Academic literature on the topic 'Liposom'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liposom.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Liposom"

1

Hudiyanti, Dwi, Desita Triana, and Parsaoran Siahaan. "Studi Pendahuluan tentang Enkapsulasi Vitamin C dalam Liposom Kelapa (Cocos nucifera L.)." Jurnal Kimia Sains dan Aplikasi 20, no. 1 (April 1, 2017): 5–8. http://dx.doi.org/10.14710/jksa.20.1.5-8.

Full text
Abstract:
Penelitian ini bertujuan untuk mempelajari enkapsulasi vitamin C dalam liposom kelapa (Cocos nucifera L.). Efisiensi enkapsulasi liposom kelapa diperoleh sebesar 80,76%. Penambahan kolesterol pada membran liposom mempengaruhi besarnya efisiensi enkapsulasi. Penambahan kolesterol sebesar 30% meningkatkan efisiensi enkapsulasi menjadi sebesar 92,71%. Suhu mempengaruhi kemampuan liposom kelapa untuk menyimpan vitamin C dalam 8 hari. Penyimpanan pada suhu 5°C menurunkan kebocoran liposom kelapa.Penelitian ini bertujuan untuk mempelajari enkapsulasi vitamin C dalam liposom kelapa (Cocos nucifera L.). Efisiensi enkapsulasi liposom kelapa diperoleh sebesar 80,76%. Penambahan kolesterol pada membran liposom mempengaruhi besarnya efisiensi enkapsulasi. Penambahan kolesterol sebesar 30% meningkatkan efisiensi enkapsulasi menjadi sebesar 92,71%. Suhu mempengaruhi kemampuan liposom kelapa untuk menyimpan vitamin C dalam 8 hari. Penyimpanan pada suhu 5°C menurunkan kebocoran liposom kelapa.
APA, Harvard, Vancouver, ISO, and other styles
2

Rihhadatulaisy, Sausan, Sriwidodo Sriwidodo, and Norisca Aliza Putriana. "Stabilisasi Liposom dalam Sistem Penghantaran Obat." Majalah Farmasetika 5, no. 5 (August 24, 2020): 257. http://dx.doi.org/10.24198/mfarmasetika.v5i5.27456.

Full text
Abstract:
Enkapsulasi obat dalam liposom telah memberikan peluang untuk meningkatkan terapeutik dan kestabilan pada berbagai senyawa aktif. Peran liposom sebagai sistem penghantaran obat adalah untuk memberikan obat dengan cara terkontrol, mengurangi toksisitas, dan meningkatkan kemanjuran obat yang dienkapsulasi. Meskipun liposom secara luas telah dipelajari dalam bidang farmasi, liposom memiliki masalah terkait dengan kestabilan, diantaranya partikel membentuk agregat, koalesensi, fusi, dan terjadinya kebocoran obat dalam vesikel yang disebabkan oleh beberapa faktor seperti suhu, pH, muatan permukaan, maupun komposisi lipid. Maka dari itu, studi stabilitas fisik diperlukan untuk menjamin integritas produk. Dari hasil review artikel dengan metode pencarian studi pustaka pada beberapa jurnal, didapatkan teknik untuk menjaga stabilitas liposom diantaranya, aktivasi tepi dengan surfaktan seperti tween dan polietilen glikol, modifikasi permukaan liposom dengan kitosan, polisakarida,dan poliekektrolit, pengeringan beku, serta penggabungan dengan polimer gel. Oleh karena itu, artikel ini dimaksudkan untuk membahas mengenai stabilisasi liposom dan berbagai parameter karakterisasi diantaranya, ukuran partikel, efisiensi penjerapan, muatan dan morfologi permukaan sebagai tolak ukur untuk stabilitas liposom.
APA, Harvard, Vancouver, ISO, and other styles
3

Verawaty, Verawaty, Auzal Halim, and Febriyenti Febriyenti. "Efektivitas Sistem Penghantaran Liposom pada Katekin Sebagai Antioksidan." Jurnal Sains Farmasi & Klinis 2, no. 2 (July 12, 2016): 176. http://dx.doi.org/10.29208/jsfk.2016.2.2.85.

Full text
Abstract:
Telah dilakukan penelitian efektivitas sistem penghantaran liposom pada katekin sebagai antioksidan. Liposom dibuat dari fosfatidilkolin yang berasal dari telur dan kolesterol. Metoda liposom yang digunakan pada penelitian ini adalah metoda hidrasi lapis tipis menggunakan rotary evaporator. Liposom dibuat dalam 3 formula yang memiliki perbandingan berbeda antara fosfatidilkolin dan kolesterol. Formula 1 dengan perbandingan 1:1; formula 2 dengan perbandingan 1:2 dan formula 3 dengan perbandingan 2:1. Dari hasil pengamatan dengan SEM terlihat globul-globul liposom berbentuk bola sferis dan ada juga yang lonjong. Efisiensi penjerapan (% EP) didapatkan formula I sebesar 24,49%, Formula II sebesar 24,67% dan formula III sebesar 20,06%. Disini terlihat bahwa semakin meningkatnya kolesterol yang digunakan akan semakin meningkat pula efisiensi penjerapan obat. Pada uji daya antioksidan pada supernatan didapatkan formula II lebih baik dibandingkan formula I dan formula III, sehingga dapat disimpulkan bahwa semakin besar kolesterol maka formulasi liposom akan lebih bagus dan stabil.
APA, Harvard, Vancouver, ISO, and other styles
4

Febriyenti, Febriyenti, Deddi Prima Putra, Elyana Indah Wicaksanti, and Citra Dewi Hamami. "Formulasi Liposom Ekstrak Terpurifikasi Centella asiatica Menggunakan Fosfatidilkolin dan Kolesterol." Jurnal Sains Farmasi & Klinis 5, no. 2 (October 11, 2018): 78. http://dx.doi.org/10.25077/jsfk.5.2.78-82.2018.

Full text
Abstract:
Penelitian mengenai pembuatan liposom ekstrak terpurifikasi Centella asiatica menggunakan fosfatidilkolin dan kolesterol telah dilakukan. Tujuan penelitian ini adalah untuk mengetahui komposisi atau perbandingan yang ideal antara ekstrak terpurifikasi Centella asiatica dengan fosfatidilkolin dan pengaruh penambahan kolesterol terhadap liposom yang dihasilkan. Metoda pembuatan liposom yang digunakan adalah hidrasi lapis tipis. Rasio ekstrak dengan fosfatidilkolin dibuat tiga variasi formula: F1 (1:40 b/b), F2 (1:60 b/b), F3 (1:100 b/b). Lapis tipis lipid F2 paling mudah dihidrasi. Hasil hidrasi ketiga formula menunjukkan suspensi liposom yang bewarna putih susu. Kemudian dibuat tiga formula dengan penambahan kolesterol yaitu FK1 (1:30:30 b/b), FK2 (1:20:40 b/b), FK3 (1:10:50 b/b). Hasil pengamatan suspensi liposom menggunakan SEM (scanning electron microscope) menunjukkan morfologi vesikel berbentuk sferis. Lapis tipis lipid FK1 mudah dihidrasi dan tidak menggumpal. FK1 memiliki daya penjerapan terbesar. Vesikel liposom yang mengandung kolesterol tidak mengalami perubahan warna setelah disimpan selama 6 bulan, sedangkan yang tidak mengandung kolesterol, warnanya menjadi kekuningan.
APA, Harvard, Vancouver, ISO, and other styles
5

Dewi, Mayang Kusuma, Anis Yohana Chaerunisaa, and Sriwidodo Sriwidodo. "Peptida Antimikrobial Cathelicidin dan Liposom sebagai Pembawa." Majalah Farmasetika 6, no. 2 (May 20, 2021): 187. http://dx.doi.org/10.24198/mfarmasetika.v6i2.33182.

Full text
Abstract:
Peptida antimikrobial (PAM) dalam beberapa tahun terakhir telah menarik perhatian di kalangan ilmuwan, profesional kesehatan, dan perusahaan farmasi karena potensi terapeutiknya yang sangat luas. Cathelicidin merupakan salah satu kelompok dari PAM dengan berat molekul rendah yang mempunyai berbagai aktivitas biologis pada rentang terapi tertentu yang berfungsi sebagai antimikrobial, antivirus, dan antijamur, serta dapat memodulasi sistem imum terhadap infeksi bakteri (gram positif dan gram negatif). Walaupun menarik untuk aplikasi klinis, cathelicidin memiliki keterbatasan dalam hal stabilitas dan aktivitasnya secara in-vivo, serta interaksi non-spesifik dengan membran biologis inang yang mengarah pada efek sitotoksik yang merugikan. Enkapsulasi cathelicidin dapat mengakibatkan penurunan sitotoksisitas, meningkatkan stabilitas dan aktivitas biologisnya. Keterbatasan cathelicidin dapat diatasi dengan mengenkapsulasi cathelicidin dalam pembawa lipid seperti liposom. Review ini bertujuan untuk memberikan gambaran singkat mengenai struktur, sifat, fungsi, uji klinis, dan keterbatasan dari cathelicidin yang mana keterbatasan cathelicidin ini dapat di atasi dengan pembawa vesikular salah satunya adalah liposom. Liposom merupakan pembawa vesikular generasi pertama yang bersifat non-toksik, biodegradable, biokompatibel, dan stabil dalam larutan koloid sistem penghantaran obat. Sistem liposom dapat melindungi peptida yang dienkapsulasi dari degradasi protease. Selain itu, pembawa liposom disajikan sebagai alternatif yang menjanjikan untuk mengoptimalkan pemberian cathelicidin dalam hal dosis, pola pengiriman, dan keamanan.
APA, Harvard, Vancouver, ISO, and other styles
6

Rosalina, Ajeng Illastria. "Penghantaran Obat melalui Kulit: Teknologi Vesikel Liposome dan Analognya." Jurnal Kedokteran Meditek 29, no. 1 (January 14, 2023): 109–20. http://dx.doi.org/10.36452/jkdoktmeditek.v29i1.2428.

Full text
Abstract:
Pengembangan teknologi farmasi selalu didorong untuk mengatasi berbagai keterbatasan sediaan yang telah ada sebelumnya. Salah satunya adalah teknologi penghantaran melalui rute transdermal yang memiliki berbagai keuntungan dibandingkan rute lain. Namun, dibalik keuntungan tersebut, penghantaran melalui jalur transdermal juga memiliki banyak hambatan dalam menghantarkan zat aktif. Salah satu hambatan tersebut adalah struktur kulit yang kompleks sebagai barier tubuh, sehingga diperlukan teknologi untuk mengatasi permasalahan tersebut. Salah satu solusinya adalah dengan peningkat penetrasi. Liposom merupakan sistem peningkat penetrasi yang banyak dieksplorasi karena kemampuannya menghantarkan obat hidrofilik dan hidrofobik. Berbagai pengembangan dilakukan untuk meningkatkan kemampuan struktur ini dengan variasi bahan dan metode pembuatan yang menghasilkan variasi karakteristik sistem ini. Dalam kajian ini, penulis membahas berbagai generasi baru liposom terkait keunggulan dan keterbatasannya serta metode pembuatan dan evaluasi sediaannya.
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Amit, Madhu Gupta, and Simran Braya. "Liposome Characterization, Applications and Regulatory landscape in US." International Journal of Drug Regulatory Affairs 9, no. 2 (June 22, 2021): 81–89. http://dx.doi.org/10.22270/ijdra.v9i2.474.

Full text
Abstract:
Liposomes are lipid based drug carrier whose therapeutic performance depends on their structure. Liposomes offer several advantages over the conventional drug like target drug delivery, reduced toxicity, and extended pharmacokinetics. Characterization and Identification of critical attribute of liposomal formulation and suitable strategies for control during product development is important for quality of the liposomal drug product. This paper discusses the current status of the liposomal drug product and strategy used in regulating liposome product. Despite of lack of regulatory guidelines many liposome formulations get approved which shows the potential of liposome drug products.
APA, Harvard, Vancouver, ISO, and other styles
8

Vân, Nguyễn Tường, and Vĩnh Định. "Xây dựng tiêu chuẩn kỹ thuật chế phẩm chứa hoạt chất nanocurcumin dạng liposom." Journal of Science and Technology 1, no. 1 (March 21, 2021): 51–57. http://dx.doi.org/10.55401/jst.v1i1.25.

Full text
Abstract:
Nghiên cứu tập trung xây dựng tiêu chuẩn kỹ thuật cho viên nang mềm chứa hoạt chất nanocurcumin dạng liposom. Viên nang mềm chứa nanocurcumin liposom có công thức là: curcumin toàn phần 15,0 mg và các tá dược sáp ong trắng, dầu cọ, lecithin, dầu đậu nành. Bước đầu tiên là tiến hành phân lập curcumin II, III từ bột nghệ bằng phương pháp sắc ký cột. Pha động là CHCl3-MeOH có độ phân cực tăng dần. Xác định các đặc tính của curcumin II, III như màu sắc, độ tan, độ tinh khiết (sắc ký lớp mỏng, quét nhiệt vi sai, sắc ký lỏng) và cấu trúc chất thu được (phổ hồng ngoại, phổ khối, phổ cộng hưởng từ hạt nhân). Sau đó sử dụng curcumin phân lập được và chuẩn curcumin I (Chromadex, USA) để thẩm định quy trình định lượng đồng thời curcumin I, curcumin II và curcumin III. Xây dựng tiêu chuẩn kỹ thuật cho viên nang mềm chứa nanocurcumin gồm có các chỉ tiêu hình thức, độ đồng đều khối lượng, độ hòa tan, kích thước hạt, định tính, định lượng.
APA, Harvard, Vancouver, ISO, and other styles
9

Anjani, Ida AyuWidya, I. Wayan Windi Artha, Ni Made Ari Purwaningrum, Sinta Wiranata, I. Gede Putu Supadmanaba, and Desak Made Wihandani. "Potensi Kombinasi Naringenin-Liposom Sebagai Anti-Viral dan Anti-Fibrotik dalam Penatalaksanaan Hepatitis C." Jurnal Kesehatan Andalas 9, no. 2 (August 1, 2020): 245. http://dx.doi.org/10.25077/jka.v9i2.1280.

Full text
Abstract:
Penatalaksanaan hepatitis C yang umum diberikan di Indonesia adalah terapi kombinasi Peg-IFNα dan RBV, namun terapi tersebut mempunyai efek samping seperti depresi, hipotiroidisme, memperlambat motorik, risiko kardiovaskular tinggi, dan lain sebagainya. Berdasarkan hal tersebut, maka dibutuhkan alternatif yang dapat meminimalisir efek samping yang ditimbulkan dalam penatalaksanaan hepatitis C, salah satunya menggunakan bahan herbal naringenin. Naringenin adalah flavanon alami yang diketahui memiliki efek hepatoprotektif sebagai anti-viral dan anti-fibrotik pada penatalaksanaan hepatitis C. Metode penulisan yang digunakan dalam karya tulis ilmiah ini adalah metode kajian pustaka. Data yang digunakan berasal dari beberapa sumber literatur yang relevan dan sesuai dengan topik masalah yang dibahas. Naringenin berpotensi sebagai modalitas anti-viral dan anti-fibrotik pada penatalaksanaan hepatitis C. Sebagai anti-viral, naringenin mampu menghambat sekresi virus hepatitis C sebanyak 80% melalui penghambatan aktivitas MTP, ACAT2, dan HMGR. Sebagai anti-fibrotik, naringenin mampu menghambat jalur NF-kB dan TGF-β Smad3, tetapi naringenin memiliki bioavailabilitas dan solubilitas yang rendah, sehingga penyerapannya hanya sebesar 15%. Enkapsulasi naringenin dengan liposom dapat meningkatkan jumlah serapannya pada tubuh, meningkatkan waktu paruh, meningkatkan konsentrasi obat di plasma, serta mudah terkonsentrasi di hati.Kata kunci: hepatitis C, naringenin, liposom, anti-viral, anti-fibrotik
APA, Harvard, Vancouver, ISO, and other styles
10

Umbarkar, Mahesh, Swapnil Thakare, Tanaji Surushe, Amol Giri, and Vaibhav Chopade. "Formulation and Evaluation of Liposome by Thin Film Hydration Method." Journal of Drug Delivery and Therapeutics 11, no. 1 (January 15, 2021): 72–76. http://dx.doi.org/10.22270/jddt.v11i1.4677.

Full text
Abstract:
Liposomes are the most advance formulation for targeting and controlled drug delivery system. These liposomes are generally administered by intra-venous route. In this work the liposome was prepared by using thin film hydration method. The formulated liposome is evaluated or characterised by using zeta sizer, Encapsulation efficiency, Entrapment efficiency, In vitro drug release. Main things are drug which are used for formulation of liposome was Diclofenac sodium, it having anti-inflammatory and anti-pyretic effect. The Diclofenac sodium having several adverse effects, such as depression of renal function, Liver failure for repeated administration, Local mucosal irritation, gastritis. To avoid this adverse effect Diclofenac sodium are incorporate in liposomal formulation. By formulating liposomal formulation, the bioavailability of Diclofenac sodium increase. In conventional dosage form bioavailability of diclofenac sodium is 50℅. But in liposomal formulation bioavailability of this drug increase. The final result includes that diclofenac liposome formulation shows more sustained and prolong anti-inflammatory activity. Keywords: Diclofenac sodium, Liposome, Anti-inflammatory activity.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Liposom"

1

Groth, Detlef. "Entwicklung von liposomalen Gentransfervesikeln auf der Grundlage optimierter kationischer Lipide." [S.l. : s.n.], 2000. http://www.diss.fu-berlin.de/2000/143/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gutmayer, Dominic. "Synthese eines Polymerskeletts in Liposomen über pH-abhängige Membranadsorption von Monomeren." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971814090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Figger, Christian. "Elektrische Kopplung zwischen Lipidvesikeln und Siliziumchips." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969864787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kalz, Franz-Peter. "Untersuchungen für die Anwendung von aromatischen Endoperoxiden in Liposomen und Polymeren zur Tumortherapie." kostenfrei, 2006. http://www.opus-bayern.de/uni-regensburg/volltexte/2009/1293/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frantescu, Alina. "DNA/Ca-Adsorption an Lipidmembran-Oberflächen für den effizienten elektroporativen Gen-Transfer in Gewebezellen." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976104628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wiggenhorn, Michael. "Scale-Up of Liposome Manufacturing." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-84870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huebner, Stefan Rolf. "Struktur und Entstehung von Komplexen aus kationischen Lipiden und DNS." [S.l.] : S. Huebner, 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962138738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berger, Nicole. "Herstellung und Charakterisierung hochdruckhomogenisierter und filterextrudierter calcein- und iopamidolhaltiger Liposomen im Vergleich /." [S.l. : s.n.], 1999. http://www.gbv.de/dms/bs/toc/303411341.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Engel, Robert. "Flüssige, wasserdispergierbare Phytosterol-Formulierungen zur Senkung des Serum-Cholesterolspiegels." München Verl. Dr. Hut, 2007. http://d-nb.info/987370812/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peters, Heinz. "Das Photoreaktionszentrum aus Rhodobacter sphaeroides als Modellmembranprotein zur Reinigung, Rekonstitution in Liposomen aus ungewöhnlichen Phospholipiden, Charakterisierung und heterologen Expression." [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9818587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Liposom"

1

Nejat Du zgu nes ʹ. Liposomes. San Diego: Elsevier Academic Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liposomes in gene delivery. Boca Raton, FL: CRC Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Betageri, Guru V. Liposome drug delivery systems. Lancaster: Technomic Pub., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Price, Carl I. Local liposome drug delivery: An overlooked application. Austin, Texas: R.G. Landes Company, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Price, Carl I. Local liposome drug delivery: An overlooked application. Austin: R.G. Landes, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Price, Carl I. Local liposome drug delivery: An overlooked application. Austin, TX: R. G. Landes Co., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

ʹ, Nejat Du zgu nes. Liposomes. Amsterdam: Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Otto, Braun-Falco, Korting Hans Christian, and Maibach Howard I, eds. Liposome dermatics. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gregory, Gregoriadis, ed. Liposome technology. 2nd ed. Boca Raton, Fla: CRC Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Braun-Falco, Otto, Hans Christian Korting, and Howard I. Maibach, eds. Liposome Dermatics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48391-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Liposom"

1

Bährle-Rapp, Marina. "unilamellares Liposom." In Springer Lexikon Kosmetik und Körperpflege, 573. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bährle-Rapp, Marina. "multilamellares Liposom." In Springer Lexikon Kosmetik und Körperpflege, 361. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nahler, Gerhard. "liposome." In Dictionary of Pharmaceutical Medicine, 106–7. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89836-9_793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buijs, Maritska. "Lipoom." In Kleine kwalen in de huisartsenpraktijk, 123–25. Houten: Bohn Stafleu van Loghum, 2018. http://dx.doi.org/10.1007/978-90-368-2251-0_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loth, Helmut. "Percutaneous Absorption and Conventional Penetration Enhancers." In Liposome Dermatics, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48391-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kriftner, Robert W. "Liposome Production: The Ethanol Injection Technique and the Development of the First Approved Liposome Dermatic." In Liposome Dermatics, 91–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48391-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weder, H. G. "Liposome Production: The Sizing-Up Technology Starting from Mixed Micelles and the Scaling-Up Procedure for the Topical Glucocorticoid Betamethasone Dipropionate and Betamethasone." In Liposome Dermatics, 101–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48391-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Röding, Joachim. "Properties and Characterization of Pre-Liposome Systems." In Liposome Dermatics, 110–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48391-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bouwstra, J. A., H. E. J. Hofland, F. Spies, G. S. Gooris, and H. E. Junginger. "Changes in the Structure of the Human Stratum Corneum Induced by Liposomes." In Liposome Dermatics, 121–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48391-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boddé, H. E., L. A. R. M. Pechtold, M. T. A. Subnel, and F. H. N. de Haan. "Monitoring in vivo Skin Hydration by Liposomes Using Infrared Spectroscopy in Conjunction with Tape Stripping." In Liposome Dermatics, 137–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48391-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Liposom"

1

Zhang, Aili, Xipeng Mi, and Lisa X. Xu. "Study of Thermally Targeted Nano-Particle Drug Delivery for Tumor Therapy." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52383.

Full text
Abstract:
The efficacy of cancer chemotherapeutics could be greatly enhanced by thermally targeted nanoparticle liposome drug delivery system. The tumor microvasculature response to hyperthermia and its permeability to the nano-liposomes were studied using the 4T1 mouse model and confocal fluorescence microscopy. Based on the experimental results, a new theoretical model was developed to describe the distributions of both the liposomal and free drug released as liposomes broke in tumor for treatment evaluation. In this model, the tumor was divided into two regions: peripheral and central. The drug effect on the tumor cell apoptosis and necrosis was considered. Upon the experimental validation, the model was used to simulate drug distribution in the tumor under either the hyperthermic or the alternate freezing and heating condition. Results showed that hyperthermia alone only enhanced drug accumulation in the tumor periphery and therefore more serious tumor damage induced in the region. But the tumor cells in the central region were hardly damaged due to the lack of drug diffusion. The alternate freezing and heating was proposed to aid the nanoliposomal drug delivery, and better results were found.
APA, Harvard, Vancouver, ISO, and other styles
2

Tartis, Michaelann S., Jan Marik, Azadeh Kheirolomoom, Rachel E. Pollard, Hua Zhang, Jinyi Qi, Julie L. Sutcliffe, and Katherine W. Ferrara. "Pharmacokinetics of Encapsulated Paclitaxel: Multi-Probe Analysis With PET." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176435.

Full text
Abstract:
We have combined two imaging probes and used PET as a means to provide image-based validation for a novel targeted drug delivery system. The first probe was a direct labeling of the drug [18F]fluoropaclitaxel [1–3], which was inserted into various carrier vehicle formulations. The second probe, [18F]fluoro-1,2-dipalmitoyl-sn-glycerol, i.e. [18F]FDP involved radiolabeling the lipid vehicle. Paclitaxel, which is poorly soluble in aqueous media, also has limited solubility and stability in lipophilic environments such as liposomes. Stable association of paclitaxel with the lipid bilayer is affected by a variety of physicochemical factors such as temperature and liposome composition. Paclitaxel crystal formation has been documented, with two forms of solid state within aqueous media and organic solvents, although crystal conformation differs in each media [4,5]. We provide dynamic in vivo image sets providing biodistribution and time activity curves of free [18F]fluoropaclitaxel and liposomal [18F]fluoropaclitaxel as well as free [18F]FDP, liposomal [18F]FDP, and [18F]FDP in an ultrasound contrast agent. Serial studies were performed within a small group of rats, minimizing inter-animal variability. The two labeled molecules have different biodistributions: paclitaxel is rapidly taken up in the liver, intestines and kidneys, while the labeled lipid incorporated into liposomes stays in circulation with minimal uptake in organs other than spleen. Here, we have developed a quantitative method to follow paclitaxel and lipid vehicles to their destination in vivo in order to improve targeted paclitaxel delivery.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Eunice S., Christel M. Munoz, Blake A. Simmons, C. R. Bowe Ellis, and Rafael V. Davalos. "Feasibility Study on the Use of Temperature-Dependent Liposomes for Variable Concentration Profiles in Drug Delivery Applications." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61303.

Full text
Abstract:
A novel methodology for delivering variable drug concentration profiles utilizes a combination of liposomes that destabilize at different rates at body temperature (37° C). Liposomes serve as the mobile drug delivery vehicle and release drugs into the body upon destabilization. Liposome destabilization is studied by monitoring the absorbance spectrum of fluorescent dyes. By combining liposomes of various compositions, concentration profiles that are optimized and tailored to specific patients and applications are feasible.
APA, Harvard, Vancouver, ISO, and other styles
4

Larsen, Jannik. "Single liposome fluorescent imaging reveal heterogeneous pegylation of drug delivery liposomes." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Yifan, Dongmei Zhou, Xiaofang Xie, Bohan Dong, Yan Zhuang, and Mingbin Zheng. "A novel low-toxic liposomal adjuvant: Different liposome compositions regulate monocyte activation and viability." In 2009 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL). IEEE, 2009. http://dx.doi.org/10.1109/isabel.2009.5373686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mogilevich, Elizaveta Igorevna, Natalia Viktorovna Biriukova, Olga Vladimirovna Nesterova, and Nadezhda Viktorovna Nesterova. "Liposomy." In International Research-to-practice conference. TSNS Interaktiv Plus, 2022. http://dx.doi.org/10.21661/r-556830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sax, Nicolas, Sachiko Horie, Li Li, Maya Sakamoto, Shiro Mori, and Tetsuya Kodama. "Effects of the liposomal formulation on the behavior and physical characteristics of acoustic liposomes." In NONLINEAR ACOUSTICS STATE-OF-THE-ART AND PERSPECTIVES: 19th International Symposium on Nonlinear Acoustics. AIP, 2012. http://dx.doi.org/10.1063/1.4749337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smaldon, James, Natalio Krasnogor, Cameron Alexander, and Marian Gheorghe. "Liposome logic." In the 11th Annual conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1569901.1569924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Espelin, C., E. Geretti, S. Coma, Z. Koncki, S. Leonard, N. Dumont, J. Reynolds, I. Molnar, and T. Wickham. "Abstract P3-06-05: Receptor-mediated binding of HER2-targeted antibody-liposomal doxorubicin conjugate MM-302 increases liposome binding, nuclear doxorubicin, DNA damage and efficacy relative to untargeted PEGylated liposomal doxorubicin (PLD/Doxil)." In Abstracts: 2016 San Antonio Breast Cancer Symposium; December 6-10, 2016; San Antonio, Texas. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.sabcs16-p3-06-05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Liposome design for drug delivery." In International Conference on Medicine, Public Health and Biological Sciences. CASRP Publishing Company, Ltd. Uk, 2016. http://dx.doi.org/10.18869/mphbs.2016.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Liposom"

1

Joyce, Christine, and Deidre Mountain. Optimization of Liposomal Encapsulation Efficiency. University of Tennessee Health Science Center, 2021. http://dx.doi.org/10.21007/com.lsp.2018.0002.

Full text
Abstract:
Introduction: My project was a continuation of the Vascular Research Lab’s (VRL) ongoing research at the University of Tennessee Medical Center Knoxville (UTMCK) aimed at optimizing liposomal encapsulation efficiency of small interfering RNA (siRNA) which can be used to silence genes to prevent a variety of disease pathologies. Methods: Assay siRNA loading capacity of liposomes based on lipid concentration Development of a method for liposome purification: HPLC & HiTRAP Column Results & Conclusion: siRNA loading capacity Higher lipid:siRNA resulted in increased encapsulation efficiency HPLC – did not work as expected HiTRAP Column – currently being optimized to be used as part of standard operating procedures
APA, Harvard, Vancouver, ISO, and other styles
2

Hawthorne, M. F. Boronated liposome development and evaluation. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/421328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Phillips, William T. In Vivo Distribution of Liposome Encapsulated Hemoglobin Studied with Imaging Radiotracers. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada262533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klostergaard, Jim. Liposomal Sphingolipids to Target Breast Adenocarcinoma Apoptosis. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada395708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, Yung-Sung, C. R. Lyons, and M. H. Schmid. Delivery of aerosolized drugs encapsulated in liposomes. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/381350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Klostergaard, Jim. Liposomal Sphingolipids to Target Breast Adenocarcinoma Apoptosis. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada412990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klostergaard, Jim. Liposomal Sphingolipids to Target Breast Adenocarcinoma Apoptosis. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada418571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

VanderMeulen, David L., Prabhakar Misra, Jason Michael, Kenneth G. Spears, and Mustafa Khoka. Laser Mediated Release of Dye form Liposomes,. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada249203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klostergaard, Jim. Liposomal Sphingolipids to Target Breast Adenocarcinoma Apoptosis. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada383846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burke, Thomas G. Evaluation of Liposome-Encapsulated Hemoglobin/LR16 Formulation as a Potential Blood Substitute. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada233973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography