Academic literature on the topic 'Liquid Propellant Rocket'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquid Propellant Rocket.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Liquid Propellant Rocket"
Ma, Jiaju. "Analysis of the characteristics of rocket propellant." Theoretical and Natural Science 5, no. 1 (May 25, 2023): 490–95. http://dx.doi.org/10.54254/2753-8818/5/20230296.
Full textJunqueira Pimont, Lia, Paula Cristina Gomes Fernandes, Luiz Fernando de Araujo Ferrão, Marcio Yuji Nagamachi, and Kamila Pereira Cardoso. "Study on the Mechanical Properties of Solid Composite Propellant Used as a Gas Generator." Journal of Aerospace Technology and Management, no. 1 (January 21, 2020): 7–10. http://dx.doi.org/10.5028/jatm.etmq.65.
Full textAbdelraouf, A. M., O. K. Mahmoud, and M. A. Al-Sanabawy. "Thrust termination of solid rocket motor." Journal of Physics: Conference Series 2299, no. 1 (July 1, 2022): 012018. http://dx.doi.org/10.1088/1742-6596/2299/1/012018.
Full textCzerwińska, Magdalena, and Piotr Prasuła. "STUDY OF THERMO-MECHANICAL PROPERTIES OF AGED HOMOGENEOUS SOLID ROCKET PROPELLANT ACCORDING TO STANAG REQUIREMENTS." PROBLEMY TECHNIKI UZBROJENIA 145, no. 1 (May 15, 2018): 47–63. http://dx.doi.org/10.5604/01.3001.0012.1325.
Full textZAGANESCU, Nicolae-Florin, Rodica ZAGANESCU, and Constantin-Marcian GHEORGHE. "Wernher Von Braun’s Pioneering Work in Modelling and Testing Liquid-Propellant Rockets." INCAS BULLETIN 14, no. 2 (June 10, 2022): 153–61. http://dx.doi.org/10.13111/2066-8201.2022.14.2.13.
Full textYuan, Wen-Li, Lei Zhang, Guo-Hong Tao, Shuang-Long Wang, You Wang, Qiu-Hong Zhu, Guo-Hao Zhang, et al. "Designing high-performance hypergolic propellants based on materials genome." Science Advances 6, no. 49 (December 2020): eabb1899. http://dx.doi.org/10.1126/sciadv.abb1899.
Full textLawrence, Lovell. "A LIQUID-PROPELLANT ROCKET MOTOR.*." Journal of the American Society for Naval Engineers 58, no. 4 (March 18, 2009): 642–45. http://dx.doi.org/10.1111/j.1559-3584.1946.tb02717.x.
Full textCheng, Yuqiang, and Jianjun Wu. "Particle swarm algorithm-based damage-mitigating control law analysis and synthesis for liquid-propellant rocket engine." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 10 (October 31, 2018): 3810–18. http://dx.doi.org/10.1177/0954410018806080.
Full textPalacz, Tomasz, and Jacek Cieślik. "Experimental Study on the Mass Flow Rate of the Self-Pressurizing Propellants in the Rocket Injector." Aerospace 8, no. 11 (October 26, 2021): 317. http://dx.doi.org/10.3390/aerospace8110317.
Full textKhan, Tajwali, and Ihtzaz Qamar. "Factors Affecting Characteristic Length of the Combustion Chamber of Liquid Propellant Rocket Engines." July 2019 38, no. 3 (July 1, 2019): 729–44. http://dx.doi.org/10.22581/muet1982.1903.16.
Full textDissertations / Theses on the topic "Liquid Propellant Rocket"
Boysan, Mustafa Emre. "Analysis Of Regenerative Cooling In Liquid Propellant Rocket Engines." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12610190/index.pdf.
Full textMiquel, Valentin. "Propellant Feeding System of a Liquid Rocket With Multiple Engines." Thesis, KTH, Rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276460.
Full textFörsta stegen med flera motorer är den nya trenden i de senaste raketerna. Återanvändbart och en syre och metan-baserad motor kompletterar denna bild. ArianeGroup vill utveckla sin egen raket enligt dessa principer. Denna avhandling presenterar studien av drivmedelsrör för en sju Prometheus-motorraket. Flera sätt att ansluta drivmedelstankar till motorer föreslogs och analyserades. Två konfigurationer valdes ut och studerades mer detaljerat. En består av en huvudlinje som sedan delas upp i sju sekundära linjer som på SpaceX Falcon 9. Den andra lösningen lägger till en rang av rör för att minska antalet ventiler. Deras prestanda utvärderades först enligt klassiska kriterier för rymdindustrin. Dessutom utvärderades de två lösningarnas påverkan på tankens effektivitet. CAD-ritningar och simuleringsmodeller gjordes och kan vara en bas för framtida arbeten om ett av systemen väljs. Studien visar att ett Falcon 9-liknande konfiguration har bättre prestanda när det gäller massa och tryckförluster men en annan kostnadseffektiv konfiguration är möjlig och ger goda resultat.
St, Germain Brad David. "Technique for the optimization of the powerhead configuration and performance of liquid rocket engines." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/13063.
Full textPérez, Roca Sergio. "Model-based robust transient control of reusable liquid-propellant rocket engines." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS017.
Full textThe current trend towards a more affordable access to space is materialising in reusable launchers and engines. From the control perspective, these reusable liquid-propellant rocket engines (LPRE) imply more demanding robustness requirements than expendable ones, mainly due to their multi-restart and thrust-modulation capabilities. Classically, the control system handles LPRE operation at a finite set of predefined points. That approach reduces their throttability domain to a narrow interval in which they are designed to be safe. Moreover, transient phases, which have a great impact on engine life, are not robustly operated. Hence, the goal of this work is to develop a control loop which is adapted to the whole set of operating phases, transient and steady-state, and which is robust to internal parametric variations. Several blocks have been developed to constitute the control loop: engine simulation, reference generation and controllers. First, simulators representative of the gas-generator-cycle engines were built. The purely thermo-fluid-dynamic modelling of the cycle was subsequently adapted to control, obtaining nonlinear state-space models. In these models, the influence of continuous control inputs (valve openings) and of discrete ones (igniters and starter activations) is considered within a simplified hybrid approach. The continuous sub-phase of the start-up transient is feedback controlled to track pre-computed reference trajectories. Beyond the start-up, throttling scenarios also present an end-state-tracking algorithm. A model-based control method, Model Predictive Control, has been applied in a linearised manner with robustness considerations to all these scenarios, in which a set of hard constraints must be respected. Tracking of pressure (thrust) and mixture-ratio operating points within the design envelope is achieved in simulation while respecting constraints. Robustness to variations in the parameters, which are checked to be predominant according to analyses, is also demonstrated. This framework paves the way to experimental validation via hardware-in-the-loop simulations or in test benches
Sarotte, Camille. "Improvement of monitoring and reconfiguration processes for liquid propellant rocket engine." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS348/document.
Full textMonitoring and improving the operating modes of launcher propulsion systems are major challenges in the aerospace industry. A failure or malfunction of the propulsion system can have a significant impact for institutional or private customers and results in environmental or human catastrophes. Health Management Systems (HMS) for liquid propellant rocket engines (LPREs), have been developed to take into account the current challenges by addressing safety and reliability issues. Their objective was initially to detect failures or malfunctions, isolate them and take a decision using Redlines and Expert Systems. However, those methods can induce false alarms or undetected failures that can be critical for the operation safety and reliability. Hence, current works aim at eliminating some catastrophic failures but also to mitigate benign shutdowns to non-shutdown actions. Since databases are not always sufficient to use efficiently data-based analysis methods, model-based methods are essentially used. The first task is to detect component and / or instrument failures with Fault Detection and Isolation (FDI) approaches. If the failure is minor, non-shutdown actions must be defined to maintain the overall system current performances close to the desirable ones and preserve stability conditions. For this reason, it is required to perform a robust (uncertainties, unknown disturbances) reconfiguration of the engine. Input saturation should also be considered in the control law design since unlimited control signals are not available due to physical actuators characteristics or performances. The three objectives of this thesis are therefore: the modeling of the different main subsystems of a LPRE, the development of FDI algorithms from the previously developed models and the definition of a real-time engine reconfiguration system to compensate for certain types of failures. The developed FDI and Reconfiguration (FDIR) scheme based on those three objectives has then been validated with the help of simulations with CARINS (CNES) and the MASCOTTE test bench (CNES/ONERA)
Vasques, Brunno Barreto. "Numerical and experimental study of swirl atomizers for liquid propellant rocket engines." Instituto Tecnológico de Aeronáutica, 2010. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3056.
Full textAndersson, Erik. "Preliminary design of a small-scale liquid-propellant rocket engine testing platform." Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77079.
Full textCengiz, Kenan. "Development Of An Iterative Method For Liquid-propellant Combustion Chamber Instability Analysis." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612753/index.pdf.
Full textMasquelet, Matthieu M. "Simulations of a Sub-scale Liquid Rocket Engine: Transient Heat Transfer in a Real Gas Environment." Thesis, Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-11102006-082702/.
Full textMasquelet, Matthieu Marc. "Large-eddy simulations of high-pressure shear coaxial flows relevant for H2/O2 rocket engines." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47522.
Full textBooks on the topic "Liquid Propellant Rocket"
Sutton, George Paul. History of liquid propellant rocket engines. Reston, Va: American Institute of Aeronautics and Astronautics, 2006.
Find full textde Iaco Veris, Alessandro. Fundamental Concepts of Liquid-Propellant Rocket Engines. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54704-2.
Full textTurbopumps for liquid rocket engines. [Warrendale, PA: Society of Automotive Engineers, 1992.
Find full textD, Cruit W., Smith A. W, George C. Marshall Space Flight Center., and AIAA/ASME/SAE/ASEE Joint Propulsion Conference (32nd : 1996 : Lake Buena Vista, Fla.), eds. Cold-flow study of hybrid rocket motor flow dynamics. [Huntsville, AL]: NASA Marshall Space Flight Center, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Propellant injection systems and processes. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textBian tui li ye ti huo jian fa dong ji ji qi kong zhi ji shu: Variable thrust liquid propellant rocket engine and its control techniques. Beijing: Guo fang gong ye chu ban she, 2001.
Find full text1965-, Liu Kun, and Cheng Mousen 1971-, eds. Ye ti huo jian fa dong ji dong li xue li lun yu ying yong. Beijing: Ke xue chu ban she, 2005.
Find full textBian tui li ye ti huo jian fa dong ji ji qi kong zhi ji shu: Variable thrust liquid propellant rocket engine and its control techniques. Beijing: Guo fang gong ye chu ban she, 2001.
Find full text1965-, Liu Kun, and Cheng Mousen 1971-, eds. Ye ti huo jian fa dong ji dong li xue li lun yu ying yong. Beijing: Ke xue chu ban she, 2005.
Find full textYe ti huo jian tui jin zeng ya shu song xi tong: Liquid rocket propellant and pressurization feed systems. Beijing: Guo fang gong ye chu ban she, 2007.
Find full textBook chapters on the topic "Liquid Propellant Rocket"
Greatrix, David R. "Liquid-Propellant Rocket Engines." In Powered Flight, 381–415. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2485-6_11.
Full textMishra, D. P. "Liquid-Propellant Rocket Engines." In Fundamentals of Rocket Propulsion, 261–307. Boca Raton: CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315175997-8.
Full textMishra, D. P. "Liquid-Propellant Injection System." In Fundamentals of Rocket Propulsion, 333–95. Boca Raton: CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315175997-10.
Full textPeschka, Walter. "Liquid Hydrogen as a Rocket Propellant." In Liquid Hydrogen, 105–15. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-9126-2_5.
Full textde Iaco Veris, Alessandro. "Fundamental Concepts on Liquid-Propellant Rocket Engines." In Fundamental Concepts of Liquid-Propellant Rocket Engines, 1–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54704-2_1.
Full textKwak, Dochan, and Cetin C. Kiris. "Simulation of a Liquid-Propellant Rocket Engine Subsystem." In Computation of Viscous Incompressible Flows, 139–79. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0193-9_6.
Full textde Iaco Veris, Alessandro. "Tanks for Propellants." In Fundamental Concepts of Liquid-Propellant Rocket Engines, 563–656. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54704-2_6.
Full textde Iaco Veris, Alessandro. "The Thrust Chamber Assembly." In Fundamental Concepts of Liquid-Propellant Rocket Engines, 63–202. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54704-2_2.
Full textde Iaco Veris, Alessandro. "Feed Systems Using Gases Under Pressure." In Fundamental Concepts of Liquid-Propellant Rocket Engines, 203–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54704-2_3.
Full textde Iaco Veris, Alessandro. "Feed Systems Using Turbo-Pumps." In Fundamental Concepts of Liquid-Propellant Rocket Engines, 251–446. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54704-2_4.
Full textConference papers on the topic "Liquid Propellant Rocket"
KUZNETSOV, N. "Closed-cycle liquid propellant rocket engines." In 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1956.
Full textJensen, Dale. "Advanced Performance, Liquid Propellant, Rocket Engine." In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4566.
Full textPAL, S., M. MOSER, H. RYAN, M. FOUST, and R. SANTORO. "Flowfield characteristics in a liquid propellant rocket." In 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1882.
Full textDELCHER, R., A. DERGEVORKIAN, and S. BARKHOUDARIAN. "Fiberoptics for liquid propellant rocket engine environments." In 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2416.
Full textEhresman, Charles. "The M.W.Kellogg Company's Liquid Propellant Rocket Venture." In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3584.
Full textSierra, Pablo, Juan M. Tizón, Javier Vilas, and José F. Moral. "Efficient Simulation of Liquid Propellant Rocket Engine Cycle." In 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-5007.
Full textTizón, Juan M., and Alberto Roman. "A Mass Model for Liquid Propellant Rocket Engines." In 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-5010.
Full textTUCKER, E., B. DEHOFF, and R. MCAMIS. "Liquid-propellant rocket engine testing and analysis capabilities." In 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1861.
Full textDelcher, Ray C., Doug K. Dinnsen, and S. Barkhoudarian. "Fiber optics in liquid propellant rocket engine environments." In Microlithography '91, San Jose,CA, edited by Norris E. Lewis and Emery L. Moore. SPIE, 1991. http://dx.doi.org/10.1117/12.24819.
Full textDemiyanenko, Yuri, Anatoly Dmitrenko, Vladimir Rachuk, Alexander Shostak, Alan Minick, Rod Bracken, and Mark Buser. "Single-Shaft Turbopumps in Liquid Propellant Rocket Engines." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4377.
Full textReports on the topic "Liquid Propellant Rocket"
Williams, Forman A. Fundamental Studies of Liquid-Propellant Rocket Combustion. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada425218.
Full textWilliams, Forman A. Combustion Processes and Instabilities in Liquid-Propellant Rocket Engines. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada420091.
Full textYang, Vigor. Liquid-Propellant Rocket Engine Injector Dynamics and Combustion Processes at Supercritical Conditions. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428947.
Full textWilliams, F. A. Fundamentals of Acoustic Instabilities in Liquid Propellant Rockets. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada280446.
Full textWilliams, F. A. Fundamental of Acoustic Instabilities in Liquid-Propellant Rockets. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada329657.
Full textWilliams, Forman A. Fundamentals of Acoustic Instabilities in Liquid Propellant Rockets Under Transcritical Conditions. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada372407.
Full text