To see the other types of publications on this topic, follow the link: Liquid crystal phases.

Dissertations / Theses on the topic 'Liquid crystal phases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Liquid crystal phases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Ruibin. "Complex liquid crystal phases in cylindrical confinement." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/3174/.

Full text
Abstract:
Confined liquid crystals (LCs) have attracted much interest because their richness in physical phenomena and potential applications. In this thesis the configuration of novel liquid crystal phases confined in cylindrical cavities from tens of nanometres to hundred of microns primarily were investigated by means of small angle X-ray scattering (SAXS), grazing incident X-ray scattering (GSAXS) and atomic force microscopy (AFM). The arrangement of honeycomb phases and 3-d channeled-layer phases (ChL) formed by polyphilic side-branched compounds in nanoporous anodic aluminium oxide (AAO) templates as well as in glass capillaries with micrometer diameters were investigated. 3-d diffraction patterns were reconstructed from the SAXS data. A fracture method associated with AFM observation was performed on the AAO samples to complement the X-ray study. Details of assembly of individual columns inside the nanochannel were directly observed by AFM for the first time. Surprisingly, even the planar-anchored columns were found reluctant to orient axially (parallel to the 1-d channel), which was explained by the strong deformation energy of the 2-d lattice. Besides, the in-plane orientation of the 2-d lattice was observed in both planar and homeotropic anchoring conditions and different mechanisms were proposed. For the ChL phase, axial orientation was observed due to the high rigidity of the columns. The 3-d layered structure could be suppressed by the nanopores and an induced smectic structure was observed. Configuration of several discotic columnar LCs in cylindrical confinement was studied. The investigation of pure triphenylene derivatives in nanopores refutes the only detailed experimental work on discotics published as far. Again the discotic columns are mainly perpendicular to the channel axis, even with planar anchoring condition, to avoid the distortion of the 2-d lattice. The axial configuration was observed only when the rigidity of the columns was increased by dopant. The structure of LC-directed mesoporous silica nanofibers fabricated via dual structure-directing agents in 200 nm AAO membranes was characterized by SAXS and TEM. Different mesoporous structures were observed when changing the alkyl chain length of the cationic surfactant.
APA, Harvard, Vancouver, ISO, and other styles
2

Oh, Ji Young. "Unusual particle motions in the liquid crystal phases." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/unusual-particle-motions-in-the-liquid-crystal-phases(59978a53-5523-4066-8a84-98cd5e7a6e16).html.

Full text
Abstract:
The motions of particles dispersed in liquid crystals can be influenced by the application of an electric field, the effect depending on the field frequency and field amplitude. Sandwich cells under the application of electric field are widely used as the tool in order to investigate the fundamental research relating to electro-optic display technology. Therefore, the aim of this experimental work is to find and investigate novel motion of the particles dispersed in the liquid crystal phases, held within a sandwich cell. For the liquid crystal–particle systems in the sandwich cells in this thesis, the particle shapes, temperature and cell geometry are all shown to have an influence on the regime of the particle’s motions, with different phenomena observed using three different phases of liquid crystals. The experiments are designed to find and investigate the novel motion of the micron sized silica particles in the liquid crystal phases. In the chiral nematic phase, spherical particles are shown to exhibit linear motion, which is related to the electrophoretic mobility. Such spherical particles are also observed to show circular motion which is found to have a field dependency that can be related to Quincke rotation. A maximum frequency for motion occurs which is found to possibly be related to the effect of the ion diffusion in the liquid crystal-particle composite system. The direction of the circular motion is found to be independent of the handedness of the chiral nematic material. In the isotropic phase of a chiral nematic liquid crystal, the spherical particles do not exhibit any linear motion, which shows the system does not follow the traditional electrophoresis observed in normal isotropic liquids. The circular motion of the spherical particle that is observed in the isotropic phase is analysed in terms of the Quincke rotation and again shows the Maxwell relaxation time. The electric-field induced motion of elongated particles in four different nematic systems is examined. In this case of planar aligned systems, linear motion is observed, in which the velocity shows a minimum for particles of the same length as the cell gap. A novel field-induced defect texture appears in the homeotropic device containing a nematic liquid crystal of negative dielectric anisotropy. Interestingly, the motion of the particle is found to be strongly coupled with the defects formed.
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Tsang-Min. "Phase Equilibria of Binary Liquid Crystal Mixtures Involving Induced Ordered Phases." University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1284381816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Jianping. "Structures of polymeric and supramolecular liquid crystal phases." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Al-Zangana, Shakhawan. "Nano- and micro-particle doped liquid crystal phases." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/nano-and-microparticle-doped-liquid-crystal-phases(31dbb051-7d9c-4780-bda0-d58773846de0).html.

Full text
Abstract:
This thesis presents the investigation of the liquid crystal (LC) - particle suspensions. Particles from nano- to micro-size, spherical to two-dimensional shapes, with different functionality are dispersed into nematic and smectic phases. The aim is to create ordered nanoparticle (NP) assemblies and thereby modify the common properties of the liquid crystal, such as dielectric anisotropy and electro-optical, revealing any interaction between particles and LC properties. It is found that for concentrations (>0.5vol%), the ferroelectric NPs have increased the sensitivity of the nematic liquid crystal to the electric field through electro-optical responses, which is seen by an enhancement in the dielectric anisotropy. This could be induced by the coupling of the electrical dipole moments in the spherical NPs with the LC director field. The electro-optical properties of the chiral smectic (SmC*) phase (tilt angle Θ, switching time τ_s and spontaneous polarisation P_s) are found to be independent of the concentration and sizes of the doped NPs. The relaxation frequency f_R of the Goldstone mode is faster in the ferroelectric NPs suspensions of 2.0vol% compared to the paraelectric NPs. In the graphene oxide (GO) - nematic LC (5CB) suspensions, the small GO sizes of mean size 560 nm are more easily dispersible than larger flakes of 2.8 micro metre mean size. As the GO concentration is increased, each of the threshold voltage and splay elastic constant dramatically increases, reaching saturation at ≈1.0wt%. The field driven switching-on time is practically not affected, while the purely elastically driven switching-off time is strongly sped-up. Interestingly, thermotropic and lyotropic LC phases are exhibited in the GO-5CB suspensions when heating the thermotropic liquid crystal into its isotropic phase. The isotropic phase of 5CB acts as a solvent for the GO particles, forming a lyotropic nematic phase with largely reduced birefringence. It is found that the nematic to isotropic phase transition is shifted toward higher temperature for the GO-5CB system compared to the BaTiO3-5CB system. Dispersions of different sizes of GO flakes are prepared in isotropic and nematic fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature range (25-60 ℃) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes were found to exhibit varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. The relaxation frequencies in the isotropic media were lower compared to the nematic medium. Relaxation frequencies (~10 kHz) are observed in the GO-isotropic media, which are reduced as the size of the GO flakes are decreased, are anticipated to be inherited from GO flakes. However, the fast relaxations (~100 kHz) that are observed in the nematic suspensions could imply strongly slowed down molecular relaxation modes of the nematogenic molecules. Finally, the phase diagram of lyotropic LC as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity was investigated. Polarising optical microscopy was used to determine isotropic-biphasic-nematic phase evolution. The confinement volume and geometry of the sample relative to the GO size are shown to be vital to the observation of the lyotropic phase. GO LCs have the potential for a range of applications from display technologies to conductive fibres. The confinement related LC phase transition is critical toward their applications. It is also found that the stability of the LC phase is higher for the solvent of higher dielectric constant.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Harry. "Elastic properties and phases of bent core liquid crystal." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/elastic-properties-and-phases-of-bent-core-liquid-crystal(1428e685-754c-42c0-890b-9ae83f0b5f7c).html.

Full text
Abstract:
The recent interest in bent core liquid crystal has shown many unique physical properties, such the anomalous behaviour of the elastic constants (SplayK1, Twist K2, and BendK3). In bent core liquid crystals it is observed that K3K1). Such behaviour is analogous to calamitic liquid crystals but is in contrast to all other bent-core nematic materials reported to date. Such a result questions some of the current explanations for the elastic behaviour of bent-core materials. Using molecular field theory and atomistic modelling the different elastic behaviour predicted is again in excellent agreement with experimental results. The bend angle is again shown to be an important part in determining the physical properties of bent-core nematic liquid crystals. In a mixture from an oxadiazole dopant and calamitic host liquid crystal, it was found that a filament structure appears in the nematic phase. The filaments appear to interfere with the measurements for elastic constants. In order to understand the filament structure many methods were used including SAXS, dielectric permittivity, and DSC. It was found that the mixture had formed a gel - like phase. The gel is composed of a liquid crystal network and a liquid crystal background, not seen before in any gel system. Due to the liquid crystalline properties both the network and the background can be aligned and manipulated. The new gel phase can possess many new unique properties which warrant further studies understand further into how fundamentally the phase is forming.
APA, Harvard, Vancouver, ISO, and other styles
7

Leng, Siwei. "From Crystal to Columnar Discotic Liquid Crystal Phases: Phase Structural Characterization of Series of Novel Phenazines Potentially Useful in Organic Electronics." Akron, OH : University of Akron, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1247614330.

Full text
Abstract:
Dissertation (Ph. D.)--University of Akron, Dept. of Polymer Science, 2009.
"August, 2009." Title from electronic dissertation title page (viewed 9/23/2009) Advisor, Stephen Z. D. Cheng; Committee members, Alexei P. Sokolov, Gustavo A. Carri, Darrell H. Reneker, Weiping Zheng; Department Chair, Ali Dhinojwala; Dean of the College, Stephen Z. D. Cheng; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

Kasch, Nicholas. "Liquid crystal-polymer composites and the stabilisation of defect phases." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/liquid-crystalpolymer-composites-and-the-stabilisation-of-defect-phases(ee813754-56cd-493c-a631-d58b06d03c00).html.

Full text
Abstract:
A simple method for increasing the stable temperature range of the liquid crystalline blue phase is demonstrated, by mixing a non-mesogenic polymer of low molecular weight into the blue phase material. In a mixture of cholesteryl benzoate and cholesteryl nonanoate the addition of polystyrene increased the stable blue phase range from 0.5K to 12K. This was measured strictly on heating from the chiral nematic phase through the blue phase in order to minimise non-equilibrium effects, and is one of the largest ranges so measured. The stability range can be closely tuned by changing the polymer concentration and molecular weight. The maximum range found by adding a particular compound seems only to depend on its saturation point in the liquid crystal, and the dependence of the range on concentration is non-linear. These features were explained by a numerical model of a blue phase unit cell incorporating the mean field Flory-Huggins and Maier-Saupe theories where the polymer could fill the high energy defect regions. Two of the oligomers which are shown to stabilise the blue phase are fluorescent, at 450nm and 500nm respectively, and it is proposed that tests on these mixtures could reveal photonic effects caused by the concentration of the fluorophores in the blue phase defect regions. The twist-grain boundary (TGB) phase is present in mixtures of cholesteryl oleyl carbonate and cholesteryl nonanoate over a range of up to 0.3K. The addition of polystyrene has no effect on the stability of the TGB phase. Conventional, in situ UV-initiated polymer stabilisation does not appear to stabilise the TGB phase, but is capable of stabilising over at least 30K the micron-size filaments which appear in the TGB phase when it is heated from the smectic phase in a cell with homeotropic alignment. Some notes are made on the causes and structure of this filament texture, and it is observed that the filaments tend to grow with a characteristic curvature. It is shown theoretically that the correct material could stabilise the TGB phase similarly to the polymers in the blue phase, by extending the previous model to include the Kobayashi-McMillan theory of smectic ordering. A second theoretical model of chirality around the transition to the smectic phase is then presented which takes account of fluctuations, based on an analogy with the state of a smectic-forming material infiltrated into an aerogel. A phase resembling the TGB phase emerges from this model. The model gives two first order transitions in accordance with experiments on the TGB phase, and reflects other experimental pitch and calorimetry measurements too. The electrochemical polymerisation of an acrylate monomer in the nematic and smectic-C* phases is investigated. 30-100V is applied across a cell containing the liquid crystal-monomer mixture, with no additional initiating compound. In both phases, the texture during polymerisation is frozen in by the polymer formed. In a nematic phase in a cell with initially planar alignment, the director in the field off state can be observed to tilt toward the homeotropic over a number of hours. In the ferroelectric case, as well as the textural freezing there is a somewhat reversible agglomeration of polymer strands into micron-scale structures. Scanning electron microscopy reveals a range of structures on both electrode surfaces, including in the nematic case corrugations with a periodicity of 500-750nm. There is no evidence of a polymer network spanning the thickness of the cell - rather the liquid crystal seems to be realigned by a polymer film at the electrode surfaces.
APA, Harvard, Vancouver, ISO, and other styles
9

Janbon, Sophie Laure Marie. "Crystallisation from partially organised melts : crystal nucleation from liquid crystalline phases." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Johnson, Louise. "Electric field-induced transitions and interlayer interactions in intermediate smectic liquid crystal phases." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/electric-fieldinduced-transitions-and-interlayer-interactions-in-intermediate-smectic-liquid-crystal-phases(64a81e3e-d148-48b4-8e94-4abd44117655).html.

Full text
Abstract:
This thesis presents an investigation into the effects of an external electric field on the three- and four-layer intermediate smectic phases. Experiments were performed using electro-optic techniques; thresholds between phases were measured by studying changes in the effective optical tilt. A quantitative measure of the interlayer interaction constant was obtained from the analysis of field-temperature phase diagrams in several materials, which exhibited the intermediate smectic phases in various degrees of stability. Excellent agreement with theory was observed in the field-temperature phase diagrams of these materials. The effect of adding a chiral dopant to liquid crystal compounds was studied and it was found that the interlayer interaction strength is significantly lower in mixtures with a chiral dopant. These measurements provided quantitative information on the importance of the interlayer interaction, which is only indicated qualitatively by other measurements. Deviations from theory were reported in mixtures with increasing concentrations of chiral dopant, in particular in the nature of the transition from the four-layer phase to the three-layer phase. Interesting behaviour in the thresholds between phases was observed in several liquid crystal mixtures in temperature regions close to the triple point on the field- temperature phase diagrams. Measurements of the thresholds between the intermediate phases revealed an unexpected threshold. Further evidence of this unexpected threshold was presented in the form of results of the temperature dependence of effective optical tilt of the various phases; electric field dependence of the response time; and the transient current that flows upon the reversal of an electric field. These measurements revealed that the unexpected threshold was to a field-induced ferrielectric phase with a larger effective tilt than the three-layer phases. Finally, preliminary results are presented from an investigation into defects that form in the thin films in the antiferroelectric smectic phases, with the aim of studying how the elastic constants may affect the stability of the intermediate phases.
APA, Harvard, Vancouver, ISO, and other styles
11

Taushanoff, Stefanie. "Development and Characterization of Blue Phases Made From Bent-Core Liquid Crystals." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1298650764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Repasky, Paul J. "Sanidic Thermotropic Liquid Crystals." Miami University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=miami1479939220742374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Leaver, Marc Steven. "A structural study of lyotropic liquid crystal phases formed by aqueous solutions of fluorinated surfactants." Thesis, University of Central Lancashire, 1992. http://clok.uclan.ac.uk/20298/.

Full text
Abstract:
The binary lyotropic liquid crystalline system Caesium Perfluorooctanoate (CsPFO) / heavy water (2H20) has previously been reported to exhibit three mesogenic phases. These were, as a function of decreasing temperature at fixed concentration and pressure isotropic, nematic and lamellar. The mesogenic unit in all three mesophases was reported to be a discrete discoidal micelle. In this project the binary system, as well as the ternary systems upon the addition of an electrolyte and a cosurfactant, have been studied using optical microscopy, small angle neutron and X-ray scattering (SANS and SAXS respectively) and 2H nuclear magnetic resonance (NIMR). The liquid crystalline phases have been characterised in all cases and their structure investigated. In the binary and ternary systems only three mesophases were observed, as previously reported. On the addition of a third component to the binary system the phase transition temperatures increased in proportion to the amount of added component. In both the nematic and lamellar phases features in the scattering patterns change on the increase of electrolyte concentration. This is attributed to a change in the structure of both the phases. The results are discussed in the light of the published structures, and a possible alternative. An alternative description of the mesophase behaviour is proposed. SANS scattering experiments from the binary system, in particular the lamellar phase, in conjunction with the conclusions of the electrolyte experiments have shown that the reported structure of the mesophases, whilst not unreasonable, requires the invocation of physically unlikely interactions to sustain it. The new results are tested against other structural models and alternative structures proposed. The addition of cosurfactant is less straight forward. It appears to have a profound effect on the structure of the mesophases, the reason for which is, as yet, equivocal.
APA, Harvard, Vancouver, ISO, and other styles
14

Hayne, Manus. "Magneto-optical and magneto-transport studies of the gas, liquid and solid phases of two-dimensional electrons." Thesis, University of Exeter, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Elqidrea, Ammar. "Effect of irradiation on the monomer-liquid crystal systems." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10180/document.

Full text
Abstract:
La motivation de ce travail est d'étudié l'effet du rayonnement ultraviolet (UV) et bombardement électronique (EB) sur la structure et les propriétés des composites polymères/CL préparés par polymérisation radicalaire. Les intérêts de recherche dans ce domaine ont porté principalement sur la solution de polymérisation en émulsion de composites polymères par rayonnement UV. Dans ce travail, nous cherchons à présenter une compréhension plus profonde des interactions polymère/CL, avec une analyse détaillée de la cinétique et du mécanisme de la réaction de polymérisation. On a étudiée la modification des propriétés des systèmes à base de polymères isotropes et anisotropes en faisant varier à la fois la méthode de préparation et le type du monomère. La matrice polymère a été élaborée avec diverses conditions de préparation, qui mèneront à l'optimisation des paramètres de processus de fabrication, basée sur les propriétés requises du produit final. Initialement, une étude bibliographique a menée dans le premier chapitre. Les modèles de polymérisation radicalaire sont discutés, en plus de la distribution du poids moléculaire de la matrice polymère. Le deuxième chapitre se concentre sur la description et la préparation des films composites à matrice polymère, avec une description détaillée des matériaux qui ont été utilisées dans cette étude. Le troisième chapitre est consacré à l'étude cinétique de la réaction de polymérisation d'acrylate. Le principal objectif du quatrième chapitre est consacré à l'analyse thermophysique des composites polymères et en établissant la séparation de phase. En parallèle, nous analysons les effets de la morphologie sur les transitions de phase différentes de cristaux liquides. Le but du cinquième chapitre est d'étudier le degré de ramification et les réactions de transfert de chaîne en fonction des conditions de préparation. Le sixième chapitre se concentre sur l'analyse de la distribution des poids moléculaires des chaînes de polymère en utilisant la chromatographie par perméation de gel
The motivation of this work is to study the effect of ultraviolet (UV) and electron beam (EB) on the structure and proeprties of polymer composites/liquid crystal prepared by radical polymerization. Research interests in this area have focused on the solution and emulsion polymerization of polymer composites by UV radiation. In this work, we aim to present a deeper understanding of the polymer/LC interactions, with a detailed analysis of the kinetics and mechanism of the polymerization reaction. We studied the changes in the properties of systems based on isotropic and anisotropic polymers by varying both the preparation method and type of monomer. The polymer matrix has been developped with different preparation conditions, leading to optimization the manufacturing process parameters, based on the required properties of the final product. Initially, a literature survey was conducted in the first chapter. Models of radical polymerization are discussed, in addition to the molecular weight distribution of the polymer. The second chapter focusedon describing the preparation of films and polymer matrix composites, with a detailed description of the materials that were used int his study. The third chapter is devoted to the kinetic study of the polymerization reaction of acrylate. The main objective of the fourth chapter is devoted to the analysis of thermophysical polymer composites, and establishing the phase separation. In parallel, we analyze the effects of morphology on the different phase transitions of liquid crystals. The purpose of the fifth chapter is to study the degree of branching and chain transfer reactions depending on the conditions of preparation. The sixth chapter focused on the analysis of the molecular weight distribution of polymer chains using gel permeation chromatography
APA, Harvard, Vancouver, ISO, and other styles
16

Mitcov, Dmitri. "Rational functionalization of molecular magnetic materials : towards liquid crystalline phases, improved solubility and modulation of physical properties." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0029/document.

Full text
Abstract:
Ce travail de thèse a été dédié à l’élaboration et l’étude de nouveaux matériaux hybrides obtenus par la fonctionnalisation de molécule-aimants (en anglais single-molecule magnets, SMMs) et de complexes à transfert d’électron. Le premier chapitre fait un état de l’art des deux classes de composés magnétiques utilisées dans ce travail : les molécule-aimants et les systèmes à transfert d’électrons. Une brève description des systèmes magnétiques hybrides présents dans la littérature est ensuite présentée dans le but d’illustrer les motivations qui ont conduit à ce travail. Le chapitre II décrit la fonctionnalisation des molécule-aimants de type [Mn12] dans le but d’obtenir des systèmes cristaux liquides hybrides. Deux approches ont été étudiées : (a) la fonctionnalisation des ligands périphériques avec des groupements fortement lipophiles (longues chaines alkyle) ou (b) le greffage de promoteurs mésogènes par l’intermédiaire d’espaceurs aliphatiques flexibles. Les chapitres III à V présentent les études sur des carrés moléculaires à ponts cyanure {Fe2Co2} qui montrent un transfert d’électron thermo- et photo-induit. Le chapitre III discute de la possibilité de moduler le processus de transfert d’électron de ces carrés moléculaires via le changement du contre anion. La fonctionnalisation du carré moléculaire {Fe2Co2} avec de chaines aliphatiques et son impact induit sur les propriétés physiques à l’état solide et en solutions sont décrits dans le chapitre IV. Le chapitre V discute de l’effet de la fonctionnalisation avec des groupements fortement électrodonneurs, tels que les groupements méthoxy, sur le processus de transfert d’électron des carrés moléculaires {Fe2Co2}
The work presented in this thesis was focused on the design and investigation of novel hybrid materials via ligand functionalization of the single-molecule magnets (SMMs) and electron transfer complexes. Chapter I contains general information about these two classes of the magnetic systems. In order to illustrate the motivation behind our work, a brief review on previously reported soft hybrid magnetic systems, is presented. Chapter II is dedicated to the functionalization of [Mn12]-based SMMs towards hybrid liquid crystalline systems via two different approaches: (a) the functionalization of peripheral ligands with strongly lipophilic groups (long alkyl chains), or (b) the grafting of mesogenic promoters through flexible aliphatic spacers. Chapters III – V are focused on cyanido-bridged molecular {Fe2Co2} squares that exhibit thermally or photo-induced electron transfer. Thus, in Chapter III, the possibility to modulate the electron transfer properties in {Fe2Co2} molecular squares via the use of different counter-anion is discussed. The functionalization with long aliphatic chains and its influence over the properties of {Fe2Co2} molecular squares in solid state and solutions are discussed in Chapter IV. Finally, the effect of the ligand functionalization with strongly electron density donating groups (methoxy) over the electron transfer properties of {Fe2Co2} molecular squares is investigated in Chapter V
APA, Harvard, Vancouver, ISO, and other styles
17

Yarzebinski, Joseph Santiago. "Line Tension and Entropy for Molecularly Thin Liquid Crystal Films at Temperatures Corresponding to Less-Ordered Bulk Phases." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1469646126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rivière-Cantin, Sophie. "Morphologie et propriétés élastiques de phases hexatiques dans des films monomoléculaires d'acides gras." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1995. http://tel.archives-ouvertes.fr/tel-00001108.

Full text
Abstract:
Cette thèse présente une étude de films monomoléculaires d'acides gras à l'interface eau-air, principalement par microscopie à l'angle de Brewster. Cette technique permet l'observation directe des coexistences de phases lors de transitions de phases du premier ordre; de plus elle est sensible à l'anisotropie optique des films. La première partie contient une étude du diagramme de phase des acides gras, qui comporte des mésophases analogues aux phases de cristaux liquides smectiques. Nous avons montré que lors des transitions de phases entre phases denses, la texture (l'arrangement moléculaire)des phases est réversible et nous avons obtenu des informations sur l'ordre des transitions. Nous avons aussi mis en évidence, dans deux phases constituées de molécules verticales, une très faible anisotropie optique due à la forme rectangulaire du réseau moléculaire. Nous avons ensuite étudié une film d'acide myristique adsorbé à la surface d'une solution aqueuse d'acide myristique. Nous avons observé des domaines d'une mésophase "inclinée" contenant des lignes de défauts d'orientationmoléculaire présentant des fluctuations thermiques. La mesure de leur amplitude a permis de déterminer la tension de ces lignes. Nous nous sommes aussi intéressés aux constantes élastiques qui gouvernent la forme et la texture à l'équilibre des domaines de mésophase. Nous avons d'une part déterminé la tension de ligne de l'interface entre une phase liquide et une mésophase "inclinée" en étudiant la forme des domaines. Celle-ci résulte de l'équilibre entre la tension de ligne, qui favorise des domaines circulaires, et les interactions répulsives à longue portée entre dipoles moléculaires, qui forment les domaines. Des mesures de potentiel de surface ont permis de calculer l'intensité des forces dipolaires. d'autre part, la texture d'autre domaines de cette mésophaseinclinée nous a renseigné sur la valeur du rapport entre l'élasticité de courbure de la direction moléculaire et l'anisotropie de la tension de ligne.
APA, Harvard, Vancouver, ISO, and other styles
19

Reis, Dennys. "Efeito do comprimento da cadeia do álcool nas transições de fase colestérica-colestérica em cristais líquidos liotrópicos." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-17102014-145351/.

Full text
Abstract:
Misturas liotrópicas de laurato de potássio (KL)/ sulfato de potássio (K2SO4)/ álcool (CnH2n+1OH)/ água (H2O) apresentam fases no estado líquido cristalino nemático. Essas fases nemáticas foram colesterizadas através da adicão do agente quiral brucina à mistura. Este estudo foi realizado mantendo as frações molares de todos os constituintes das misturas constantes e variando o comprimento da mol´ecula de álcool entre oito (1-octanol) e dezesseis (1-hexadecanol) átomos de carbono. Três fases colestéricas foram identificadas: ChD (colestérica discótica), ChB (colestérica biaxial) e ChC (colestérica calamítica). O diagrama de fases foi construído em função do número de átomos de carbono n na molécula do álcool. As transições entre as fases colestéricas foram investigadas por medições das birrenfringências ópticas usando microscopia óptica de luz polarizada. As misturas com 9 n 12 apresentaram as três fases colestéricas como função da temperatura e uma região de crossover entre as fases ChD e ChB, com comprimento de correlação a temperatura nula maior do que as dimensões micelares típicas. Misturas com n=8 e n=13 apresentaram transição de fase de primeira ordem entre as fases ChD e ChC, sem a presença da fase ChB intermediária a elas. As misturas com n=14, 15 e 16 apresentaram somente a fase ChC como função da temperatura. Os resultados foram interpretados como consequência da nanosegregação das moléculas de álcool nas micelas com relação às moléculas do anfifílico principal.
Lyotropic mixtures of potassium laurate (KL)/ potassium sulphate (K2SO4)/ alcohol (CnH2n+1OH)/ water (H2O) present nematic liquid crystal phases. These nematic phases were cholesterized by the doping of the mixtures with the chiral agent brucine. This study was conducted by keeping constant the molar fractions of all constituents of the mixtures and varying the length of the alcohol molecule between eight (1-octanol) and sixteen (1-hexadecanol) carbon atoms. Three cholesteric phases were identified: ChD (discotic cholesteric), ChB (biaxial cholesteric), and ChC (calamitic cholesteric). The phase diagram was constructed as a function of the number of carbon atoms n in the alcohol molecule. The cholesteric-cholesteric phase transitions were investigated by measurements of the optical birefringences via polarized light microscopy. The mixtures with 9 n 12 presented the three cholesteric phases as a function of temperature and a crossover between the ChD and ChB phases, with a bare correlation length larger than the typical micellar dimensions. Mixtures with n =8 and n =13 exhibited first order phase transitions among the ChD and the ChC phases, without the presence of the intermediate ChB phase. Mixtures with n =14, 15 and 16 showed only the ChC phase as a function of temperature. These results were interpreted as a consequence of the nanosegregation of the alcohol molecules in the micelles with respect to the main amphiphilic molecules.
APA, Harvard, Vancouver, ISO, and other styles
20

De, Vos Thierri. "Etude théorique et par simulations d'une phase nématique confinée et torsadée de molécules discotiques." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210483.

Full text
Abstract:
Il est actuellement bien connu que les molécules non sphériques peuvent former des mésophases (ou cristaux liquides), c'est-à-dire des phases dont les propriétés sont intermédiaires entre celles des liquides et celles des cristaux. La mésophase la plus connue est la phase nématique. Il s'agit d'une phase caractérisée par une distribution aléatoire des centres de masse des molécules, mais dans laquelle l'orientation des molécules présente une direction préférentielle, désignée par un vecteur unité appelé le directeur du nématique. Une telle phase possède donc la fluidité d'un liquide tout en présentant, tel un cristal, une biréfringence. C'est cette dernière propriété qui est exploitée dans les applications technologiques, principalement dans les dispositifs d'affichage.

Dans un tel dispositif, le liquide nématique est contenu dans une cellule (il y a une cellule par pixel), et son directeur est manipulé à l'aide d'un champ extérieur, électrique ou magnétique. Pour une bonne compréhension du fonctionnement de ce dispositif, il est essentiel de connaître le profil du directeur à travers la cellule en l'absence de champ extérieur. Dans le cadre de ce travail, nous avons étudié un nématique torsadé, c'est-à-dire dont le directeur décrit une hélice à travers la cellule.

Ce profil est déterminé principalement par les propriétés d'ancrage du liquide nématique sur les parois solides de la cellule. En effet, celles-ci peuvent posséder une direction d'ancrage privilégiée, qui favorise l'alignement du directeur dans une direction particulière. Nous avons considéré ici le cas de directions d'ancrage planaires, c'est-à-dire que le directeur est dans le plan des parois. Alors que l'ajout de parois identiques dans le système induit toujours une non-uniformité spatiale dans la densité du nématique (en comparaison avec un nématique en coeur de phase), l'utilisation de directions d'ancrage différentes induit une non-uniformité orientationnelle dans le directeur du nématique; dans notre cas une torsion. C'est principalement ce profil de directeur torsadé qui nous intéresse ici.

L'objectif général de ce travail consiste donc à étudier les propriétés d'ancrage d'une phase nématique confinée et torsadée, d'une part par une théorie microscopique (théorie de la fonctionnelle de la densité), et d'autre part sur le plan de simulations de Monte Carlo, en particulier dans le cas où les molécules ont la forme de disques (discotiques).


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Zichen. "Phase-only nematic liquid crystal on silicon devices." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Souza, Iberê Oliveira Kuntz de 1991. "Geometria dos defeitos topológicos em materiais esméticos sobre superfícies curvas." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276959.

Full text
Abstract:
Orientadores: Ricardo Antonio Mosna, Guillermo Gerardo Cabrera Oyarzun
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-26T12:57:50Z (GMT). No. of bitstreams: 1 Souza_IbereOliveiraKuntzde_M.pdf: 20917156 bytes, checksum: bb95eeb451fb153542f18a4c8e165528 (MD5) Previous issue date: 2015
Resumo: Nesse trabalho estudamos configurações geométricas de um cristal líquido bidimensional sobre substratos curvos. Em particular, estamos interessados na fase esmética-A desses materiais, em que as suas moléculas são organizadas em camadas. Isso é interessante pois grande parte das propriedades de um cristal líquido, como as propriedades ópticas e elásticas, é afetada pela curvatura do seu substrato. Diferentemente dos esméticos no plano euclidiano, em superfícies curvas a presença de curvatura gaussiana dá origem a defeitos topológicos e grain boundaries na estrutura dos esméticos. Mostrarei essa interação entre curvatura e defeitos topológicos em algumas superfícies no limite em que a contribuição à energia devido a compressão das camadas é muito maior do que as contribuições provenientes de outros tipos de deformação. Nesse regime, o estado de menor energia é obtido quando as camadas esméticas são igualmente espaçadas. Isso faz com que o vetor diretor siga as geodésicas da superfície, o que leva a uma interessante analogia entre esméticos e óptica geométrica. Além disso, é bem conhecido na comunidade de óptica que lentes planas de índice de refração não-uniformes podem ser tratadas como superfícies curvas, cujas geodésicas se propagam da mesma forma que a luz se propaga na lente. Com isso, pode-se fabricar, em princípio, superfícies com propriedades ópticas específicas e, dessa forma, construir texturas esméticas com diferentes defeitos e singularidades a partir da extensa literatura conhecida de lentes
Abstract: We study geometrical configurations of liquid crystals defined on curved bidimensional substrates. We are particularly interested in the smectics-A phase, whose molecules are organized in layers. This is an interesting problem since many of the liquid crystal characteristics, such as its optical and elastic properties, are affected by the curvature of its substrate. Differently from the planar case, in curved surfaces the presence of Gaussian curvature induces topological defects and grain boundaries in the smectic structure. We will illustrate this interplay between curvature and topological defects for different surfaces in the limit where the energy contribution due to the compression of the layers is much larger than the contributions from other types of deformations. At this regime, the ground state is obtained when the smectic layers are uniformly spaced. In this case the normals to the layers follows geodesics of the surface. This leads to an interesting analogy between smectics and geometric optics. Moreover, it is well known in the optics community that flat lenses with nonuniform refractive index can be treated as curved surfaces, where their geodesics propagate in the same way that light propagates in the lens. Therefore, one can manufacture, in principle, surfaces with specific optical properties and construct smectic textures with different topological defects and singularities by using the extensive literature of known lenses
Mestrado
Física
Mestre em Física
APA, Harvard, Vancouver, ISO, and other styles
23

Persson, Gerd. "Amphiphilic Molecules in Aqueous Solution." Doctoral thesis, Umeå University, Chemistry, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-90.

Full text
Abstract:

The aim of this thesis was to investigate amphiphilic molecules in aqueous solution. The work was divided into two parts. In the first part the effects of different counterions on phase behavior was investigated, while the second part concerns the 1-monooleoyl-rac-glycerol (MO)/n-octyl-β-D-glucoside (OG)/2H2O-system.

The effects of mixing monovalent and divalent counterions were studied for two surfactant systems, sodium/calcium octyl sulfate, and piperidine/piperazine octanesulfonate. It was found that mixing monovalent and divalent counterions resulted in a large decrease in cmc already at very low fractions of the divalent counterion. Moreover, the degree of counterion binding for piperidine in the piperidine/piperazine octanesulfonate system was much higher than predicted, probably due to the larger hydrophobic moiety of piperidine.

The effects of hydrophobic counterions were studied for eight alkylpyridinium octanesulfonates (APOS). The results were discussed in terms of packing constraints. The anomalous behavior of the 2H2O quadrupolar splittings in the lamellar phases was explained by the presence of two or more binding sites at the lamellae surface.

The MO/OG/water system was studied in general and the MO-rich cubic phases in particular. When mixing MO and OG it was found that OG-rich structures (micelles, hexagonal and cubic phase of space group Ia3d) could solubilize quite large amounts of MO, while the MO-rich cubic structures where considerable less tolerant towards the addition of OG. The micelles in the OG-rich L1 phase were found to remain rather small and discrete in the larger part of the L1 phase area, but at low water concentration and high MO content a bicontinuous structure was indicated. Only small fractions of OG was necessary to convert the MO-rich cubic Pn3m structure to an Ia3d structure, and upon further addition of OG a lamellar (La) phase formed. Since the larger part of the phase diagram contains a lamellar structure (present either as a single La phase or as a dispersion of lamellar particles together with other phases), the conclusion was that introducing OG in the MO structures, forces the MO bilayer to become more flat. Upon heating the cubic phases, structures with more negative curvature were formed. The transformation between the cubic structures required very little energy, and this resulted in the appearance of additional peaks in the diffractograms.

APA, Harvard, Vancouver, ISO, and other styles
24

Pellegrene, Brittany Ann. "Optimization of Transition Temperatures and Tilt Angle in SmCPA Phase Bent-Core Liquid Crystals." Kent State University Honors College / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1430258781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mercer, Carolyn Regan. "Liquid crystal point diffraction interferometer." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187127.

Full text
Abstract:
A new instrument, the liquid crystal point diffraction interferometer (LCPDI), has been developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point diffiaction interferometer (PDI) and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with automated data reduction. This dissertation describes the theory of both the PDI and liquid crystal phase control. The design considerations for the LCPDI are presented, including manufacturing considerations. The operation and performance of the LCPDI are discussed, including sections regarding alignment, calibration, and amplitude modulation effects. The LCPDI is then demonstrated using two phase objects: a defocus difference wavefront, and a temperature distribution across a heated chamber filled with silicone oil. The measured results are compared to theoretical or independently measured results and show excellent agreement. A computer simulation of the LCPDI was performed to verify the source of observed periodic phase measurement error. The error stems from intensity variations caused by dye molecules rotating within the liquid crystal layer. Methods are discussed for reducing this error. Algorithms are presented which reduce this error; they are also useful for any phase-stepping interferometer that has unwanted intensity fluctuations, such as those caused by unregulated lasers. It is expected that this instrument will have application in the fluid sciences as a diagnostic tool, particularly in space based applications where autonomy, robustness, and compactness are desirable qualities. It should also be useful for the testing of optical elements, provided a master is available for comparison.
APA, Harvard, Vancouver, ISO, and other styles
26

Saunders, Karl. "Exotic new Bragg glass phases of liquid crystals /." view abstract or download file of text, 2001. http://wwwlib.umi.com/cr/uoregon/fullcit?p3024531.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2001.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 236-238). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
27

Maximo, Guilherme José 1982. "Lipid thermodynamics = new perspectives on phase studies for applications in engineering = Termodinâmica de lipídios: novas perspectivas em estudos de fases para aplicações em engenharia." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/255144.

Full text
Abstract:
Orientadores: Antonio José de Almeida Meirelles, Mariana Conceição Costa
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-24T10:06:55Z (GMT). No. of bitstreams: 1 Maximo_GuilhermeJose_D.pdf: 6364914 bytes, checksum: 716122d30b63141c35ee3d3c3305de17 (MD5) Previous issue date: 2014
Resumo: Para o desenvolvimento de chocolates, manteigas, molhos para salada, cremes cosméticos, medicamentos ou biocombustíveis, assim como na otimização de processos de extração, refino, fracionamento, cristalização e produção de energia, os fenômenos de transição de fases dos sistemas lipídicos são temas, há muito tempo, de diversos trabalhos na literatura. O objetivo desses trabalhos tem sido avaliar como a composição dos produtos altera as suas propriedades físico-químicas e em especial aquelas relacionadas aos processos de fusão. De fato, alterações na temperatura exercem um grande impacto na estrutura cristalina da fase sólida dos sistemas graxos e, consequentemente, nas propriedades sensoriais e reológicas dos produtos. Essas alterações produzem comportamentos termodinâmicos tão variados que a determinação do equilíbrio de fases sólido-líquido desses sistemas representa um grande desafio. Não obstante, quanto maior a complexidade do sistema, menor é a compreensão do seu comportamento. Ou seja, apesar do grande número de trabalhos presentes na literatura envolvidos na investigação dos fenômenos de fusão de sistemas lipídicos, novos dados experimentais e abordagens teóricas para a modelagem dos diagramas são necessários para sua compreensão. Neste contexto, este trabalho teve dois objetivos principais. O primeiro relacionado à determinação e análise de diagramas de fases sólido-líquido de sistemas lipídicos binários de interesse para a indústria. O segundo foi desenvolver alternativas teóricas para aprimorar a representação dos diagramas de fases baseado em abordagens termodinâmicas clássicas. Portanto, onze sistemas binários compostos por triacilgliceróis, ácidos graxos e álcoois graxos foram avaliados. Esses sistemas são potenciais agentes de estruturação, formação de organogéis, produção e armazenamento de energia na indústria de alimentos, farmacêutica e de materiais. Os diagramas de equilíbrio sólido-líquido dessas misturas apresentaram comportamentos distintos, dependentes da formação de fases sólidas miscíveis ou imiscíveis e da não-idealidade do sistema. Além disso, foram estudados quatro sistemas formados a partir da reação ácido-base de Brønsted entre ácidos graxos e etanolaminas. Neste caso, a formação de líquidos iônicos próticos cristalinos com grande habilidade para auto-organização e comportamento não-Newtoniano singular podem atuar como auxiliares em diversas aplicações químicas e farmacêuticas. O problema imposto pela miscibilidade da fase sólida na construção dos diagramas de fases foi superado pela implementação de um algoritmo para a resolução de um sistema de equações não-lineares baseado nas equações fundamentais do equilíbrio sólido-líquido. O objetivo do algoritmo "Crystal-T" foi determinar a temperatura em que o primeiro e o último cristal se fundem durante o aquecimento do sistema. Para isso, a não-idealidade de ambas as fases líquida e sólida foi avaliada utilizando equações baseadas na energia de Gibbs em excesso, incluindo o método de contribuição de grupos UNIFAC, para o cálculo dos coeficientes de atividade. Considerando o aumento da produção mundial e do consumo de óleos e gorduras, este trabalho, a partir de demandas emergentes da indústria e da pesquisa científica, contribuiu na superação de alguns obstáculos relacionados à compreensão do equilíbrio de fases sólido-líquido de sistemas lipídicos para a engenharia de produtos e processos
Abstract: The phase transition phenomena of lipidic systems have long since been evaluated by several works in literature for developing chocolate, butters, dressings, spreads, cosmetic creams, medicines or biofuels as well as for optimizing processes such as extraction, refining, fractionation, crystallization or energy production. The aim of such works has been to answer how the products¿ composition can affect their physicochemical characteristics especially that related to the melting processes. In fact, changes in temperature highly impact the crystalline structure of fatty systems¿ solid phase and, consequently, in the sensorial and rheological properties of the products. These changes led to so many thermodynamic behaviors that the determination of the solid-liquid equilibrium of these systems can configure a particular challenge. However, the greater the complexity of the system the lower the understanding of its behavior. In other words, despite the number of works in literature involved in the investigation of the melting phenomena of lipidic systems, there is still a lack of experimental data and modeling approaches for their understanding. In this context, this work was conducted with two main goals. The first was focused on the measurement and comprehension of the solid-liquid equilibrium phase diagrams of lipidic binary systems of industrial interest. The second was aimed at the development of theoretical alternatives to improve the phase diagram description based on classical thermodynamic approaches. Thus, eleven binary systems composed by triacylglycerols, fatty alcohols and fatty acids were evaluated. Such mixtures are potential structuring, organogelating and energy storing agents for food, pharmaceutical and materials industry. The solid-liquid phase diagrams of these mixtures presented distinct behaviors depending on the formation of immiscible or miscible solid phases and the non-ideality of the system. Also, four systems built through a Brønsted acid-base reaction between fatty acids and ethanolamines were also evaluated. In this case, the formation of protic ionic liquid crystals with high self-assembling ability and marked non-Newtonian behavior are promising for pharmaceutical and chemical applications. The problem imposed by the partial miscibility of the solid phase in the construction of the phase diagrams was overtaken by the implementation of an algorithm based on the resolution of a non-linear equations system built by the solid-liquid equilibrium fundamental equations. The "Crystal-T" algorithm was aimed at the determination of the temperature at which the first and last crystal melts during the heating process. For this, the non-ideality of both liquid and solid phases was evaluated using excess Gibbs energy equations, including the group-contribution UNIFAC model, for the calculation of the activity coefficients. Taking into account the growing increase of the world production and consumption of fat and oils, this work, from industrial and academic emerging demands, contributed to overtake some barriers on the understanding of the solid-liquid phase equilibrium of lipidic mixtures for products and process engineering
Doutorado
Engenharia de Alimentos
Doutor em Engenharia de Alimentos
APA, Harvard, Vancouver, ISO, and other styles
28

Delhorme, Maxime. "Thermodynamics and Structure of Plate-Like Particle Dispersions." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00818964.

Full text
Abstract:
A considerable amount of mineral particles are found to have a plate-like shape. The work in this thesis concerns theoretical investigations, using a Monte Carlo method, of the properties of such particles in aqueous solutions. The objectives were first to create a model that could capture the essential physics of clay suspensions and also to understand the role of thermodynamics in certain chemical processes. For all investigations, the results are related to experimental studies. The acid-base behavior of clays have been studied, using the primitive model, and an excellent agreement between simulated and experimental results was found. The formation of gel phases as a function of the charge anisotropy have also been investigated. Liquid-gel and sol-gel transitions are found to occur for high and moderate charge anisotropy, respectively. These transitions were also found to be size and salt dependent. In absence of charge anisotropy, a liquid-glass transition is reported. The formation of smectic and columnar liquid crystals phases with plate-like particles has been found to be favored by a strong charge anisotropy, in opposition to what was observed for nematic phases. New liquid-crystal phases were also reported. The stability and growth of nanoplatelets is discussed. It was found that the internal Coulombic repulsion could be the cause of the limited growth of C-S-H platelets. The influence of thermodynamics on the agregation mode of such platelets was also investigated
APA, Harvard, Vancouver, ISO, and other styles
29

Chakrabarti, Dwaipayan. "Slow Dynamics In Soft Condensed Matter : From Supercooled Liquids To Thermotropic Liquid Crystals." Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/292.

Full text
Abstract:
This thesis, which contains fourteen chapters in two parts, presents theoretical and computer simulation studies of dynamics in supercooled liquids and thermotropic liquid crystals. These two apparently diverse physical systems are unified by a startling similarity in their complex slow dynamics. Part I consists of six chapters on supercooled liquids while Part II comprises seven chapters on thermotropic liquid crystals. The fourteenth chapter provides a concluding note. Part I starts with an introduction to supercooled liquids given in chapter 1. This chapter discusses basic features of supercooled liquids and the glass transition and portrays some of the theoretical frameworks and formalisms that are widely recognized to have contributed to our present understanding. Chapter 2 introduces a new model of binary mixture in order to study dynamics across the supercooled regime. The system consists of an equimolar mixture of the Lennard-Jones spheres and the Gay-Berne ellipsoids of revolution, and thus one of its components has orientational degrees of freedom (ODOF). A decoupling between trans-lational diffusion and rotational diffusion is found to occur below a temperature where the second rank orientational correlation time starts showing a steady deviation from the Arrhenius temperature behavior. At low temperatures, the optical Kerr effect (OKE) signal derived from the system shows a short-to-intermediate time power law decay with a very weak dependence on temperature, if at all, of the power law exponent as has been observed experimentally. At the lowest temperature investigated, jump motion is found to occur in both the translational and orientational degrees of freedom. Chapter 3 studies how the binary mixture, introduced in the previous chapter, explores its underlying potential energy landscape. The study reveals correlations between the decoupling phenomena, observed almost universally in supercooled molecular liquids, and the manner of exploration of the energy landscape of the system. A significant deviation from the Debye model of rotational diffusion in the dynamics of ODOF is found to begin at a temperature at which the average inherent structure energy of the system starts falling as the temperature decreases. Further, the coupling between rotational diffusion and translational diffusion breaks down at a still lower temperature, where a change occurs in the temperature dependence of the average inherent structure energy. Chapters 4-6 describe analytical and numerical approaches to solve kinetic models of glassy dynamics for various observables. The β process is modeled as a thermally activated event in a two-level system and the a process is described as a β relaxation mediated cooperative transition in a double-well. The model resembles a landscape picture, conceived by Stillinger [Science 267, 1935 (1995)], where the a process is assumed to involve a concerted series of the β processes, the latter being identified as elementary relaxations involving transitions between contiguous basins. For suitable choice of parameter values, the model could reproduce many of the experimentally observed features of anomalous heat capacity behavior during a temperature cycle through the glass transition as described in chapter 4. The overshoot of the heat capacity during the heating scan that marks the glass transition is found to be caused by a delayed energy relaxation. Chapter 5 shows that the model can also predict a frequency dependent heat capacity that reflects the two-step relaxation behavior. The high-frequency peak in the heat capacity spectra appears with considerably larger amplitude than the low-frequency peak, the latter being due to the a relaxation. The model, when simplified with a modified description of the a process that involves an irreversible escape from a metabasin, can be solved analytically for the relaxation time. This version of the model captures salient features of the structural relaxation in glassy systems as described in chapter 6. In Part II, thermotropic liquid crystals are studied in molecular dynamics simulations using primarily the family of the Gay-Berne model systems. To start with, chapter 7 provides a brief introduction to thermotropic liquid crystals, especially from the perspective of the issues discussed in the following chapters. This chapter ends up with a detail description of the family of the Gay-Berne models. Chapter 8 demonstrates that a model system for calamitic liquid crystal (comprising rod-like molecules) could capture the short-to-intermediate time power law decay in the OKE signal near the isotropic-nematic (I-N) phase transition as observed experimentally. The single-particle second rank orientational time correlation function (OTCF) for the model liquid crystalline system is also found to sustain a power law decay regime in the isotropic phase near the I-N transition. On transit across the I-N phase boundary, two power law decay regimes, separated by a plateau, emerge giving rise to a step-like feature in the single-particle second rank OTCF. When the time evolution of the rotational non-Gaussian parameter is monitored as a diagnostic of spatially heterogeneous dynamics, a dominant peak is found to appear following a shoulder at short times, signaling the growth of pseudonematic domains. These observations are compared with those relevant ones obtained for the supercooled binary mixture, as discussed in chapter 2, in the spirit of the analogy suggested recently by Fayer and coworkers [J. Chem. Phys. 118, 9303 (2003)]. In chapter 9, orientational dynamics across the I-N transition are investigated in a variety of model systems of thermotropic liquid crystals. A model discotic system that consists of disc-like molecules as well as a lattice system have been considered in the quest of a universal short-to-intermediate time power law decay in orientational relaxation, if any. A surprisingly general power law decay at short to intermediate times in orientational relaxation is observed in all these systems. While the power law decay of the OKE signal has been recently observed experimentally in calamitic systems near the I-N phase boundary and in the nematic phase by Fayer and coworkers [J. Chem. Phys. 116, 6339 (2002), J. Phys. Chem. B 109, 6514 (2005)], the prediction for the discotic system can be tested in experiments. Chapter 10 presents the energy landscape view of phase transitions and slow dynamics in thermotropic liquid crystals by determining the inherent structures of a family of one-component Gay-Berne model systems. This study throws light on the interplay between the orientational order and the translational order in the mesophases the systems exhibit. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures. The inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the I-N transition and this breakdown is found to occur at a temperature below which the system explores increasingly deeper potential energy minima. There exists a remarkable similarity in the manner of exploration of the potential energy landscape between the Gay-Berne systems studied here and the well known Kob-Andersen binary mixture reported previously [Nature, 393, 554 (1998)]. In search of a dynamical signature of the coupling between orientational order and translational order, anisotropic translational diffusion in the nematic phase has been investigated in the Gay-Berne model systems as described in chapter 11. The translational diffusion coefficient parallel to the director D// is found to first increase and then decrease as the temperature drops through the nematic phase. This reversal occurs where the smectic order parameter of the underlying inherent structures becomes significant for the first time. The non-monotonic temperature behavior of D// can thus be viewed from an energy landscape analysis as a dynamical signature of the coupling between orientational and translational order at the microscopic level. Such a view is likely to form the foundation of a theoretical framework to explain the anisotropic translation diffusion. Chapter 12 investigates the validity of the Debye model of rotational diffusion near the I-N phase boundary with a molecular dynamics simulation study of a Gay-Berne model system for calamitic liquid crystals. The Debye model is found to break down near the I-N phase transition. The breakdown, unlike the one observed in supercooled molecular liquids where a jump diffusion model is often invoked, is attributed to the growth of orientational pair correlation. A mode-coupling theory analysis is provided in support of the explanation. Chapter 13 presents a molecular dynamics study of a binary mixture of prolate ellipsoids of revolution with different aspect ratios interacting with each other through a generalized Gay-Berne potential. Such a study allows to investigate directly the aspect ratio dependence of the dynamical behavior. In the concluding note, chapter 14 starts with a brief summary of the outcome of the thesis and ends up with suggestion of a few relevant problems that may prove worthwhile to be addressed in future.
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Yan. "High-efficiency Blue Phase Liquid Crystal Displays." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5399.

Full text
Abstract:
Blue phase liquid crystals (BPLCs) have a delicate lattice structure existing between chiral nematic and isotropic phases, with a stable temperature range of about 2 K. But due to short coherent length, these self-assembled nano-structured BPLCs have a fast response time. In the past three decades, the application of BPLC has been rather limited because of its narrow temperature range. In 2002, Kikuchi et al. developed a polymer stabilization method to extend the blue-phase temperature range to more than 60 K. This opens a new gateway for display and photonic applications. In this dissertation, I investigate the material properties of polymer-stabilized BPLCs. According the Gerber's model, the Kerr constant of a BPLC is linearly proportional to the dielectric anisotropy of the LC host. Therefore, in the frequency domain, the relaxation of the Kerr constant follows the same trend as the dielectric relaxation of the host LC. I have carried out experiments to validate the theoretical predictions, and proposed a model called extended Cole-Cole model to describe the relaxation of the Kerr constant. On the other hand, because of the linear relationship, the Kerr constant should have the same sign as the dielectric anisotropy of the LC host; that is, a positive or negative Kerr constant results from positive or negative host LCs, respectively. BPLCs with a positive Kerr constant have been studied extensively, but there has been no study on negative polymer-stabilized BPLCs. Therefore, I have prepared a BPLC mixture using a negative dielectric anisotropy LC host and investigated its electro-optic properties. I have demonstrated that indeed the induced birefringence and Kerr constant are of negative sign. Due to the fast response time of BPLCs, color sequential display is made possible without color breakup. By removing the spatial color filters, the optical efficiency and resolution density are both tripled. With other advantages such as alignment free and wide viewing angle, polymer-stabilized BPLC is emerging as a promising candidate for next-generation displays. However, the optical efficiency of the BPLC cell is relatively low and the operating voltage is quite high using conventional in-plane-switching electrodes. I have proposed several device structures for improving the optical efficiency of transmissive BPLC cells. Significant improvement in transmittance is achieved by using enhanced protrusion electrodes, and a 100% transmittance is achievable using complementary enhanced protrusion electrode structure. For a conventional transmissive blue phase LCD, although it has superb performances indoor, when exposed to strong sunlight the displayed images could be washed out, leading to a degraded contrast ratio and readability. To overcome the sunlight readability problem, a common approach is to adaptively boost the backlight intensity, but the tradeoff is in the increased power consumption. Here, I have proposed a transflective blue phase LCD where the backlight is turned on in dark surroundings while ambient light is used to illuminate the displayed images in bright surroundings. Therefore, a good contrast ratio is preserved even for a strong ambient. I have proposed two transflective blue phase LCD structures, both of which have single cell gap, single gamma driving, reasonably wide view angle, low power consumption, and high optical efficiency. Among all the 3D technologies, integral imaging is an attractive approach due to its high efficiency and real image depth. However, the optimum observation distance should be adjusted as the displayed image depth changes. This requires a fast focal length change of an adaptive lens array. BPLC adaptive lenses are a good candidate because of their intrinsic fast response time. I have proposed several BPLC lens structures which are polarization independent and exhibit a parabolic phase profile in addition to fast response time. To meet the low power consumption requirement set by Energy Star, high optical efficiency is among the top lists of next-generation LCDs. In this dissertation, I have demonstrated some new device structures for improving the optical efficiency of a polymer-stabilized BPLC transmissive display and proposed sunlight readable transflective blue-phase LCDs by utilizing ambient light to reduce the power consumption. Moreover, we have proposed several blue-phase LC adaptive lenses for high efficiency 3D displays.
Ph.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
31

Rao, Linghui. "Low Voltage Blue Phase Liquid Crystal Displays." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5448.

Full text
Abstract:
From cell phones, laptops, desktops, TVs, to projectors, high reliability LCDs have become indispensable in our daily life. Tremendous progress in liquid crystal displays (LCDs) has been made after decades of extensive research and development in materials, device configurations and manufacturing technology. Nowadays, the most critical issue on viewing angle has been solved using multidomain structures and optical film compensation. Slow response time has been improved to 2-5 ms with low viscosity LC material, overdrive and undershoot voltage, and thin cell gap approach. Moving image blur has been significantly reduced by impulse driving and frame insertion. Contrast ratio in excess of one million-to-1 has been achieved through local dimming of the segmented LED backlight. The color gamut would exceed 100% of the NTSC (National Television System Committee), if RGB LEDs are used. Besides these technological advances, the cost has been reduced dramatically by investing in advanced manufacturing technologies. Polymer-stabilized blue phase liquid crystal displays (BPLCDs) based on Kerr effect is emerging as a potential next-generation display technology. In comparison to conventional nematic devices, the polymer-stabilized BPLCDs exhibit following attractive features: (1) submillisecond response time, (2) no need for molecular alignment layers, (3) optically isotropic dark state when sandwiched between crossed polarizers, and (4) transmittance is insensitive to cell gap when the in-plane electrodes are employed. However, aside from these great potentials, there are still some tough technical issues remain to be addressed. The major challenges are: 1) the operating voltage is still too high (~50 Volts vs. 5 Volts for conventional nematic LCDs), and the transmittance is relatively low (~65% vs. 85% for nematic LCDs), 2) the hysteresis effect and residual birefringence effect are still noticeable, 3) the mesogenic temperature range is still not wide enough for practical applications (?40 oC to 80 oC), and 4) the ionic impurities in these polymer-stabilized nano-structured LC composites could degrade the voltage holding ratio, which causes image sticking. In this dissertation, the BPLC materials are studied and the new BPLC device structures are designed to optimize display performances. From material aspect, the electro-optical properties of blue phase liquid crystals are studied based on Kerr effect. Temperature effects on polymer-stabilized blue phase or optically isotropic liquid crystal displays are investigated through the measurement of voltage dependent transmittance under different temperatures. The physical models for the temperature dependency of Kerr constant, induced birefringence and response time in BPLCs are first proposed and experimentally validated. In addition, we have demonstrated a polymer-stabilized BPLC mixture with a large Kerr constant K~13.7 nm/V2 at 20 oC at 633 nm. These models would set useful guidelines for optimizing material performances. From devices side, the basic operation principle of blue phase LCD is introduced. A numerical model is developed to simulate the electro-optic properties of blue phase LCDs based on in-plane-switching (IPS) structure. Detailed electrode dimension effect, distribution of induced birefringence, cell gap effect, correlation between operation voltage and Kerr constant, and wavelength dispersion are investigated. Viewing angle is another important parameter. We have optimized the device configurations according to the device physics studied. With proper new device designs, the operating voltage is decreased dramatically from around 50 Volts to below 10 Volts with a reasonably high transmittance (~70%) which enables the BPLCDs to be addressed by amorphous silicon thin-film transistors (TFTs). Moreover, weak wavelength dispersion, samll color shift, and low hysteresis BPLCDs are achieved after their root causes being unveiled. Optimization of device configurations plays a critical role to the widespread applications of BPLCDs. In addition to displays, blue phase liquid crystals can also be used for photonic applications, such as light modulator, phase grating, adaptive lens and photonic crystals. We will introduce the application of blue phase liquid crystal as a modulator to realize a viewing angle controllable display. The viewing angle can be tuned continuously and precisely with a fast response time. The detailed design and performance are also presented in this dissertation.
Ph.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
32

Lin, Yi-Hsin. "POLARIZATION-INDEPENDENT LIQUID CRYSTAL DEVICES." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4199.

Full text
Abstract:
Liquid crystal (LC) devices can be operated as amplitude modulators and phase modulators. LC amplitude modulation is commonly used in liquid crystal display (LCD) while phase-only modulation is useful for laser beam steering, tunable grating, prism, lens, and other photonic devices. Most LC devices are polarization dependent and require at least one polarizer. As a result, the optical efficiency is low. To enhance display brightness, a power hungry backlight has to be used leading to a high power consumption and short battery life. In a LC phase modulator, the polarization dependent property complicates the laser beam steering system. It is highly desirable to develop new operating mechanisms that are independent of the incident light polarization. In this dissertation, we have developed eight polarization-independent liquid crystal operation principles: three of them are aimed for displays and the other five are for phase modulators. For amplitude modulations, a new polymer-dispersed liquid crystal (PDLC) and two new dye-doped LC gels are polarizer-free by combining light scattering with dye-absorption effects. In phase modulation, we explore five device concepts: PDLC and Polymer-Stabilized Cholesteric Texture (PSCT), homeotropic LC gels, thin polymer film separated double-layered structure, and double-layered LC gels. In the low voltage regime, both PDLC and PSCT have a strong light scattering. However, as the voltage exceeds a certain level, the phase modulation is scattering-free and is independent of polarization. The homeotropic LC gels do not require any biased voltage and the response time is still fast. Although the remaining phase in these devices is small, they are still useful for micro-photonic device applications. To increase the phase change, thin polymer film separated double-layered structure is a solution. The orthogonal arrangement of top and bottom LC directors results in polarization independence. However, the response time is slow. Similarly, double-layered LC gels are not only polarization independent but also fast response due to the established polymer network.
Ph.D.
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Haiying. "STUDIES OF LIQUID CRYSTAL RESPONSE TIME." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3541.

Full text
Abstract:
In this dissertation, the response time issue of the liquid crystal (LC) devices is investigated in meeting the challenges for display and photonic applications. The correlation between the LC director response time and the optical response time is derived theoretically and confirmed experimentally. A major contribution of this thesis is that, based on the small angle approximation, we derive rigorous analytical solutions for correlating the LC director response time to its consequent optical response times (both rise and decay) of a vertical-aligned nematic LC cell. This work successfully fills the gap in the literature of LCD switching dynamics. An important effect related to response time, backflow is analyzed using a homogeneous LC cell in an infrared wavelength. The Leslie viscosity coefficients can hardly be found in the literature. A new effective approach to estimate the Leslie coefficients of LC mixtures based on MBBA data is proposed in this dissertation. Using this method, the Leslie coefficients of the LC material under study can be extracted based on its order parameters. The simulation results agree with the experimental data very well. This method provides a useful tool for analyzing the dynamic response including backflow. Cell gap is an important factor affecting the LC response time. Usually a thinner cell gap is chosen to achieve faster response time, since normally both rise and decay times are known to be proportional to d2. However, they are valid only in the region. In the large voltage region where , the optical decay time is independent of d. In this thesis, we find that between these two extremes the response time is basically linearly proportional to d. Our analytical derivation is validated by experimental results. Therefore, in the whole voltage region, the physical picture of the optical response time as a function of the cell gap is completed. This analysis is useful for understanding the grayscale switching behaviors of the LC phase modulators. In conclusion, this dissertation has solved some important issues related to LC optical response time and supplied valuable tools for scientists and engineers to numerically analyze the LC dynamics.
Ph.D.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical Engineering
APA, Harvard, Vancouver, ISO, and other styles
34

Knight, P. "Temperature jump studies of lyotropic liquid crystals." Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Stojadinovic, Strahinja. "Light Scattering Studies of Dynamics of Bent-Core Liquid Crystals." Kent State University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=kent1105330884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Braun, Frank Nicholas. "Surface phase transitions in liquid crystals." Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mottram, N. J. "Boundary effects in nematic liquid crystal layers." Thesis, University of Bristol, 1996. http://hdl.handle.net/1983/3f718f68-e280-4994-afa2-29a7845c73f7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Terescenco, Daria. "Evaluation et compréhension de la structure de l’émulsifiant et son impact sur les propriétés physiques, physico-chimiques et sensorielles d’émulsions cosmétiques." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMLH05/document.

Full text
Abstract:
L’émulsifiant est une matière première largement utilisée dans les systèmes formulés de type émulsion. Grâce à sa structure chimique amphiphile, cette molécule diminue la tension interfaciale entre les deux liquides non miscibles qui composent une émulsion, ce qui augmente la stabilité du système dans le temps. En plus, à cause de sa structure, il peut former des cristaux liquides dans les systèmes formulés, ce qui impacte considérablement les propriétés physico-chimiques et applicatives des émulsions. Ce projet vise l’étude d’un tensioactif mixte naturel alkyl polyglucoside/alcool gras. Les propriétés de celui-ci ont été d’abord investiguées via la construction du diagramme de phase. Ainsi, il a été démontré que la variation de la concentration et du ratio alkyl polyglucoside/alcool gras dans l’émulsifiant mixte favorise le passage de solutions micellaires vers les cristaux liquides de types lamellaire ou hexagonale dans les systèmes étudiés. La maitrise des propriétés des systèmes binaires a permis, par la suite, de comprendre les métamorphoses subies par le système lorsqu’une phase grasse est incorporée. La structure chimique des émollients (présence des hétéroatomes) affecte l’organisation des cristaux liquides formés par les molécules amphiphiles. Par conséquent, en fonction de l’émollient utilisé, les propriétés microscopiques et macroscopiques des systèmes changent (taille et distribution des gouttelettes, profil rhéologique, thermique et de texture). Finalement, les propriétés applicatives des émulsions sont aussi affectées, comme cela a été montré via l’analyse sensorielle et les mesures biométriques in-vivo
Emulsifier is a raw material widely used in formulated systems of emulsion type. Due to its amphiphilic chemical structure, this molecule decreases the interfacial tension between two immiscible liquids that form an emulsion, which increases the stability of the system over time. In addition, it can form liquid crystals in the formulated systems because of its structure and this has a considerable impact on the physicochemical and applicative properties of emulsions. The objective of this project is to study a natural alkyl polyglucoside/fatty alcohol mixed surfactant. Its properties were first investigated via the construction of the phase diagram. Thus, it has been shown that the variation of the concentration and of the ratio of alkyl polyglucoside/fatty alcohol in the mixed emulsifier favors the transition between the micellar solutions towards liquid crystals of lamellar or hexagonal type in the studied systems. Next, the mastering of the binary systems properties allowed understanding the metamorphoses undergone by the system when an oil phase is incorporated into it. The chemical structure of emollients (presence of heteroatoms) affects the organization of liquid crystals formed by the amphiphilic molecules. Therefore, depending on the emollient type, the microscopic and macroscopic properties of the systems change (droplet sizes and distribution, rheological, thermal and texture profile). Finally, the applicative properties of emulsions are also affected, as shown by sensory analysis and in-vivo biometric measurements
APA, Harvard, Vancouver, ISO, and other styles
39

Wincure, Benjamin 1966. "Computational modeling of a liquid crystal phase transition." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103308.

Full text
Abstract:
This thesis numerically solves the tensor order parameter continuum theory equations for nematic liquid crystals to investigate liquid crystal texturing mechanisms during an isotropic to nematic phase transition in a bulk unstable isotropic phase and next to solid surfaces. The Time Dependent Ginsburg Landau equation with a Landau de Gennes Helmholtz free energy density description is used to predict the shapes, textures and defect mechanisms that occur in the expanding droplets and films of a 4'-pentyl-4-cyanobiphenyl (5CB) nematic phase immediately after their nucleation from an unstable isotropic phase, due to a temperature quench. To create a robust simulation method able to tackle high curvature, defect nucleation, heterogeneous substrates and phase ordering interfaces, particular attention was paid to adapting the mathematical model and computational methods to what was previously known about the nucleation and growth events that occur experimentally during a bulk 5CB isotropic to nematic phase transition and next to decorated solid surfaces. The numerical simulations provide detailed predictions about (i) growth rates for different temperature quenches, (ii) structure of the isotropic-nematic interface, (iii) shapes of expanding nano and submicron nematic droplets, (iv) texturing within growing nano and submicron nematic droplets, (v) a new defect formation mechanism called "interfacial defect shedding", and (vi) the effect of contact angle and interface curvature next to a solid surface with anchoring switches. The main contributions of this thesis are its detailed predictions that emerge from the liquid crystal simulation results, the careful adaptation of the mathematical model and numerical method to what is currently known about early stage growth in a nematic liquid crystal phase, and the validation of new theory by the simulation results.
APA, Harvard, Vancouver, ISO, and other styles
40

Powell, Norman James. "The modelling of nematic liquid crystal phase devices." Thesis, Durham University, 1993. http://etheses.dur.ac.uk/5749/.

Full text
Abstract:
The implementation of nematic liquid crystal optical devices, which exploit the voltage dependent, optical path length modification of the electrical Freedrichsz transition, is presented. By combining refractive elements in a diffractive zone structure, efficient and flexible devices with relatively high refractive powers can be constructed. Continuously variable optical properties can be achieved by scaling the optical profile of the refractive elements and applying a phase correction to ensure that the transition between adjacent zones is an integral number of wavelength, hence a continuous optical profile is constructed. Two such devices are postulated; a variable deflection angle prism and a variable focal length lens, though the approach may be extended to other devices. The zones are addressed through combed electrode structures. The required voltage profile is produced by dropping the applied voltages across a shaped conductive strip. A sampling of the profile is transported along the length of the zone via discrete electrodes. In order to produce the required scalability and independent phase correction of the optical profile, it is necessary to restrict the design and operation of the electrodes to the approximately linear region of the response curve. Two-dimensional optical structures can either be achieved through the use of planar earth plates, to mask connections to the centre of the device, or by cascading devices with electrode structures open to connection at the edges. In order to predict the optical profiles of these and other devices, a model was constructed which describes the director orientation through a two-dimensioned electrode structure. The variational finite element method was employed to minimize the electrical Gibbs free energy of a liquid crystal cell, in order to find the equilibrium director orientation. A preliminary version of this model is presented which is restricted to rotation of the liquid crystal to within the plane of the solution.
APA, Harvard, Vancouver, ISO, and other styles
41

Tian, Linan. "Liquid crystal blue phase for electro-optic displays." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/liquid-crystal-blue-phase-for-electrooptic-displays(0230a0fd-6cbb-4edb-a626-ae981fe75141).html.

Full text
Abstract:
Liquid crystals are a vast and diverse class of materials which ranges from fluids made up of simple rods, polymers and solutions, to elastomers and biological organisms. Liquid crystal phases are neither crystalline, nor a ‘normal’ isotropic liquid, but lie somewhere in between these two common states of matter. Liquid crystals have found enormous use in display devices due to their electro-optic properties. In this thesis, the optical and electro-optical properties of some chiral liquid crystalline phases are studied. The optical and electro-optical behaviour of liquid crystalline blue phases has been investigated via a detailed analysis of the reflection spectrum from thin, vertical field (VF) cells. Spectral analysis in this thesis was performed using a numerical fitting technique based on the Berreman 4x4 matrix method. The validity of the technique was proved through comparisons of independent measurements with the calculated physical parameters. A novel Kerr effect measurement method was proposed in this thesis and a known material was used to verify this new method. The Kerr constant together with its dispersion relation was measured using a white light source. An unusually large Kerr constant, K, is determined in the blue phases of a non-polymer stabilized material, ~ 3x10-9 mV-2 (BPI). The large value of K is attributed to significant pre-transitional values of the dielectric anisotropy and birefringence. K follows an inverse dependence on temperature which is more marked in BPII than BPI, and we consequently suggest that the BPI demonstrates properties best suited to electro-optic devices. The field effects in blue phase include electrostriction and the influence of the Kerr effect was separated from electrostriction phenomena for the first time in this work. Finally in the Kerr effect measurements, the Kerr constant in the optically isotropic dark conglomerate phase of a bent-core material was studied for the first time, with rather low values, ~1x10-11 mV-2. The low Kerr constant can be understood in the context of the physical properties of the material. Supercooling phenomena in the blue phase were studied through an analysis of the optical properties in thin cells. Features including the Bragg reflection peak jump and hysteresis are measured through the reflection spectra. A blue phase sample with a single orientation over an area of millimeters was prepared to help the spectra study of the blue phases. Although some previous reports indicated that there may be a new blue phase in the supercooled region, we find that there is no evidence shows that the supercooled blue phase has a different structure from the BPI.Chiral molecules have been included as dopants in achiral bent-core materials to produce a range of new chiral mixtures. Different host materials and chiral dopants have been used to produce several chiral nematic materials in which the chiral nematic phase, the underlying smectic phase and the blue phases are examined. The order parameter is determined as a function of temperature in the chiral nematic phase, and compared to that determined for several calamitic materials; no discernible difference is found. A study of the pitch divergence in the chiral nematic phase of the bent-core mixtures shows interesting properties at both low temperature (as the smectic phase is approached) and at high temperatures (at the transition to the blue phase). An unusual phase separation of the chiral dopant in the mixtures is reported, and details are deduced through a comparison between different mixtures. It is found that a dopant with similar clearing point to the bent-core material has less likelihood of phase separation. Although the blue phase temperature range is extended in these mixtures in comparison with typical values for calamitic materials, it does not extend beyond 2K in any of the materials. Both blue phase I and the fog phases are observed in these chiral bent core systems, but no BPII is observed in any of the materials studied. The small k33 (~ 2.8 pN at 10 K below clearing point) in the bent-core host material is suggested as one of the reasons that the blue phase range is not enhanced as much as may have been expected from reports by other authors.
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Xinghua. "Liquid Crystal Diffractive Optical Elements: Applications and Limitations." [Kent, Ohio] : Kent State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1122499777.

Full text
Abstract:
Thesis (Ph.D.)--Kent State University, 2005.
Title from PDF t.p. (viewed Sept. 14, 2006). Advisor: Philip J. Bos. Keywords: liquid crystal; diffractive optical element; optical phased array; spatial light modulator; high resolution wavefront control; aberration correction. Includes bibliographical references (p. 206-213).
APA, Harvard, Vancouver, ISO, and other styles
43

Drake, Philip. "The development of quartz crystal microbalance based chemical sensors." Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chan, Tom. "Smectic phase transitions in chrial liquid crystals." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/32636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bladon, Peter. "Phase transitions in nematic polymer liquid crystals." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Long, Geraldine Margaret. "Phase modulation polarisation dependence in liquid crystals." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Patel, Neha Mehul. "Electrooptic Studies of Liquid Crystalline Phases and Magnetically Levitated Liquid Bridges." Case Western Reserve University School of Graduate Studies / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=case1080932723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shamid, Shaikh M. "STATISTICAL PHYSICS OF MODULATED PHASES IN NEMATIC LIQUID CRYSTALS." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1448892923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jamali, Afsoon Jamali. "LARGE AREA TUNABLE LIQUID CRYSTAL LENS." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1541671894328594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bemrose, Richard Antony. "A molecular dynamics study of liquid crystal mixtures." Thesis, Sheffield Hallam University, 1999. http://shura.shu.ac.uk/19339/.

Full text
Abstract:
Results are presented from molecular dynamics simulations of binary liquid crystal mixtures using a generalisation of a well established Gay-Berne intermolecular potential. The simulations are undertaken in both the microcanonical (NVE) and the isoenthalpic-isobaric (NPH) ensembles. Firstly a 50:50 mixed system is simulated in the NVE ensemble containing generalised Gay-Berne (GGB) rod-like molecules with length to breadth axial ratios of 3.5:1 (molecules A) and 3:1 (molecules B). The molecules in this system differs only slightly from the well-characterised Gay-Berne (GB) potential with length to breadth ratio of 3:1. It is shown that the system exhibits isotropic (/), nematic (N) and smectic-B (SmB) phases with both the I-N and N-SmB phase boundaries not clearly defined. Competition between two density waves parallel to the director of the same wavelength but different phase lead to a pre-smectic ordering preceding the N-SmB phase transition. The longer molecules are shown to have a consistently higher order parameter the difference being greatest in the nematic phase and decrease with lowering temperature. Although a degree of local ordering is shown within each smectic layer the smectic phase is fully commensurate. Secondly, phase behaviour diagrams are presented from a series of constant-NPH simulations over a range of pressures and concentrations. The binary mixtures exhibit a rich phase behaviour, displaying isotropic, nematic, smectic-A (SmA), induced smectic-A and smectic-B phases depending on the choice of pressure and concentration. It is shown that the temperature range over which the nematic phase is stable can be extended greater than either homogeneous system by elevating the system pressure and/or by choice of concentration, agreeing with experimental results. The mixture exhibits a stable SmA island at a mole fraction of xa = 0.50 depending on the choice of pressure and a narrow induced SmA phase at xa = 0.25.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography