in the assembly of focal adhesions, which mediate mechanical forces and biochemical signals of cells with their surrounding. The system investigated herein is envisioned to use extrinsically controlled stimuli-responsive polymer cushions to tune the frictional drag between polymer cushion and mobile membranes with incorporated integrins to actively regulate lipid membrane characteristics. To attain this goal, a temperature- and pH-responsive polymer based on poly(N-isopropylacrylamide) copolymers containing varying amounts of carboxyl-group-terminated comonomers at different aliphatic spacer lengths (PNIPAAm-co-carboxyAAM) was surface-grafted to a poly(glycidyl methacrylate) anchorage layer. The swelling transitions were characterized using atomic force microscopy, ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D) and found to be tunable over a wide range of temperature and pH. In agreement with the behavior of the polymers in solution, longer alkyl spacers decreased the phase transition temperature T(P) and higher contents of carboxylic acid terminated comonomers increased T(P) at alkaline conditions and decreased T(P) at acidic conditions. Remarkably, the point where the degree of carboxyl group deprotonation balances the T(P)-lowering effect of the alkyl spacer was distinctive for each alkyl spacer length. These findings illustrate how the local and global balance of hydrophilic and hydrophobic interactions along the copolymer chain allows to adjust the swelling transition to temperatures below, comparable, or above those observed for PNIPAAm homopolymers. Additionally, it could be shown that surface-grafting leads to a decrease in T(P) for PNIPAAm homopolymers (7°C) and copolymers (5°C - 10°C). The main reason is the increase in local polymer concentration of the swollen film constrained by dense surface anchorage in comparison to the behavior of dilute free chains in solution. In accordance with the Flory-Huggins theory, T(P) decreases with increasing concentration up to the critical concentration. Biological functionalization of the PNIPAAm-co-carboxyAAm thin films was demonstrated for the cell adhesion ligand peptide cRGD via carbodiimide chemistry to mimic extracellular binding sites for the cell adhesion receptors integrin. The outcome of QCM-D measurements of cRGD-functionalized surfaces showed a maintained stimuli-responsiveness with slight reduction in T(P). A drying/rehydration procedure of a 9:1 lipid mixture of the cationic lipid dioleoyl-trimethylammoniumpropane (DOTAP) and the zwitterionic dioleoyl-phosphatidylcholine (DOPC) was utilized to form lipid bilayer membranes on PNIPAAm-co-carboxyAAM cushions. Fluorescence recovery after photobleaching (FRAP) revealed that lipid mobility was distinctively higher (6.3 - 9.6) µm2 s-1 in comparison to solid glass support ((3.0 - 5.9) µm2 s-1). In contradiction to the initial expectations, modulation of temperature and pH led to poor variations in lipid mobility that did not correlate with the PNIPAAm cushion swelling state. The results suggested a weak coupling of the lipid bilayer with PNIPAAm polymer cushions that can be slightly tuned by electrostatic interactions. The transmembrane adhesion receptor alpha(5)beta(1) integrin was reconstituted into liposomes consisting of DOPC/sphingomyelin/cholesterol 2:2:1 for the formation of polymer cushioned bilayers. PNIPAAm- co-carboxyAAM and maleic acid (MA) copolymers were used as cushions, both with the option for cRGD functionalization. On the MA copolymer cushions, fusion of proteoliposomes resulted in supported bilayers with mobile lipids as confirmed by FRAP. However, incorporated integrins were immobile. In an attempt to explain this observation, the medium-sized cytoplasmic integrin domain was accounted to hamper the movement by steric interactions with the underlying polymer chains in conjunction with electrostatic interactions of the cationic cytoplasmic domain with the oppositely charged MA copolymer. On the PNIPAAm-co-carboxyAAM cushion only a drying/rehydration procedure lead to bilayer formation. However, again the integrins were immobile, presumably due to the harsh treatment during preparation. Nevertheless, the results of the investigated set of PNIPAAm copolymer films suggest their application as temperature- and pH-responsive switchable layers to control interfacial phenomena in bio-systems at different physiological conditions. The PNIPAAm-co-carboxyAAm cushioned bilayer system represents a promising step towards extrinsically controlled membrane – substrate interactions.
APA, Harvard, Vancouver, ISO, and other styles
22

Su, Chanfei. "Modelling of interactions between lipid bilayers and nanoparticles of various degrees of hydrophobicity." Doctoral thesis, 2018. https://tud.qucosa.de/id/qucosa%3A32291.

Full text
Abstract:
Biological membranes are mainly composed of two layers of lipids, various kinds of proteins and organic macromolecules, forming the protective barriers that separate the inner milieu of living cells from the environment. The possibility of penetrating the membrane is of great importance for biomedical applications. Recently, a lot of attention has been given to the mechanisms and the details of the interactions between the membrane and nanoparticles, as well as to the development of effective delivery strategies. A manipulation of the hydrophobicity of nanoparticles can facilitate the translocation through the membrane. Modifying the physical/chemical properties of the membrane through oxidation can also influence the delivery of nanoparticles or macromolecules into the cell. In this work, using coarse-grained molecular dynamics simulations, the passive translocation of nanoparticles with a size of about 1 nm and with tunable degrees of hydrophobicity through lipid membranes is studied. It is shown that a window of nanoparticle translocation with a sharp maximum is located at a certain hydrophobicity in between fully hydrophilic and fully hydrophobic characters. By combining direct simulations with umbrella sampling simulations, the free energy landscapes for nanoparticles covering a wide range of hydrophobicities are obtained. The directly observed translocation rate of the nanoparticles can be mapped to the mean escape rate through the calculated free energy landscapes, and the maximum of translocation can be related with the maximally flat free energy landscape. For nanoparticles with the balanced hydrophobicity, the bilayer forms a remaining barrier of a few kBT and can be spontaneously surmounted. Further investigations are conducted to explore the cooperative effects of a larger number of nanoparticles and their impact on membrane properties such as membrane permeability for solvent, the area per lipid, and the orientation order of lipid tails. By calculating the partition of nanoparticles between water and oil phases, the microscopic parameter, i.e. the hydrophobicity of nanoparticles, can be mapped to an experimentally accessible partition coefficient. The studies reveal a generic mechanism for spherical nanoparticles to overcome biological membrane-barriers without the need of biologically activated processes. Two oxidatively modified lipids are studied on coarse-grained level using molecular dynamics simulations. The findings support the view that lipid oxidation leads to a change of the lipid conformation: lipid tails tend to bend toward the lipid head-tail interface due to the presence of hydrophilic oxidized beads. This change in conformation can further influence structural properties, elasticity and membrane permeability: an increase of the area per lipid, accompanied with decrease of the membrane thickness and order parameter of the lipid tails; a sharp drop of stretching modulus; a significant increase of the membrane permeability for water. Oxidized lipid bilayers interacting with NPs of various degrees of hydrophobicity are further studied. The critical hydrophobicity corresponding to the maximum translocation rate of NPs, shifts towards the hydrophilic region, which coincides with the same decrease in percentage of the average hydrophobicity in the core of the membrane upon oxidation. Around the critical point of NPs' hydrophobicity, a significant increase of the translocation rate of NPs through the oxidized bilayers is observed, when compared to non-oxidized bilayers. This is associated with a deterioration of the free energy barrier for NPs inside the oxidized bilayers, resulting from oxidation effects. These findings are consistent with the studies of the mean escape rate through the free energy landscapes using Kramers theory. Regarding the membrane perturbation induced by NPs of various hydrophobicity, the data obtained with oxidized lipid bilayers present the same general trend as in the case of the non-oxidized lipid bilayer. These findings provide a better understanding of the interaction between NPs and oxidized lipid bilayers, and open a possibility to facilitate drug delivery.:1 Introduction 1 1.1 Lipid Bilayers 1 1.2 Oxidized Lipid Bilayers 2 1.3 Experimental Methodology 4 1.4 Lipid Models 5 1.5 The Lipid Bilayer Interacting with NPs 6 1.6 Thesis Overview 7 2 State of the art 9 2.1 Molecular Dynamics Simulations of Lipid Bilayers 9 2.1.1 Equations of Motion and the Integrations of Equations of Motion 10 2.1.2 Interaction Potentials 12 2.1.3 Periodic Boundary Conditions 14 2.1.4 Barostats and Thermostats 15 2.2 Umbrella Sampling Simulation 19 2.2.1 The Basics of Umbrella Sampling Method 20 2.2.2 Analyzing Umbrella Sampling Results by WHAM 23 2.2.3 The Principle of Choosing Bias Potential 24 3 Lipid Membranes interacting with Nanoparticles of Various Degrees of Hydrophobicity 25 3.1 Introduction 25 3.2 Coarse-grained Model and Simulation Setups 27 3.3 Results and Discussions 31 3.3.1 NPs-membrane Interactions 31 3.3.2 NPs Translocation 33 3.3.3 Concentration Effect of NPs 35 3.3.4 The Effect of Hydrophobicity on Kinetic Pathways 38 3.3.5 Potential of Mean Force 39 3.3.6 Hydrophobicity Scale 41 3.3.7 Solvent Permeation and Membrane Perturbation Induced by NPs 45 3.4 Summary 47 4 Coarse-grained Model of Oxidized Lipids and their Interactions with NPs of Varying Hydrophobicities 51 4.1 Introduction 51 4.2 Coarse-grained Model and Simulation Details 52 4.3 Results and Discussions 54 4.3.1 Characterizing the Oxidized Lipid Membranes 54 4.3.2 Oxidized Lipid Membranes Interacting with NPs of Various Degrees of Hydrophobicity 59 4.4 Summary 65 5 Summary and Outlook 69
APA, Harvard, Vancouver, ISO, and other styles
23

Kocun, Marta. "Mechanical properties of pore-spanning membranes prepared from giant vesicles." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-B09D-A.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography