To see the other types of publications on this topic, follow the link: Liquid crystal displays Inhomogeneous materials.

Journal articles on the topic 'Liquid crystal displays Inhomogeneous materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Liquid crystal displays Inhomogeneous materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sala, Filip. "Beam splitting in chiral nematic liquid crystals." Photonics Letters of Poland 10, no. 4 (December 31, 2018): 109. http://dx.doi.org/10.4302/plp.v10i4.867.

Full text
Abstract:
By lunching the beam into the chiral nematic liquid crystals it is possible to achieve a non-diffractive beam similar to a soliton. This effect is caused by the molecular reorientation i.e. nonlinear response of the material forming the areas of higher refractive index. Diffraction is suppressed by the focusing effect. For appropriate launching conditions it is also possible to achieve a beam which splits into two or more separate beams. Such phenomenon is discussed in this article and analyzed theoretical. To model this effect Fully Vectorial Beam Propagation Method coupled with the Frank-Oseen elastic theory is used. Simulations are performed for various input beam powers, widths, polarization angles and launching positions. Full Text: PDF ReferencesG. Assanto and M. A. Karpierz, "Nematicons: self-localised beams in nematic liquid crystals", Liq. Cryst. 36, 1161–1172 (2009) CrossRef G. Assanto, Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals, John Wiley & Sons Inc. Hoboken, New Jersey (2013) DirectLink A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, "Soliton gating and switching in liquid crystal light valve", Appl. Phys. Lett. 96, 071104 (2010). CrossRef D. Melo, I. Fernandes, F. Moraes, S. Fumeron, and E. Pereira, "Thermal diode made by nematic liquid crystal", Phys. Lett. A 380, 3121 – 3127 (2016). CrossRef U. Laudyn, M. Kwaśny, F. A. Sala, M. A. Karpierz, N. F. Smyth, G. Assanto, "Curved optical solitons subject to transverse acceleration in reorientational soft matter", Sci. Rep. 7, 12385 (2017) CrossRef M. Kwaśny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, G. Assanto, "Self-guided beams in low-birefringence nematic liquid crystals", Phys. Rev. A 86, 013824 (2012) CrossRef F. A. Sala, M. M. Sala-Tefelska, "Optical steering of mutual capacitance in a nematic liquid crystal cell", J. Opt. Soc. Am. B. 35, 133-139 (2018) CrossRef U. A. Laudyn, A. Piccardi, M. Kwasny, M. A. Karpierz, G. Assanto, "Thermo-optic soliton routing in nematic liquid crystals", Opt. Lett. 43, 2296-2299 (2018) CrossRef F. A. Sala, M. M. Sala-Tefelska, M. J. Bujok, J. "Influence of temperature diffusion on molecular reorientation in nematic liquid crystals", Nonlinear Opt. Phys. Mater. 27, 1850011 (2018) CrossRef I-C Khoo Liquid crystals John Wiley & Sons, Inc (2007) DirectLink P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon Press (1995) DirectLink U. A. Laudyn, P. S. Jung, M. A. Karpierz, G. Assanto, "Quasi two-dimensional astigmatic solitons in soft chiral metastructures", Sci. Rep. 6, 22923 (2016) CrossRef J. Beeckman, A. Madani, P. J. M. Vanbrabant, P. Henneaux, S-P. Gorza, M. Haelterman, "Switching and intrinsic position bistability of soliton beams in chiral nematic liquid crystals", Phys. Rev. A 83, 033832 (2011) CrossRef A. Madani, J. Beeckman, K. Neyts, "An experimental observation of a spatial optical soliton beam and self splitting of beam into two soliton beams in chiral nematic liquid crystal", Opt. Commun. 298–299, 222-226, (2013) CrossRef G. D. Ziogos, E. E. Kriezis, "Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method", Opt. Quant. Electron 40, 10 (2008) CrossRef F. A. Sala, M. A. Karpierz, "Chiral and nonchiral nematic liquid-crystal reorientation induced by inhomogeneous electric fields", J. Opt. Soc. Am. B 29, 1465-1472 (2012) CrossRef F. A. Sala, M. A. Karpierz, "Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals", Opt. Express 20, 13923-13938 (2012) CrossRef F. A. Sala, "Design of false color palettes for grayscale reproduction", Displays, 46, 9-15 (2017) CrossRef
APA, Harvard, Vancouver, ISO, and other styles
2

Andreev, Alexander, Tatiana Andreeva, Igor Kompanets, and Nikolay Zalyapin. "Helix-Free Ferroelectric Liquid Crystals: Electro Optics and Possible Applications." Applied Sciences 8, no. 12 (November 29, 2018): 2429. http://dx.doi.org/10.3390/app8122429.

Full text
Abstract:
This is a review of results from studying ferroelectric liquid crystals (FLCs) of a new type developed for fast low-voltage displays and light modulators. These materials are helix-free FLCs, which are characterized by spatially periodic deformation of smectic layers and a small value of spontaneous polarization (less than 50 nC/cm2). The FLC director is reoriented due to the motion of solitons at the transition to the Maxwellian mechanism of energy dissipation. A theoretical model is proposed for describing the FLC deformation and director reorientation. The frequency and field dependences of the optical response time are studied experimentally for modulation of light transmission, scattering, and phase delay with a high rate. The hysteresis-free nature and smooth dependence of the optical response on the external electric field in the frequency range up to 6 kHz is demonstrated, as well as bistable light scattering with memorization of an optical state for a time exceeding the switching time by up to 6 orders of magnitude. Due to the spatially inhomogeneous light phase delay, the ability of a laser beam to cause interference is effectively suppressed. The fastest FLCs under study are compatible with 3D, FLC on Silicon (FLCoS), and Field Sequential Colors (FSC) technologies.
APA, Harvard, Vancouver, ISO, and other styles
3

Schadt, Martin. "LIQUID CRYSTAL MATERIALS AND LIQUID CRYSTAL DISPLAYS." Annual Review of Materials Science 27, no. 1 (August 1997): 305–79. http://dx.doi.org/10.1146/annurev.matsci.27.1.305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsvetkov, V. A. "Diffractive liquid crystal displays." Journal of Information Display 4, no. 1 (January 2003): 9–13. http://dx.doi.org/10.1080/15980316.2003.9651906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Uchida, Tatsuo, and Takahiro Ishinabe. "Reflective Liquid-Crystal Displays." MRS Bulletin 27, no. 11 (November 2002): 876–79. http://dx.doi.org/10.1557/mrs2002.276.

Full text
Abstract:
AbstractReflective full-color liquid-crystal displays (LCDs) are attracting a great deal of interest as portable information systems because of their extremely low power consumption and light weight; also, the color does not wash out in outdoor use. In this article, reflective LCDs are classified into three types. Among them, the diffusing-reflector type and the front-diffusing film type are suitable for high-quality active-matrix displays. Diffusing-reflector LCDs have the advantage of uniform reflectance at the desired viewing angle due to the design of the surface microstructure of the reflector. Front-diffusing film LCDs using metallic mirrors and an optimally designed light-controlling film enable high contrast in a wide viewing-angle range and uniform reflectance with no blurring. Thus, both types have a high potential for achieving excellent color quality comparable to printed paper. In the near future, these reflective LCDs will likely be applied not only to portable systems, but also to high-performance wireless monitor displays and various other information systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, X., Z. Ge, T. X. Wu, and S. T. Wu. "Transflective Liquid Crystal Displays." Journal of Display Technology 1, no. 1 (September 2005): 15–29. http://dx.doi.org/10.1109/jdt.2005.852506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Deng-Ke. "Liquid Crystal Displays (second edition)." Liquid Crystals Today 20, no. 2 (April 6, 2011): 62. http://dx.doi.org/10.1080/1358314x.2011.563977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schadt, M. "The Twisted Nematic Effect: Liquid Crystal Displays and Liquid Crystal Materials." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 165, no. 1 (December 1988): 405–38. http://dx.doi.org/10.1080/00268948808082209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hanna, Jun-ichi, and Isamu Shimizu. "Materials in Active-Matrix Liquid-Crystal Displays." MRS Bulletin 21, no. 3 (March 1996): 35–38. http://dx.doi.org/10.1557/s0883769400036113.

Full text
Abstract:
In today's world of increasing office automation and computer-aided personal-communications systems, display devices play a very important role as person-machine interfaces. Above all, high-definition, full-color flat-panel displays will be key devices in the near future when processing huge amounts of information—including pictorial images via computer networks and telecommunication systems that transcend the present limitations of time and place—will be possible.Passive-matrix liquid-crystal displays (LCDs) represent the most widely used choice for portable display devices. Figure 1 illustrates the essential components and operating principle of a typical LCD. Each pixel is addressed by the top- and bottom-line electrodes of the cell based on information signals, producing a light image. By installing a color filter of red, green, or blue for each pixel, full-color images can be displayed. However, the essential problems of crosstalk among pixels and low response speed become serious with an increase in the number of pixels, resulting in a low contrast ratio and failure of the display to keep up with the signals.
APA, Harvard, Vancouver, ISO, and other styles
10

Scheffer, Terry, and Jürgen Nehring. "SUPERTWISTED NEMATIC (STN) LIQUID CRYSTAL DISPLAYS." Annual Review of Materials Science 27, no. 1 (August 1997): 555–83. http://dx.doi.org/10.1146/annurev.matsci.27.1.555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lu, R., X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu. "Ultrawide-View Liquid Crystal Displays." Journal of Display Technology 1, no. 1 (September 2005): 3–14. http://dx.doi.org/10.1109/jdt.2005.852507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lagerwall, Sven T. "Ferroelectric Liquid Crystal Displays with Greyscale." Liquid Crystals Today 6, no. 2 (June 1996): 5–7. http://dx.doi.org/10.1080/13583149608047641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Heeks, S. K., A. Mosley, B. M. Nicholas, P. C. Rundle, and P. Schlusche. "Large area ferroelectric liquid crystal displays." Ferroelectrics 122, no. 1 (October 1991): 27–34. http://dx.doi.org/10.1080/00150199108226026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cuypers, Frank, and Alexis De Vos. "Optical symmetry in liquid crystal displays." Liquid Crystals 6, no. 1 (January 1989): 11–16. http://dx.doi.org/10.1080/02678298908027318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Castellano, J. A. "Liquid crystal displays: The third generation." Ferroelectrics 73, no. 1 (June 1987): 267–94. http://dx.doi.org/10.1080/00150198708227922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

ICHINOSE, Hideo. "Looking at New Materials. II. Liquid Crystal Displays." Journal of the Spectroscopical Society of Japan 43, no. 2 (1994): 97–110. http://dx.doi.org/10.5111/bunkou.43.97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Qi, Zhen, Pochi Yeh, Shi-Ning Zhu, and Yong-Yuan Zhu. "Achromatic Waveplates for Liquid Crystal Displays." Journal of Display Technology 9, no. 7 (July 2013): 586–91. http://dx.doi.org/10.1109/jdt.2013.2251609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hwang, Jeoung-Yeon, and Dae-Shik Seo. "Liquid Crystal Alignment at Low Temperatures in Flexible Liquid Crystal Displays." Journal of The Electrochemical Society 157, no. 10 (2010): J351. http://dx.doi.org/10.1149/1.3473785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kwak, Y., C. Li, and L. MacDonald. "Controling color of liquid-crystal displays." Journal of the Society for Information Display 11, no. 2 (2003): 341. http://dx.doi.org/10.1889/1.1825665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jeng, Shie-Chang, Ku-Hsien Chang, Jau-Min Ding, Lung-Pin Hsin, Chun-Yuan Lin, Yan-Rung Lin, Kang-Hung Liu, et al. "Technologies toward flexible liquid-crystal displays." Journal of the Society for Information Display 13, no. 6 (2005): 475. http://dx.doi.org/10.1889/1.1973989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Crossland, W. A., I. D. Springle, and A. B. Davey. "Liquid-crystal-modulated photoluminescent displays (PLLCDs)." Journal of the Society for Information Display 6, no. 2 (1998): 117. http://dx.doi.org/10.1889/1.1985216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shiyanovskaya, Irina, Seth Green, Asad Khan, Greg Magyar, Oleg Pishnyak, and J. William Doane. "Substrate-free cholesteric liquid-crystal displays." Journal of the Society for Information Display 16, no. 1 (2008): 113. http://dx.doi.org/10.1889/1.2835016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

SHIELDS, STEVEN E. "THE Allure OF LIQUID CRYSTAL DISPLAYS." Optics and Photonics News 5, no. 3 (March 1, 1994): 12. http://dx.doi.org/10.1364/opn.5.3.000012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lim, Young Jin, Min Oh Choia, Seung Hee Lee, Jae Hoon Song, Youn Hak Jeong, Hyang Yul Kimb, Seo Yoon Kim, and Young Jin Lim. "Fringe‐field switching transflective liquid crystal displays." Journal of Information Display 6, no. 2 (January 2005): 7–11. http://dx.doi.org/10.1080/15980316.2005.9651971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Schadt, M. "Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s." Displays 13, no. 1 (January 1992): 11–34. http://dx.doi.org/10.1016/0141-9382(92)90004-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Choi, Woon-Seop, and Hee-Jeong Lee. "Blue-white Reflective Cholesteric Liquid Crystal Displays by Single Liquid Crystal Layer." Transactions on Electrical and Electronic Materials 9, no. 6 (December 31, 2008): 251–54. http://dx.doi.org/10.4313/teem.2008.9.6.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Reynaerts, Carine, and Alexis De Vos. "Hysteresis loops of ferroelectric liquid crystal displays." Ferroelectrics 113, no. 1 (January 1991): 439–52. http://dx.doi.org/10.1080/00150199108014080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hartmann, Wilbert J. A. M. "Ferroelectric liquid crystal displays for television application." Ferroelectrics 122, no. 1 (October 1991): 1–26. http://dx.doi.org/10.1080/00150199108226025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Francis, Matthew, Doina Ionescu, Mark Goulding, Kevin Adlem, Bernhard Rieger, Harald Hirschmann, Volker Reiffenrath, and Akihiro Kojima. "Improved Liquid Crystal Mixtures for STN Displays." Molecular Crystals and Liquid Crystals 411, no. 1 (January 2004): 71–78. http://dx.doi.org/10.1080/15421400490434801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fornier, Johan, Arnout De Meyere, and Herman Pauwels. "Homogeneous switching in antiferroelectric liquid crystal displays." Ferroelectrics 178, no. 1 (April 1996): 17–25. http://dx.doi.org/10.1080/00150199608008344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chigrinov, V. G., and D. A. Yakovlev. "Optimization and Modeling of Liquid Crystal Displays." Molecular Crystals and Liquid Crystals 453, no. 1 (September 2006): 107–21. http://dx.doi.org/10.1080/15421400600651658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jones, J. Cliff, Carl V. Brown, and P. E. Dunn. "The physics of τVminferroelectric liquid crystal displays." Ferroelectrics 246, no. 1 (June 2000): 191–201. http://dx.doi.org/10.1080/00150190008230066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pauwels, Herman, and Artur Adamski. "Energy Relations in Antiferroelectric Liquid Crystal Displays." Ferroelectrics 312, no. 1 (January 2004): 71–79. http://dx.doi.org/10.1080/00150190490511563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Costa, M. R., R. A. C. Altafim, and A. P. Mammana. "Ionic impurities in nematic liquid crystal displays." Liquid Crystals 28, no. 12 (December 2001): 1779–83. http://dx.doi.org/10.1080/02678290110078757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Stalder, Martin, and Martin Schadt. "Photoaligned bistable twisted nematic liquid crystal displays." Liquid Crystals 30, no. 3 (March 2003): 285–96. http://dx.doi.org/10.1080/0267829031000071275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kirsch, Peer, Matthias Bremer, Annette Kirsch, Atsutaka Manabe, Eike Poetsch, Volker Reiffenrath, and Kazuaki Tarumi. "Materials for Liquid Crystal Displays with Reduced Power Consumption." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 346, no. 1 (July 2000): 193–99. http://dx.doi.org/10.1080/10587250008023878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Schadt, Martin. "Liquid crystal displays, LC-materials and LPP photo-alignment." Molecular Crystals and Liquid Crystals 647, no. 1 (April 13, 2017): 253–68. http://dx.doi.org/10.1080/15421406.2017.1289604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ruckmongathan, T. N., M. Govind, and G. Deepak. "Reducing power consumption in liquid-crystal displays." IEEE Transactions on Electron Devices 53, no. 7 (July 2006): 1559–66. http://dx.doi.org/10.1109/ted.2006.875815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Takatoh, Kohki, Mitsuhiro Akimoto, Hiroomi Kaneko, Koji Kawashima, and Shunsuke Kobayashi. "Molecular arrangement for twisted nematic liquid crystal displays having liquid crystalline materials with opposite chiral structures (reverse twisted nematic liquid crystal displays)." Journal of Applied Physics 106, no. 6 (September 15, 2009): 064514. http://dx.doi.org/10.1063/1.3211297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shieh, H. P. D., Y. P. Huang, and K. W. Chien. "Micro-Optics for Liquid Crystal Displays Applications." Journal of Display Technology 1, no. 1 (September 2005): 62–76. http://dx.doi.org/10.1109/jdt.2005.852504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, Kuo Feng, Fang-Hsing Wang, Lih Hsiung Chan, Shih Chieh Hsu, Yu Han Chien, Shih Hsien Liu, and Kung Lung Cheng. "Multicolor Polymer Disperse Microencapsulated Liquid Crystal Displays." Journal of Display Technology 5, no. 6 (June 2009): 184–87. http://dx.doi.org/10.1109/jdt.2009.2013485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ge, Zhibing, Linghui Rao, Sebastian Gauza, and Shin-Tson Wu. "Modeling of Blue Phase Liquid Crystal Displays." Journal of Display Technology 5, no. 7 (July 2009): 250–56. http://dx.doi.org/10.1109/jdt.2009.2022849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sumiyoshi, K., K. Takatori, N. Takahashi, and Y. Hirai. "A two dimensional liquid crystal simulation for thin film transistor liquid crystal displays." Liquid Crystals 14, no. 4 (January 1993): 1199–208. http://dx.doi.org/10.1080/02678299308027828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sugiura, Takeo. "Dyed color filters for liquid-crystal displays." Journal of the Society for Information Display 1, no. 2 (1993): 177. http://dx.doi.org/10.1889/1.1984856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ishikawa, Masahito, Yasuharu Tanaka, and Hitoshi Hatoh. "Reduction of reflectance in liquid-crystal displays." Journal of the Society for Information Display 3, no. 4 (1995): 243. http://dx.doi.org/10.1889/1.1984977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chen, L. Y., and S. H. Chen. "Dynamics of chiral-homeotropic liquid-crystal displays." Journal of the Society for Information Display 7, no. 4 (1999): 289. http://dx.doi.org/10.1889/1.1985299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Song, Wen, Xiaohua Li, Yuning Zhang, Yike Qi, and Xiaowei Yang. "Motion-blur characterization on liquid-crystal displays." Journal of the Society for Information Display 16, no. 5 (2008): 587. http://dx.doi.org/10.1889/1.2918077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

O'Neill, M., and S. M. Kelly. "Photoinduced surface alignment for liquid crystal displays." Journal of Physics D: Applied Physics 33, no. 10 (May 4, 2000): R67—R84. http://dx.doi.org/10.1088/0022-3727/33/10/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Witzigmann, B., P. Regli, and W. Fichtner. "Rigorous electromagnetic simulation of liquid crystal displays." Journal of the Optical Society of America A 15, no. 3 (March 1, 1998): 753. http://dx.doi.org/10.1364/josaa.15.000753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

FUJISAWA, Toru, Hidetoshi NAKATA, and Masao AIZAWA. "Recent Development of Polymer Network Liquid Crystal Displays." Journal of Photopolymer Science and Technology 11, no. 2 (1998): 199–203. http://dx.doi.org/10.2494/photopolymer.11.199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography