Journal articles on the topic 'Liquid permittivity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Liquid permittivity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Raszewski, Zbigniew, Stanisław Kłosowicz, Jerzy Zieliński, and Rafał Mazur. "Dielectric properties of liquid crystals." Bulletin of the Military University of Technology 72, no. 4 (2023): 15–54. http://dx.doi.org/10.5604/01.3001.0054.7909.
Full textShirsavar, Reza, Saeid Mollaei, Mansoure Moeini Rizi, et al. "Effect of Permittivity on the Electric-Field-Driven Rotation Dynamics in a Liquid Film." Applied Mechanics 3, no. 1 (2022): 78–87. http://dx.doi.org/10.3390/applmech3010005.
Full textTabassum, Shagufta, and V. P. Pawar. "Complex permittivity spectra of binary polar liquids using time domain reflectometry." Journal of Advanced Dielectrics 08, no. 03 (2018): 1850019. http://dx.doi.org/10.1142/s2010135x18500194.
Full textXing, Lei, Yi Huang, Qian Xu, Saqer Alja'afreh, and Tingting Liu. "Complex Permittivity of Water-Based Liquids for Liquid Antennas." IEEE Antennas and Wireless Propagation Letters 15 (2016): 1626–29. http://dx.doi.org/10.1109/lawp.2016.2519542.
Full textEhata, Katsufumi, Shenglei Che, and Norimasa Sakamoto. "A Technique for Permittivity Measurement of Ceramic Powders at Microwave Frequencies." Key Engineering Materials 320 (September 2006): 185–88. http://dx.doi.org/10.4028/www.scientific.net/kem.320.185.
Full textMa, Jialu, Jingchao Tang, Kaicheng Wang, Lianghao Guo, Yubin Gong, and Shaomeng Wang. "Complex Permittivity Characterization of Liquid Samples Based on a Split Ring Resonator (SRR)." Sensors 21, no. 10 (2021): 3385. http://dx.doi.org/10.3390/s21103385.
Full textAmmar, Alhegazi, Zakaria Zahriladha, Azwan Shairi Noor, Sutikno Tole, A. Alahnomi Rammah, and Ismail Abu-Khadrah Ahmed. "Analysis and investigation of a novel microwave sensor with high Q-factor for liquid characterization." TELKOMNIKA Telecommunication, Computing, Electronics and Control 17, no. 2 (2019): 1065–70. https://doi.org/10.12928/TELKOMNIKA.v17i2.11901.
Full textEremenko, Z. E., A. I. Shubnyi, A. Y. Kogut, and R. S. Dolia. "High loss liquid dielectric characterization: Comparison of microwave waveguide and resonator measurement techniques." International Journal of Microwave and Wireless Technologies 12, no. 9 (2020): 892–99. http://dx.doi.org/10.1017/s1759078720000628.
Full textThakur, K. P., K. J. Cresswell, M. Bogosanovich, and W. S. Holmes. "Modeling the Permittivity of Liquid Mixtures." Journal of Microwave Power and Electromagnetic Energy 34, no. 3 (1999): 161–69. http://dx.doi.org/10.1080/08327823.1999.11688401.
Full textGisse, P., J. Pavel, H. T. Nguyen, and V. L. Lorman. "Dielectric permittivity of antiferroelectric liquid crystals." Ferroelectrics 147, no. 1 (1993): 27–41. http://dx.doi.org/10.1080/00150199308217179.
Full textAgarwal, Smriti, and Manoj Chandra Garg. "Design of an Accurate, Planar, Resonant Microwave Sensor for Testing a Wide Range of Liquid Samples." Electronics 13, no. 22 (2024): 4510. http://dx.doi.org/10.3390/electronics13224510.
Full textH., Aswathaman, Parthipan G., Thenappan T., Shoba A., and Shreedevi S. "DIELECTRIC CORRELATION AND EXCESS ENERGY STUDIES OF MIXTURES OF ANILINE AND BROMOBENZENE." International Journal of Advanced Trends in Engineering and Technology 3, no. 1 (2018): 126–29. https://doi.org/10.5281/zenodo.1233609.
Full textYasin, Azhar, Nayab Gogosh, Syed Irfan Sohail, Syed Muzahir Abbas, Muhammad Farhan Shafique, and Abdelhady Mahmoud. "Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters." Sensors 23, no. 6 (2023): 2884. http://dx.doi.org/10.3390/s23062884.
Full textAsghar Qureshi, Suhail, Zuhairiah Zainal Abidin, Huda A. Majid, Adel Y. I. Ashyap, and Bashar A. F. Esmail. "Unorthodox technique in sensing with the metamaterial-based resonator sensor at millimetre frequencies." Indonesian Journal of Electrical Engineering and Computer Science 31, no. 2 (2023): 785. http://dx.doi.org/10.11591/ijeecs.v31.i2.pp785-793.
Full textSuhail, Asghar Qureshi, Zainal Abidin Zuhairiah, A. Majid Huda, Y. I. Ashyap Adel, and A. F. Esmai Bashar. "Unorthodox technique in sensing with the metamaterial-based resonator sensor at millimetre frequencies." Unorthodox technique in sensing with the metamaterial-based resonator sensor at millimetre frequencies 31, no. 2 (2023): 785–93. https://doi.org/10.11591/ijeecs.v31.i2.pp785-793.
Full textManaila-Maximean, Doina. "Effective Permittivity of a Multi-Phase System: Nanoparticle-Doped Polymer-Dispersed Liquid Crystal Films." Molecules 26, no. 5 (2021): 1441. http://dx.doi.org/10.3390/molecules26051441.
Full textBazarova, Sayana B., Ivan G. Simakov, Chingis Zh Gulgenov, and Tumen Ch Ochirov. "Determination of the dielectric properties of water in a thin layer." Himičeskaâ fizika i mezoskopiâ 26, no. 1 (2024): 85–94. http://dx.doi.org/10.62669/17270227.2024.1.8.
Full textDhanush, R., Kunde Santhosh Kumar, and M. Ganesh Madhan. "Design and Performance prediction of Liquid based Tunable Cylindrical Dielectric Resonator Antenna." Journal of Physics: Conference Series 2466, no. 1 (2023): 012014. http://dx.doi.org/10.1088/1742-6596/2466/1/012014.
Full textKita, Yasuo, Kenji Kiyohara, Motohisa Oobatake, Soichi Hayashi, and Katsunosuke Machida. "Large permittivity of computer simulated liquid cyanogen." Journal of Chemical Physics 101, no. 9 (1994): 7828–34. http://dx.doi.org/10.1063/1.468234.
Full textWang, Yong, and Mohammed N. Afsar. "Measurement of complex permittivity of liquid dielectrics." Microwave and Optical Technology Letters 34, no. 4 (2002): 240–43. http://dx.doi.org/10.1002/mop.10427.
Full textZukowski, Pawel, Przemyslaw Rogalski, Tomasz N. Kołtunowicz, et al. "DC and AC Tests of Moisture Electrical Pressboard Impregnated with Mineral Oil or Synthetic Ester—Determination of Water Status in Power Transformer Insulation." Energies 15, no. 8 (2022): 2859. http://dx.doi.org/10.3390/en15082859.
Full textYeo, Junho, and Jong-Ig Lee. "High-Sensitivity Slot-Loaded Microstrip Patch Antenna for Sensing Microliter-Volume Liquid Chemicals with High Relative Permittivity and High Loss Tangent." Sensors 22, no. 24 (2022): 9748. http://dx.doi.org/10.3390/s22249748.
Full textYoshinari, Takehisa, and Gordon R. Freeman. "Electron thermalization distance distribution and ion mobility in n-C6F14." Canadian Journal of Chemistry 70, no. 3 (1992): 915–18. http://dx.doi.org/10.1139/v92-122.
Full textTrivedi, Chintan M., Vipinchandra A. Rana, and Hemantkumar A. Chaube. "Microwave Dielectric Relaxation in Binary Mixtures of Pyridine and 1-Propanol at Different Temperatures." Solid State Phenomena 209 (November 2013): 86–89. http://dx.doi.org/10.4028/www.scientific.net/ssp.209.86.
Full textBorodina, Irina A., Boris D. Zaitsev, Andrey A. Teplykh, and Alexander P. Semyonov. "Determination of viscosity and dielectric constant of liquids using the equivalent circuit method using a resonator with a lateral electric field." Radioelectronics. Nanosystems. Information Technologies. 16, no. 4 (2024): 457–64. http://dx.doi.org/10.17725/j.rensit.2024.16.457.
Full textLi, Zhongjun, Shuang Tian, Jiaxin Tang, Weichao Yang, Tao Hong, and Huacheng Zhu. "High-Sensitivity Differential Sensor for Characterizing Complex Permittivity of Liquids Based on LC Resonators." Sensors 24, no. 15 (2024): 4877. http://dx.doi.org/10.3390/s24154877.
Full textJuman, A. Naser, A. Himdan Taki, A. Latif Issam, I. Mohammed Yousif, and H. Al-Dujaili Ammar. "Physical Properties of Pure and Nano Ag Doped Liquid Crystalline Compounds Containing 1,3,4-Oxadizole Unit." Journal of Progressive Research in Chemistry 3, no. 2 (2016): 109–22. https://doi.org/10.5281/zenodo.3969837.
Full textSeleznev, Nikita V., Kamilla Fellah, John Phillips, Siti Najmi Zulkipli, and Bastien Fournié. "Matrix Permittivity Measurements for Rock Powders." SPE Reservoir Evaluation & Engineering 19, no. 02 (2016): 214–25. http://dx.doi.org/10.2118/170896-pa.
Full textLonitz, Katrin, and Alan J. Geer. "Assessing the impact of different liquid water permittivity models on the fit between model and observations." Atmospheric Measurement Techniques 12, no. 1 (2019): 405–29. http://dx.doi.org/10.5194/amt-12-405-2019.
Full textPrasanna, Thushara Haridas, Mridula Shantha, Anju Pradeep, and Pezholil Mohanan. "Identification of polar liquids using support vector machine based classification model." IAES International Journal of Artificial Intelligence (IJ-AI) 11, no. 4 (2022): 1507. http://dx.doi.org/10.11591/ijai.v11.i4.pp1507-1516.
Full textThushara, Haridas Prasanna, Shantha Mridula, Pradeep Anju, and Mohanan Pezholil. "Identification of polar liquids using support vector machine based classification model." International Journal of Artificial Intelligence (IJ-AI) 11, no. 4 (2022): 1507–16. https://doi.org/10.11591/ijai.v11.i4.pp1507-1516.
Full textReyes-Vera, Erick, G. Acevedo-Osorio, Mauricio Arias-Correa, and David E. Senior. "A Submersible Printed Sensor Based on a Monopole-Coupled Split Ring Resonator for Permittivity Characterization." Sensors 19, no. 8 (2019): 1936. http://dx.doi.org/10.3390/s19081936.
Full textSihvola, Ari, Ebbe Nyfors, and Martti Tiuri. "Mixing Formulae and Experimental Results for the Dielectric Constant of Snow." Journal of Glaciology 31, no. 108 (1985): 163–70. http://dx.doi.org/10.1017/s0022143000006419.
Full textSihvola, Ari, Ebbe Nyfors, and Martti Tiuri. "Mixing Formulae and Experimental Results for the Dielectric Constant of Snow." Journal of Glaciology 31, no. 108 (1985): 163–70. http://dx.doi.org/10.3189/s0022143000006419.
Full textShi, Jia Ming, Quirino Balzano, and Christopher C. Davis. "Broad Band Microwave Dielectric Measurement of Liquids with an Open-Ended Coaxial Probe." Applied Mechanics and Materials 333-335 (July 2013): 191–98. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.191.
Full textBakli, H., and K. Haddadi. "Microwave Interferometry Based On Open-ended Coaxial Technique for High Sensitivity Liquid Sensing." Advanced Electromagnetics 6, no. 3 (2017): 88. http://dx.doi.org/10.7716/aem.v6i3.428.
Full textLim, Hongkie, Dong-Ho Lee, Jusung Kim, and Songcheol Hong. "Current-Mode Dielectric Spectroscopy for Liquid Permittivity Measurement." IEEE Transactions on Biomedical Circuits and Systems 15, no. 4 (2021): 647–54. http://dx.doi.org/10.1109/tbcas.2021.3094212.
Full textAlizadeh Sarami, M., M. Moghadam, and A. Ghanadzadeh Gilani. "Modified dielectric permittivity models for binary liquid mixture." Journal of Molecular Liquids 277 (March 2019): 546–55. http://dx.doi.org/10.1016/j.molliq.2018.12.149.
Full textMoolat, Remsha, Manoj Mani, Shameena V. Abdulrahiman, Anju Pradeep, Vasudevan Kesavath, and Mohanan Pezholil. "Liquid Permittivity Sensing Using Planar Open Stub Resonator." Journal of Electronic Materials 49, no. 3 (2020): 2110–17. http://dx.doi.org/10.1007/s11664-019-07910-3.
Full textSzerement, Justyna, Aleksandra Woszczyk, Agnieszka Szypłowska, et al. "A Seven-Rod Dielectric Sensor for Determination of Soil Moisture in Well-Defined Sample Volumes." Sensors 19, no. 7 (2019): 1646. http://dx.doi.org/10.3390/s19071646.
Full textGregory, Andrew P., Kristell Quéléver, Djamel Allal, and Ourouk Jawad. "Validation of a Broadband Tissue-Equivalent Liquid for SAR Measurement and Monitoring of Its Dielectric Properties for Use in a Sealed Phantom." Sensors 20, no. 10 (2020): 2956. http://dx.doi.org/10.3390/s20102956.
Full textLiu, Huan, and Yichao Meng. "Microwave Sensor for Dielectric Constant of Lossy Organic Liquids Based on Negative-Resistance Oscillation." Sensors 25, no. 3 (2025): 961. https://doi.org/10.3390/s25030961.
Full textQuan, Chun-He, Xiao-Yu Zhang, and Jong-Chul Lee. "Measurement of Complex Permittivity for Rapid Detection of Liquid Concentration Using a Reusable Octagon-Shaped Resonator Sensor." Micromachines 14, no. 3 (2023): 542. http://dx.doi.org/10.3390/mi14030542.
Full textFarhat, Iman, Lourdes Farrugia, Julian Bonello, Rafel Grima, Raffaele Persico, and Charles Sammut. "One-Port Coaxial Line Sample Holder Characterisation Method of Dielectric Spectra." Sensors 24, no. 17 (2024): 5573. http://dx.doi.org/10.3390/s24175573.
Full textWang, Chen, Xiaoming Liu, Zhixiang Huang, Shuo Yu, Xiaofan Yang, and Xiaobang Shang. "A Sensor for Characterisation of Liquid Materials with High Permittivity and High Dielectric Loss." Sensors 22, no. 5 (2022): 1764. http://dx.doi.org/10.3390/s22051764.
Full textLian, Yiwei, and Kongshuang Zhao. "Broadband dielectric spectroscopy of micelles and microemulsions formed in a hydrophilic ionic liquid: the relaxation mechanism and interior parameters." New Journal of Chemistry 42, no. 4 (2018): 2605–15. http://dx.doi.org/10.1039/c7nj04813k.
Full textUseinova, S. "Application of the Variational Method in Studying of Polar Liquids and Their Concentrated Solutions." Bulletin of Science and Practice, no. 12 (December 15, 2022): 20–27. http://dx.doi.org/10.33619/2414-2948/85/02.
Full textMatković, Anđela, and Antonio Šarolić. "The Effect of Freezing and Thawing on Complex Permittivity of Bovine Tissues." Sensors 22, no. 24 (2022): 9806. http://dx.doi.org/10.3390/s22249806.
Full textReis, João Carlos R., T. P. Iglesias, Gérard Douhéret, and Michael I. Davis. "The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics." Physical Chemistry Chemical Physics 11, no. 20 (2009): 3977. http://dx.doi.org/10.1039/b820613a.
Full textBu, Ling, Xiaoming Wu, Xiaohong Wang, and Litian Liu. "Liquid encapsulated electrostatic energy harvester for low-frequency vibrations." Journal of Intelligent Material Systems and Structures 24, no. 1 (2012): 61–69. http://dx.doi.org/10.1177/1045389x12459590.
Full text