Academic literature on the topic 'Lippia (Genus)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lippia (Genus).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lippia (Genus)"
Viccini, L. F., P. M. O. Pierre, M. M. Praça, D. C. Souza da Costa, E. da Costa Romanel, S. M. de Sousa, P. H. Pereira Peixoto, and F. R. Gonçalves Salimena. "Chromosome numbers in the genus Lippia (Verbenaceae)." Plant Systematics and Evolution 256, no. 1-4 (October 20, 2005): 171–78. http://dx.doi.org/10.1007/s00606-005-0351-3.
Full textFilho, José G. Sena, Jennifer M. Duringer, Daniel E. A. Uchoa, Haroudo S. Xavier, Jose M. Barbosa Filho, and Raimundo Braz Filho. "Distribution of Iridoid Glucosides in Plants from the Genus Lippia (Verbenaceae): An investigation of Lippia alba (Mill.) N.E. Brown." Natural Product Communications 2, no. 7 (July 2007): 1934578X0700200. http://dx.doi.org/10.1177/1934578x0700200701.
Full textSantos, Daiane Rodrigues, Lenaldo Muniz Oliveira, Angelica Maria Lucchese, Alexandre De Freitas Espeleta, Jucelho Dantas Da Cruz, and Maurício Santana Lordelo. "Insecticidal activity of essential oils of species from the genus Lippia against Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae)." Sociobiology 67, no. 2 (June 30, 2020): 292. http://dx.doi.org/10.13102/sociobiology.v67i2.4992.
Full textSousa, Saulo M., Giovana A. Torres, and Lyderson F. Viccini. "Karyological studies in Brazilian species of Lippia L. (Verbenaceae)." Anais da Academia Brasileira de Ciências 84, no. 4 (November 9, 2012): 1029–37. http://dx.doi.org/10.1590/s0001-37652012005000068.
Full textFUNARI, Cristiano S., Letícia de ALMEIDA, Thais G. PASSALACQUA, Isabel MARTINEZ, Daniela L. AMBRÓSIO, Regina Maria B. CICARELLI, Dulce Helena S. SILVA, and Márcia A. S. GRAMINHA. "Oleanonic acid from Lippia lupulina (Verbenaceae) shows strong in vitro antileishmanial and antitrypanosomal activity." Acta Amazonica 46, no. 4 (December 2016): 411–16. http://dx.doi.org/10.1590/1809-4392201600204.
Full textSiqueira-Lima, Pollyana S., Fabiolla R. S. Passos, Angélica M. Lucchese, Irwin R. A. Menezes, Henrique D. M. Coutinho, Adley A. N. Lima, Gokhan Zengin, Jullyana S. S. Quintans, and Lucindo J. Quintans-Júnior. "Central nervous system and analgesic profiles of Lippia genus." Revista Brasileira de Farmacognosia 29, no. 1 (January 2019): 125–35. http://dx.doi.org/10.1016/j.bjp.2018.11.006.
Full textOliveira, Ariana Reis Messias Fernandes de, Lenaldo Muniz Oliveira, José Floriano Barea Pastore, Tânia Regina dos Santos Silva, and Larissa Correa do Bonfim Costa. "AGRONOMIC AND MORPHOLOGICAL CHARACTERIZATION OF LIPPIA (VERBENACEAE) SPECIES NATIVE FROM BRAZILIAN SEMIARID REGION." BRAZILIAN JOURNAL OF AGRICULTURE - Revista de Agricultura 92, no. 2 (August 8, 2017): 147. http://dx.doi.org/10.37856/bja.v92i2.3189.
Full textSantos, C. P., D. S. Rocha, M. M. Bajay, F. R. C. Santos, J. B. Campos, J. B. Pinheiro, M. I. Zucchi, R. Silva-Mann, M. F. Arrigoni-Blank, and A. F. Blank. "Cross-species transferability of microsatellite markers in the genus Lippia." Genetics and Molecular Research 13, no. 4 (2014): 9846–50. http://dx.doi.org/10.4238/2014.november.27.11.
Full textde Campos, José Marcello Salabert, Saulo Marçal Sousa, Pâmela Souza Silva, Lucas Cézar Pinheiro, Fernanda Sampaio, and Lyderson Facio Viccini. "Chromosome numbers and DNA C values in the genus Lippia (Verbenaceae)." Plant Systematics and Evolution 291, no. 1-2 (November 11, 2010): 133–40. http://dx.doi.org/10.1007/s00606-010-0370-6.
Full textSousa, Saulo M., Patrícia M. O. Pierre, Giovana A. Torres, Lisete C. Davide, and Lyderson F. Viccini. "Relationship between pollen morphology and chromosome numbers in Brazilian species of Lippia L. (Verbenaceae)." Anais da Academia Brasileira de Ciências 85, no. 1 (March 1, 2013): 147–57. http://dx.doi.org/10.1590/s0001-37652013005000010.
Full textDissertations / Theses on the topic "Lippia (Genus)"
Terblanche, Francois Cornelius. "Die karakterisering, benutting en vervaardiging van produkte herwin vanuit Lippia scaberrima Sond." Pretoria : [s.n.], 2000. http://upetd.up.ac.za/thesis/available/etd-09062001-100658.
Full textMpati, Kwena Winnie. "Response of fever tea (Lippia Javanica) to fertigation frequency, growth medium and propagation method." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-02202007-113732.
Full textBueno, Neto Cyro. "Expressão gênica diferencial na caracterização de espécies de Lippia /." Jaboticabal, 2014. http://hdl.handle.net/11449/122187.
Full textBanca: Janete Apparecida Desidério
Banca: Bianca Waleria Bertoni
Resumo: A utilização de plantas na produção de medicamentos deve estar amparada na correta escolha das plantas de onde serão coletados os metabólitos vegetais, isso é de vital importância, posto que a utilização incorreta de uma espécie como provocar sérios danos a saúde do usuário. Em relação ao gênero Lippia, muitas espécies dentro do gênero, produzem metabolitos secundários de inegável importância farmacológica, no entanto apresentam muitas vezes características morfológicas muito similares o que tem concorrido para a identificação errônea da espécie. Nesse trabalho o objetivo foi utilizar técnicas moleculares (Differential Display - PCR e cDNA-AFLP) para auxiliar a identificação dessas espécies através de marcadores moleculares, também se buscou a identificação dos genes que participam nas vias de produção dos metabolitos secundários majoritários dessas espécies. Os resultados obtidos com o Differential Display não detectaram genes envolvidos com a síntese dos metabólitos, porém foram identificadas sequências de microssatèlites e tranposons que podem ser envolvidas na produção desses compostos. Com o cDNA-AFLP não foi possível separar as espécies em relação aos metabólitos secundários produzidos por ela, o que foi observado é uma grande influência do ambiente, bem como de fatores genéticos na produção desses compostos
Abstract: The use of plants in the production of drugs must be supported in the correct choice of plants from which the plant metabolites will be collected, it is of vital importance, since the misuse of a species can cause serious damage to the user's health. Regarding the genus Lippia, many species within the genus, producing secondary metabolites of undeniable pharmacological importance, however they present very similar morphological characteristics which have contributed to the misidentification of species. In this study the objective was to use molecular techniques (Differential Display - PCR and cDNA-AFLP) to assist in identification of these species using molecular markers, also sought to identify genes involved in production routes of the major secondary metabolites of these species. The results obtained by the Differential Display did not detect genes involved in the synthesis of metabolites, however tranposons and microsatellites sequences were identified that may be involved in the production of these compounds. The cDNA-AFLP could not separate the species in relation to secondary metabolites produced by the plants, what was observed is a great influence of the environment, as well as genetic factors in the production of these compounds
Mestre
Bueno, Neto Cyro [UNESP]. "Expressão gênica diferencial na caracterização de espécies de Lippia." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/122187.
Full textA utilização de plantas na produção de medicamentos deve estar amparada na correta escolha das plantas de onde serão coletados os metabólitos vegetais, isso é de vital importância, posto que a utilização incorreta de uma espécie como provocar sérios danos a saúde do usuário. Em relação ao gênero Lippia, muitas espécies dentro do gênero, produzem metabolitos secundários de inegável importância farmacológica, no entanto apresentam muitas vezes características morfológicas muito similares o que tem concorrido para a identificação errônea da espécie. Nesse trabalho o objetivo foi utilizar técnicas moleculares (Differential Display – PCR e cDNA-AFLP) para auxiliar a identificação dessas espécies através de marcadores moleculares, também se buscou a identificação dos genes que participam nas vias de produção dos metabolitos secundários majoritários dessas espécies. Os resultados obtidos com o Differential Display não detectaram genes envolvidos com a síntese dos metabólitos, porém foram identificadas sequências de microssatèlites e tranposons que podem ser envolvidas na produção desses compostos. Com o cDNA-AFLP não foi possível separar as espécies em relação aos metabólitos secundários produzidos por ela, o que foi observado é uma grande influência do ambiente, bem como de fatores genéticos na produção desses compostos
The use of plants in the production of drugs must be supported in the correct choice of plants from which the plant metabolites will be collected, it is of vital importance, since the misuse of a species can cause serious damage to the user's health. Regarding the genus Lippia, many species within the genus, producing secondary metabolites of undeniable pharmacological importance, however they present very similar morphological characteristics which have contributed to the misidentification of species. In this study the objective was to use molecular techniques (Differential Display - PCR and cDNA-AFLP) to assist in identification of these species using molecular markers, also sought to identify genes involved in production routes of the major secondary metabolites of these species. The results obtained by the Differential Display did not detect genes involved in the synthesis of metabolites, however tranposons and microsatellites sequences were identified that may be involved in the production of these compounds. The cDNA-AFLP could not separate the species in relation to secondary metabolites produced by the plants, what was observed is a great influence of the environment, as well as genetic factors in the production of these compounds
José, Diego Pandeló. "Clonagem e caracterização parcial de dois genes de enzimas da via de terpenos em Lippia alba (MILL) N.E. (Verbenaceae)." Universidade Federal de Juiz de Fora (UFJF), 2009. https://repositorio.ufjf.br/jspui/handle/ufjf/3964.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-04T15:36:35Z (GMT) No. of bitstreams: 1 diegopandelojose.pdf: 913814 bytes, checksum: 7e149c7c8e0bee3253c4894426a6892c (MD5)
Made available in DSpace on 2017-04-04T15:36:35Z (GMT). No. of bitstreams: 1 diegopandelojose.pdf: 913814 bytes, checksum: 7e149c7c8e0bee3253c4894426a6892c (MD5) Previous issue date: 2009-03-03
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
O gênero Lippia pertence à família Verbenaceae, inclusa no clado Asteridaee, ordem Lamiales, compreendendo aproximadamente 175 gêneros e 2800 espécies, onde muitos gêneros apresentam plantas com propriedades medicinais e ornamentais. A espécie Lippia alba, originária da América do Sul, também ocorre no Brasil e é uma das mais estudadas do gênero Lippia. Ela floresce durante o ano todo e recebe grande destaque no gênero, devido às suas inúmeras propriedades medicinais. O óleo essencial de Lippia alba é composto basicamente por sesqui e monoterpenos, que são as substâncias responsáveis por suas propriedades medicinais. O objetivo central do presente trabalho foi clonar e analisar a expressão de dois potenciais genes codificadores de terpeno sintases em Lippia alba. Através do alinhamento de genes codificadores de monoterpeno sintases caracterizadas, primers degenerados foram desenhados dentro de regiões conservadas e utilizados para se obter a clonagem de genes codificadores de terpeno sintases em Lippia alba. Dois potenciais genes codificadores de terpeno sintases foram clonados, LaTPS12 e LaTPS23. Após a clonagem, técnicas de RT-PCR semiquantitativo foram empregadas para análises de expressão desses dois genes em diferentes estágios foliares e em três diferentes quimiotipos de Lippia alba. Os resultados mostraram que em folhas situadas no quarto segmento nodal o gene LaTPS12 apresenta maior nível de expressão. A diferença na expressão do gene LaTPS23 foi menos acentuada nos três quimiotipos analisados em relação ao gene LaTPS12, que apresentou uma expressão diferencial. Análises filogenéticas foram realizadas comparando-se as seqüências desses dois genes com outros genes codificadores de terpeno sintases já caracterizadas de diferentes espécies de plantas. De acordo com essas análises, LaTPS12 e LaTPS23 pertencem à classe TPS-b, que é composta principalmente por monoterpeno sintases de angiospermas.
The genus Lippia belongs to Verbenaceae family, Asteridaee, order Lamiales. This family comprises about 175 genus and 2800 species, and many of them have medicals and ornamentals proprierties. Lippia alba is native from South America, and is also found in Brazil and is the most studied species of the genus Lippia. This plant blooms throughout the year and has great importance due to its medicinal properties. The Lippia alba essential oils are composed by sesquiterpenes and monoterpenes conferring its medicinal properties. The aim of this work was to clone and to analize gene expression of putative terpene synthases genes (TPS) in Lippia alba. Alignment of TPS genes was used to design degenerate primers into conserved domains for cloning of these genes in Lippia alba. We have cloned two putative TPS genes, LaTPS12 and LaTPS23. After cloning, semiquantitative RT-PCR was employed to expression analysis of these two genes in different leaf stages and among three different chemotypes of Lippia alba. The result of expression level showed that LaTPS12 occurred at higher level in leaves located in fourth nodal segment and showed a marked differential expression among the chemotypes. The difference of expression of the LaTPS23 was less prominent comparing the three studied chemotypes. We performed a phylogenetic analysis in order to compare the LaTPS12 and LaTPS23 to others TPS genes in different plant species. The results showed that these LaTPS12 and LaTPS23 belong to the class TPS-b, which comprises mainly angiosperms monoterpene synthases genes.
Meidtner, Karina. "Analysis of lipid metabolism-related candidate genes in swine." kostenfrei, 2008. http://mediatum2.ub.tum.de/node?id=629093.
Full textMolina, Maria Isabel. "Enzymes and genes involved in biosynthesis of plant lipid polyesters." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textZhang, Qiuping. "Genetic variants of lipid transport genes, dyslipidaemia and coronary heart disease." Thesis, Queen Mary, University of London, 1997. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1642.
Full textPandeirada, Ana Raquel Gonçalves. "Association between common lipid metabolism genes polymorphisms and sporadic colorectal adenocarcinoma risk." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/16151.
Full textLipids can modulate the risk of developing sporadic colorectal adenocarcinoma (SCA), since alterations into lipid metabolism and transport pathways influence directly cholesterol and lipids absorption by colonic cells and indirectly reactive oxygen species (ROS) synthesis in rectum cells due to lipid accumulation. Lipid metabolism is regulated by several proteins APOA1, APOB, APOC3, APOE, CETP, NPY, PON1 and PPARG that could influence both metabolism and transport processes. Is been reported that several common single-nucleotide polymorphisms (SNPs) in these genes could influence their function and/or expression, changing lipid metabolism balance. Thus, genetic changes in those genes can influence SCA development, once the majority of them were never studied in this disease. Furthermore, there are contradictory results between some studied polymorphisms and SCA risk. Thus, the aim of this study was to explore and describe lipid metabolism-associated genes common polymorphisms (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) status among SCA, and their relationship with SCA risk. Genotyping of common lipid metabolism genes polymorphisms (APOA1 75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) were done by PCR-SSP techniques, from formalin-fixed and paraffin-embedded biopsies of 100 healthy individuals and 68 SCA subjects. Mutant genotypes of APOA1 -75AA (32% vs 12%; p=0.001; OR=3.51; 95% CI 1.59-7.72); APOB 3500AA (7% vs 0%; p=0.01); APOC3 3175GG (19% vs 2%; p=0.0002; OR=11.58; 95% CI 2.52-53.22), APOC3 3206GG (19% vs 0%; p<0.0001); CETP 279AA (12% vs 1%; p=0.003; OR=13.20; 95% CI 1.61-108.17), CETP 451AA (16% vs 0%; p<0.0001); NPY 7CC (15% vs 0%; p<0.0001); PPARG 12GG (10% vs 0%; p=0.001); and heterozygote genotype PON1 192AG (56% vs 22%; p<0.0001; OR=4.49; 95% CI 2.298.80) were found associated with SCA prevalence. While, APOE E4/E4 (0% vs 8%; p=0.02) mutant haplotype seemed to have a protective effect on SCA. Moreover, it also been founded differences between APOB 3500GA, APOC3 3206TG, CETP 279AA genotypes and PPARG 12Ala allele prevalence and tissue localization (colon vs rectum). These findings suggest a positive association between most of common lipid metabolism genes polymorphisms studied and SCA prevalence. Dysregulation of APOA1, APOB, APOC3, CETP, NPY, PON1 and PPARG genes could be associated with lower cholesterol plasma levels and increase ROS among colon and rectum mucosa. Furthermore, these results also support the hypothesis that CRC is related with intestinal lipid absorption decrease and secondary bile acids production increase. Moreover, the polymorphisms studied may play an important role as biomarkers to SCA susceptibility.
Os lípidos podem modular o risco de desenvolver Adenocarcinoma Colorectal Esporádico (ACE), uma vez que alterações nas vias do metabolismo e do transporte lipídico podem influenciar diretamente a absorção do colesterol e dos lípidos pelas células do cólon e indiretamente a síntese de espécies reativas de oxigénio (ERO) no reto, devido à acumulação de lípidos. O metabolismo lipídico é regulado por várias proteínas (APOA1, APOB, APOC3, APOE, CETP, NPY, PON1, PPARG) que podem influenciar o metabolismo e o transporte de lípidos. Tem sido reportados nestes genes, vários polimorfismos comuns (SNP) que podem alterar a sua função e/ ou a expressão, causando um desequilíbrio no metabolismo dos lípidos. Estas alterações genéticas podem influenciar o desenvolvimento de ACE, no entanto a maioria dos polimorfismos nunca foram estudados nesta patologia. Além disso, existem resultados contraditórios entre alguns dos polimorfismos e o risco de ACE. Deste modo, o objetivo deste estudo foi explorar e descrever o efeito dos polimorfismos comuns de genes associados ao metabolismo lipídico (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) no ACE e a sua relação com o risco de desenvolver ACE. A genotipagem dos polimorfismos comuns de genes associados ao metabolismo lipídico (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) foi efetuada pela técnica de PCR-SSP, a partir de biópsias incluídas em parafina e fixadas em formol de 100 indivíduos saudáveis e de 68 indivíduos com ACE. Os genótipos mutantes APOA1 -75AA (32% vs 12%; p=0.001; OR=3.51; 95% CI 1.59-7.72); APOB 3500AA (7% vs 0%; p=0.01); APOC3 3175GG (19% vs 2%; p=0.0002; OR=11.58; 95% CI 2.52-53.22), APOC3 3206GG (19% vs 0%; p<0.0001); CETP 279AA (12% vs 1%; p=0.003; OR=13.20; 95% CI 1.61-108.17), CETP 451AA (16% vs 0%; p<0.0001); NPY 7CC (15% vs 0%; p<0.0001); PPARG 12GG (10% vs 0%; p=0.001); e o genótipo heterozigótico PON1 192AG (56% vs 22%; p<0.0001; OR=4.49; 95% CI 2.29-8.80) demonstraram estar associados à prevalência de ACE. Enquanto, o haplótipo mutante APOE E4/E4 (0% vs 8%; p=0.02) mostrou ter um efeito protetor no ACE. Adicionalmente, também foram encontradas diferenças entre a prevalência e a localização tumoral (cólon ou reto) para os genótipos APOB 3500GA, APOC3 3206TG, CETP 279AA e para o alelo PPARG 12Ala. Estes resultados sugerem uma associação positiva entre a maioria dos polimorfismos genéticos comuns estudados envolvidos no metabolismo lipídico e a prevalência de ACE. A desregulação dos genes APOA1, APOB, APOC3, CETP, NPY, PON1, PPARG poderá estar associada com a diminuição dos níveis plasmáticos de colesterol e o aumento de ERO na mucosa do colon e do reto. Para além disso, estes resultados também suportam a hipótese de que o CCR esta relacionado com a diminuição da absorção intestinal e com o aumento da produção de ácidos biliares secundários. Adicionalmente, os polimorfismos estudados podem desempenhar um importante papel como biomarcadores de suscetibilidade para ACE.
Munroe, Patricia Bernadette. "Analysis of genes involved in glucose and lipid metabolism as candidates for essential hypertension." Thesis, Queen Mary, University of London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321735.
Full textBooks on the topic "Lippia (Genus)"
Aston, Stephen, Geraint Davies, and Nick Beeching. Mycobacterial infection other than tuberculosis. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0311.
Full textFire in the Genes- Poly-MVA the Cancer Answer? (A Personal research on Cancer and Palladium Lipoic Complexes). Foundation for the Advancement of Med, 2000.
Find full textRenton, Alan E., and Alison M. Goate. Genetics of Dementia. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0051.
Full textGifford-Gonzalez, Diane. Pastoralism in sub-Saharan Africa. Edited by Umberto Albarella, Mauro Rizzetto, Hannah Russ, Kim Vickers, and Sarah Viner-Daniels. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199686476.013.27.
Full textBook chapters on the topic "Lippia (Genus)"
Marchant, R., and I. M. Banat. "The Genus Geobacillus and Hydrocarbon Utilization." In Handbook of Hydrocarbon and Lipid Microbiology, 1887–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_138.
Full textGengenbach, Burle, Margaret Egli, Sheila Lutz, David Somers, John Gronwald, and Don Wyse. "Maize Acetyl-CoEnzyme a Carboxylase Genes." In Plant Lipid Metabolism, 43–45. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8394-7_12.
Full textde Boer, Gert-Jan, Martin M. Kater, Alwin R. Wagenaar, Tony Fawcett, Toni R. Slabas, H. John, J. Nijkamp, and Antoine R. Stuitje. "Structure of Plant Enoyl-ACP Reductase Genes." In Plant Lipid Metabolism, 467–69. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8394-7_127.
Full textBossé, Yohan. "Genes, Exercise, and Lipid Metabolism." In Genetic and Molecular Aspects of Sport Performance, 227–39. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444327335.ch20.
Full textParimoo, Satish, and Pappas Apostolos. "Skin Stearoyl-CoA Desaturase Genes." In Stearoyl-CoA Desaturase Genes in Lipid Metabolism, 13–25. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7969-7_2.
Full textBreslow, Jan L. "Isolation and Characterization of the Apolipoprotein Genes." In Drugs Affecting Lipid Metabolism VIII, 121–24. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2459-1_10.
Full textStaley, J. T. "Cycloclasticus: A Genus of Marine Polycyclic Aromatic Hydrocarbon Degrading Bacteria." In Handbook of Hydrocarbon and Lipid Microbiology, 1781–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_128.
Full textNikolau, Basil J., Xiaojie Xu, Yiji Xia, Joel D. Hansen, Shane Heinen, Tsui-Jung Wen, Massimo Delledonne, and Patrick S. Schnable. "Molecular Cloning and Characterization of Genes Involved in Cuticular Wax Biosynthesis." In Plant Lipid Metabolism, 127–30. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8394-7_37.
Full textSmith, Stephen B. "Functional Development of Stearoyl-CoA Desaturase Gene Expression in Livestock Species." In Stearoyl-CoA Desaturase Genes in Lipid Metabolism, 141–59. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7969-7_12.
Full textBernlohr, David A., and M. Daniel Lane. "Early Studies on Role of Stearoyl-CoA Desaturase During Preadipocyte Differentiation." In Stearoyl-CoA Desaturase Genes in Lipid Metabolism, 1–11. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7969-7_1.
Full textConference papers on the topic "Lippia (Genus)"
Moiseeva, E. V., L. P. Bobrikova, E. V. Karaseva, A. A. Khudokormov, A. A. Samkov, and N. N. Volchenko. "Taxonomic diversity of lipolytic bacteria isolated at oil refineries in Krasnodar that is promising for bio-preparation." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.173.
Full textEl-fadl, Rihab, Nasser Rizk, Amena Fadel, and Abdelrahman El Gamal. "The Profile of Hepatic Gene Expression of Glucose Metabolism in Mice on High Fat Diet." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0213.
Full textLiao, H., M. Monaghan, A. Dhundale, C. Rubin, and S. Judex. "The expression of lipid metabolism genes in bone are altered by mechanical stimuli." In 2007 IEEE 33rd Annual Northeast Bioengineering Conference. IEEE, 2007. http://dx.doi.org/10.1109/nebc.2007.4413264.
Full textLi, J., S. Bevans-Fonti, LA Shimoda, GL Semenza, and VY Polotsky. "Hypoxia Up-Regulates Genes of Lipid Biosynthesis Via Hypoxia Inducible Factor 1 (HIF-1)." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5333.
Full textPavlenko, O. S., D. A. Evdokimov, N. S. Sadovskaya, O. N. Mustafayev, R. A. Sidorov, and I. V. Goldenkova-Pavlova. "Transcriptome analysis of Euonymus europaeusat different stages of fetal development revealed key lipid metabolism genes." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-330.
Full textSilva, D. L., B. R. Carvalho, H. C. Ferreira Júnior, H. C. Oliveira, L. F. T. Albino, H. S. Rostagno, J. E. Pettigrew, S. E. F. Guimarães, and M. I. Hannas. "Sources and levels of zinc affect the expression of genes involved in broiler lipid metabolism." In 6th EAAP International Symposium on Energy and Protein Metabolism and Nutrition. The Netherlands: Wageningen Academic Publishers, 2019. http://dx.doi.org/10.3920/978-90-8686-891-9_100.
Full textAbdulnour, Raja-Elie E., Judie A. Howrylak, Tamas Dolinay, Lee Gazourian, Rebecca M. Baron, Laura E. Fredenburgh, Anthony F. Massaro, Augustine M. K. Choi, and Bruce D. Levy. "ARDS In Patients With Sepsis Is Associated With Differential Expression Of Specific Lipid Signaling Genes." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1337.
Full textSadik, Mohamed M., Jerry Shan, David Shreiber, and Hao Lin. "Extreme Elongation of Vesicles Under DC Electric Fields." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193243.
Full textAl-Qeraiwi, Maha, Manar Al-Rashid, Nasser Rizk, Abdelrahman El Gamal, and Amena Fadl. "Hepatic Gene Expression Profile of Lipid Metabolism of Obese Mice after treatment with Anti-obesity Drug." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0214.
Full textWang, J., D. Scholtens, M. Holko, D. Ivancic, O. Lee, H. Hu, RT Chatterton, and SA Khan. "Abstract P2-10-30: Expression of lipid metabolism genes in contralateral unaffected breast associated with estrogen receptor status of breast cancer." In Abstracts: Thirty-Fifth Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 4‐8, 2012; San Antonio, TX. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/0008-5472.sabcs12-p2-10-30.
Full text