To see the other types of publications on this topic, follow the link: Liquid Propellant Rocket.

Dissertations / Theses on the topic 'Liquid Propellant Rocket'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 dissertations / theses for your research on the topic 'Liquid Propellant Rocket.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Boysan, Mustafa Emre. "Analysis Of Regenerative Cooling In Liquid Propellant Rocket Engines." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12610190/index.pdf.

Full text
Abstract:
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux, the rocket combustion chamber gas side wall temperature can be reduced significantly without an increase in the coolant pressure drop. In this study, the regenerative cooling of a liquid propellant rocket engine has been numerically simulated. The engine has been modeled to operate on a LOX/Kerosene mixture at a chamber pressure of 60 bar with 300 kN thrust and kerosene is considered as the coolant. A numerical investigation was performed to determine the effect of different aspect ratio cooling channels and different number of cooling channels on gas-side wall and coolant temperature and pressure drop in cooling channel.
APA, Harvard, Vancouver, ISO, and other styles
2

Miquel, Valentin. "Propellant Feeding System of a Liquid Rocket With Multiple Engines." Thesis, KTH, Rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276460.

Full text
Abstract:
Multiengine first stages are the new trend in recent rockets. Reusability and an oxygen/methane based engine complete this picture. ArianeGroup wants to develop its own rocket following these principles. This thesis presents the study of the feeding system for a seven Prometheus engine rocket. Several ways of connecting propellant tanks to engines were proposed and analyzed. Two configurations were selected and studied with more detail. One consists of a main feeding line which is then split in seven secondary lines. The other one adds one rank of pipes to reduce the number of feeding valves. Their performances were assessed according to classic space industry drivers. Furthermore, the impact of the two solutions on the efficiency of the tank was evaluated. CAD drawings and simulation models were made and could be a base for future work if one of the systems is chosen. The study shows that a falcon 9 like feeding system is performant in terms of mass and pressure losses but another cost-effective configuration is possible and gives good results.
Första stegen med flera motorer är den nya trenden i de senaste raketerna. Återanvändbart och en syre och metan-baserad motor kompletterar denna bild. ArianeGroup vill utveckla sin egen raket enligt dessa principer. Denna avhandling presenterar studien av drivmedelsrör för en sju Prometheus-motorraket. Flera sätt att ansluta drivmedelstankar till motorer föreslogs och analyserades. Två konfigurationer valdes ut och studerades mer detaljerat. En består av en huvudlinje som sedan delas upp i sju sekundära linjer som på SpaceX Falcon 9. Den andra lösningen lägger till en rang av rör för att minska antalet ventiler. Deras prestanda utvärderades först enligt klassiska kriterier för rymdindustrin. Dessutom utvärderades de två lösningarnas påverkan på tankens effektivitet. CAD-ritningar och simuleringsmodeller gjordes och kan vara en bas för framtida arbeten om ett av systemen väljs. Studien visar att ett Falcon 9-liknande konfiguration har bättre prestanda när det gäller massa och tryckförluster men en annan kostnadseffektiv konfiguration är möjlig och ger goda resultat.
APA, Harvard, Vancouver, ISO, and other styles
3

St, Germain Brad David. "Technique for the optimization of the powerhead configuration and performance of liquid rocket engines." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/13063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pérez, Roca Sergio. "Model-based robust transient control of reusable liquid-propellant rocket engines." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS017.

Full text
Abstract:
La tendance actuelle vers un accès plus abordable à l'espace se traduit par des lanceurs et moteurs réutilisables. Du point de vue du contrôle, ces moteurs fusée à propergol liquide (MFPL) réutilisables impliquent des spécifications de robustesse plus exigeantes que ceux à usage unique, principalement en raison de leurs capacités de redémarrage multiple et de modulation de poussée. Classiquement, le système de contrôle gère les opérations des MFPL autour d'un ensemble fini de points prédéfinis. Cette approche réduit leur domaine de modulation à un intervalle restreint dans lequel ils sont conçus pour être sûrs. De plus, les phases transitoires, qui ont un impact important sur la vie du moteur, ne sont pas exécutées de manière robuste. L’objectif de ce travail est donc de développer une boucle de régulation adaptée à l’ensemble des phases d'opération (transitoire et régime permanent) et robuste aux variations paramétriques internes. Plusieurs blocs ont été développés pour constituer la boucle de régulation : simulation de moteur, génération de référence et contrôleurs. Des simulateurs représentatifs des moteurs à cycle générateur de gaz ont tout d'abord été construits. La modélisation purement thermodynamique du cycle a ensuite été adaptée au contrôle, afin d'obtenir des modèles non-linéaires sous forme d'état. Dans ces modèles, l'influence des entrées de commande continues (ouvertures des vannes) et des entrées discrètes (activation des allumeurs et démarreur) est considérée dans un cadre hybride simplifié. La sous-phase continue du transitoire de démarrage est contrôlée en boucle fermée pour suivre des trajectoires de référence pré-calculées. Outre le démarrage, les scénarios de modulation présentent également un algorithme pour le suivi des états finaux. Une méthode de contrôle à base de modèles, la commande prédictive, a été appliquée de manière linéarisée avec des considérations de robustesse à tous ces scénarios, dans lesquels des contraintes dures doivent être respectées. Le suivi des points de fonctionnement en pression (poussée) et du rapport de mélange dans l'enveloppe de conception est atteint en simulation tout en respectant les contraintes. La robustesse aux variations des paramètres, qui sont identifiés comme prédominants par des analyses, est également démontrée. Ce travail ouvre la voie à la validation expérimentale par des simulations hardware-in-the-loop ou des tests sur banc d'essai
The current trend towards a more affordable access to space is materialising in reusable launchers and engines. From the control perspective, these reusable liquid-propellant rocket engines (LPRE) imply more demanding robustness requirements than expendable ones, mainly due to their multi-restart and thrust-modulation capabilities. Classically, the control system handles LPRE operation at a finite set of predefined points. That approach reduces their throttability domain to a narrow interval in which they are designed to be safe. Moreover, transient phases, which have a great impact on engine life, are not robustly operated. Hence, the goal of this work is to develop a control loop which is adapted to the whole set of operating phases, transient and steady-state, and which is robust to internal parametric variations. Several blocks have been developed to constitute the control loop: engine simulation, reference generation and controllers. First, simulators representative of the gas-generator-cycle engines were built. The purely thermo-fluid-dynamic modelling of the cycle was subsequently adapted to control, obtaining nonlinear state-space models. In these models, the influence of continuous control inputs (valve openings) and of discrete ones (igniters and starter activations) is considered within a simplified hybrid approach. The continuous sub-phase of the start-up transient is feedback controlled to track pre-computed reference trajectories. Beyond the start-up, throttling scenarios also present an end-state-tracking algorithm. A model-based control method, Model Predictive Control, has been applied in a linearised manner with robustness considerations to all these scenarios, in which a set of hard constraints must be respected. Tracking of pressure (thrust) and mixture-ratio operating points within the design envelope is achieved in simulation while respecting constraints. Robustness to variations in the parameters, which are checked to be predominant according to analyses, is also demonstrated. This framework paves the way to experimental validation via hardware-in-the-loop simulations or in test benches
APA, Harvard, Vancouver, ISO, and other styles
5

Sarotte, Camille. "Improvement of monitoring and reconfiguration processes for liquid propellant rocket engine." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS348/document.

Full text
Abstract:
La surveillance et l'amélioration des modes de fonctionnement des systèmes propulsifs des lanceurs représentent des défis majeurs de l'industrie aérospatiale. En effet, une défaillance ou un dysfonctionnement du système propulsif peut avoir un impact significatif pour les clients institutionnels ou privés et entraîner des catastrophes environnementales ou humaines. Des systèmes de gestion de la santé (HMS) pour les moteurs fusée à ergols liquides (LPREs), ont été mis au point pour tenir compte des défis actuels en abordant les questions de sureté et de fiabilité. Leur objectif initial est de détecter les pannes ou dysfonctionnements, de les localiser et de prendre une décision à l’aide de Redlines et de systèmes experts. Cependant, ces méthodes peuvent induire de fausses alarmes ou des non-détections de pannes pouvant être critiques pour la sécurité et la fiabilité des opérations. Ainsi, les travaux actuels visent à éliminer certaines pannes critiques, mais aussi diminuer les arrêts intempestifs. Les données disponibles étant limitées, des méthodes à base de modèles sont essentiellement utilisées. La première tâche consiste à détecter les défaillances de composants et/ou d'instruments à l'aide de méthodes de détection et de localisation de fautes (FDI). Si la faute est considérée comme mineure, des actions de « non-arrêt » sont définies pour maintenir les performances de l'ensemble du système à un niveau proche de celles souhaitées et préserver les conditions de stabilité. Il est donc nécessaire d’effectuer une reconfiguration robuste (incertitudes, perturbations inconnues) du moteur. Les saturations en entrée doivent également être prises en compte dans la conception de la loi de commande, les signaux de commande étant limités en raison des caractéristiques ou performances des actionneurs physiques. Les trois objectifs de cette thèse sont donc : la modélisation des différents sous-systèmes principaux d’un LPRE, le développement d’algorithmes de FDI sur la base des modèles établis et la définition d’un système de reconfiguration du moteur en temps réel pour compenser certains types de pannes. Le système de FDI et Reconfiguration (FDIR) développé sur la base de ces trois objectifs a ensuite été validé à l’aide de simulations avec CARINS (CNES) et du banc d’essai MASCOTTE (CNES/ONERA)
Monitoring and improving the operating modes of launcher propulsion systems are major challenges in the aerospace industry. A failure or malfunction of the propulsion system can have a significant impact for institutional or private customers and results in environmental or human catastrophes. Health Management Systems (HMS) for liquid propellant rocket engines (LPREs), have been developed to take into account the current challenges by addressing safety and reliability issues. Their objective was initially to detect failures or malfunctions, isolate them and take a decision using Redlines and Expert Systems. However, those methods can induce false alarms or undetected failures that can be critical for the operation safety and reliability. Hence, current works aim at eliminating some catastrophic failures but also to mitigate benign shutdowns to non-shutdown actions. Since databases are not always sufficient to use efficiently data-based analysis methods, model-based methods are essentially used. The first task is to detect component and / or instrument failures with Fault Detection and Isolation (FDI) approaches. If the failure is minor, non-shutdown actions must be defined to maintain the overall system current performances close to the desirable ones and preserve stability conditions. For this reason, it is required to perform a robust (uncertainties, unknown disturbances) reconfiguration of the engine. Input saturation should also be considered in the control law design since unlimited control signals are not available due to physical actuators characteristics or performances. The three objectives of this thesis are therefore: the modeling of the different main subsystems of a LPRE, the development of FDI algorithms from the previously developed models and the definition of a real-time engine reconfiguration system to compensate for certain types of failures. The developed FDI and Reconfiguration (FDIR) scheme based on those three objectives has then been validated with the help of simulations with CARINS (CNES) and the MASCOTTE test bench (CNES/ONERA)
APA, Harvard, Vancouver, ISO, and other styles
6

Vasques, Brunno Barreto. "Numerical and experimental study of swirl atomizers for liquid propellant rocket engines." Instituto Tecnológico de Aeronáutica, 2010. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3056.

Full text
Abstract:
Presented here is the effort concerning the application of Computational Fluid Dynamics (CFD) as a swirl injector analysis tool. A literature review of the major inviscid swirl models is provided along with the viscous correction procedure. The bi-propellant atomizer design process is described and the features of previous designs are also detailed. The study was undertaken by focusing on the 5-[kN]-thrust rocket engine currently in development. Theoretical predictions of the discharge coefficient, spray angle and liquid film thickness were obtained for both the inner and outer swirlers of the core injection elements. The governing equations are solved based on the laminar volume of fluid (VOF) interface capturing method. Results from cold flow experiments and particle image velocimetry (PIV) are compared to the predictions of the swirl models and the numerical results. The laminar VOF model was able to predict the spray angle with reasonable confidence, however, a deviation of 25 % was observed in the mass flow rate and discharge coefficient. Although the laminar VOF model has proven inadequate, it constitutes a good starting point in the procedure needed to assess swirl injector performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Andersson, Erik. "Preliminary design of a small-scale liquid-propellant rocket engine testing platform." Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77079.

Full text
Abstract:
Propulsion system testing before mission operation is a fundamental requirement in any project. For both industrial and commercial entities within the space industry, complete system integration into a static test platform for functional and performance testing is an integral step in the system development process. Such a platform - if designed to be relatively safe, uncomplicated and reliable - can be an important tool within academia as well, giving researchers and students a possibility for practical learning and propulsion technology research. In this thesis, a preliminary design for a liquid-propellant rocket engine testing platform to be used primarily for academical purposes is developed. Included in the presented design is a bi-propellant Chemical Propulsion system, gas pressure fed with Gaseous Nitrogen and using Gaseous Oxygen as oxidiser and a 70 % concentrated ethanol-water mixture as fuel. The propellant assembly contains all necessary components for operating the system and performing combustion tests with it, including various types of valves, tanks and sensors. An estimation of the total preliminary cost of selected components is presented as well. Also part of the developed platform design is a small thrust chamber made of copper, water-cooled and theoretically capable of delivering 1000 N of thrust using the selected propellants. A list of operations to be performed before, during and after a complete combustion test is presented at the end of the document, together with a preliminary design of a Digital Control and Instrumentation System software. Due to time limitations, the software could not be implemented in a development program nor tested with simulated parameters as part of this thesis project.
APA, Harvard, Vancouver, ISO, and other styles
8

Cengiz, Kenan. "Development Of An Iterative Method For Liquid-propellant Combustion Chamber Instability Analysis." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612753/index.pdf.

Full text
Abstract:
Controlling unsteady combustion induced gas flow fluctuations and the resultant motor vibrations is a very significant step in rocket motor design. It occurs when the unsteady heat release due to combustion happens to feed the acoustic oscillations of the closed duct forming a feed-back system. The resultant vibrations concerned may even lead to total failure of the rocket system unless analysed and tested thoroughly. This thesis aims developing a linear numerical analysis method for the growth rate of instabilities and possible mode shape of a liquid-propelled chamber geometry. In particular, A 3-D Helmholtz code, utilizing Culicks spatial averaging linear iterative method, is developed to find the form of deformed mode shapes iteratively to obtain possible effects of heat source and impedance boundary conditions. The natural mode shape phase is solved through finite volume discretization and the open-source eigenvalue extractor, ARPACK, and its parallel implementation PARPACK. The iterative method is particularly used for analyzing the geometries with complex shapes and essentially for disturbances of small magnitudes to natural mode shapes. The developed tools are tested via two simple cases, a duct with inactive flame and a Rijke tube, used as validation cases for the code particularly with only boundary contribution and heat contribution respectively. A sample 2-D and 3-D liquid-propelled combustion chamber is also analysed with heat sources. After comparing with the expected values, it is eventually proved that the method should be only used for determining the modes instability analysis, as to whether it keeps vibrating or decays. The methodology described can be used as a preliminary design tool for the design of liquid-propellant rocket engine combustors, rapidly revealing only the onset of instabilities.
APA, Harvard, Vancouver, ISO, and other styles
9

Masquelet, Matthieu M. "Simulations of a Sub-scale Liquid Rocket Engine: Transient Heat Transfer in a Real Gas Environment." Thesis, Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-11102006-082702/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Masquelet, Matthieu Marc. "Large-eddy simulations of high-pressure shear coaxial flows relevant for H2/O2 rocket engines." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47522.

Full text
Abstract:
The understanding and prediction of transient phenomena inside Liquid Rocket Engines (LREs) have been very difficult because of the many challenges posed by the conditions inside the combustion chamber. This is especially true for injectors involving liquid oxygen LOX and gaseous hydrogen GH₂. A wide range of length scales needs to be captured from high-pressure flame thicknesses of a few microns to the length of the chamber of the order of a meter. A wide range of time scales needs to be captured, again from the very small timescales involved in hydrogen chemistry to low-frequency longitudinal acoustics in the chamber. A wide range of densities needs to be captured, from the cryogenic liquid oxygen to the very hot and light combustion products. A wide range of flow speeds needs to be captured, from the incompressible liquid oxygen jet to the supersonic nozzle. Whether one desires to study these issues numerically or experimentally, they combine to make simulations and measurements very difficult whereas reliable and accurate data are required to understand the complex physics at stake. This thesis focuses on the numerical simulations of flows relevant to LRE applications using Large Eddy Simulations (LES). It identifies the required features to tackle such complex flows, implements and develops state-of-the-art solutions and apply them to a variety of increasingly difficult problems. More precisely, a multi-species real gas framework is developed inside a conservative, compressible solver that uses a state-of-the-art hybrid scheme to capture at the same time the large density gradients and the turbulent structures that can be found in a high-pressure liquid rocket engine. Particular care is applied to the implementation of the real gas framework with detailed derivations of thermodynamic properties, a modular implementation of select equations of state in the solver. and a new efficient iterative method. Several verification cases are performed to evaluate this implementation and the conservative properties of the solver. It is then validated against laboratory-scaled flows relevant to rocket engines, from a gas-gas reacting injector to a liquid-gas injector under non-reacting and reacting conditions. All the injectors considered contain a single shear coaxial element and the reacting cases only deal with H₂-O₂ systems. A gaseous oyxgen-gaseous hydrogen (GOX-GH₂) shear coaxial injector, typical of a staged combustion engine, is first investigated. Available experimental data is limited to the wall heat flux but extensive comparisons are conducted between three-dimensional and axisymmetric solutions generated by this solver as well as by other state-of-the-art solvers through a NASA validation campaign. It is found that the unsteady and three-dimensional character of LES is critical in capturing physical flow features, even on a relatively coarse grid and using a 7-step mechanism instead of a 21-step mechanism. The predictions of the wall heat flux, the only available data, are not very good and highlight the importance of grid resolution and near-wall models for LES. To perform more quantitative comparisons, a new experimental setup is investigated under both non-reacting and reacting conditions. The main difference with the previous setup, and in fact with most of the other laboratory rigs from the literature, is the presence of a strong co-flow to mimic the surrounding flow of other injecting elements. For the non-reacting case, agreement with the experimental high-speed visualization is very good, both qualitatively and quantitatively but for the reacting case, only poor agreement is obtained, with the numerical flame significantly shorter than the observed one. In both cases, the role of the co-flow and inlet conditions are investigated and highlighted. A validated LES solver should be able to go beyond some experimental constraints and help define the next direction of investigation. For the non-reacting case, a new scaling law is suggested after a review of the existing literature and a new numerical experiment agrees with the prediction of this scaling law. A slightly modified version of this non-reacting setup is also used to investigate and validate the Linear-Eddy Model (LEM), an advanced sub-grid closure model, in real gas flows for the first time. Finally, the structure of the trans-critical flame observed in the reacting case hints at the need for such more advanced turbulent combustion model for this class of flow.
APA, Harvard, Vancouver, ISO, and other styles
11

Dyer, John David Hartfield Roy J. "Aerospace design optimization using a real coded genetic algorithm." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Aerospace_Engineering/Thesis/Dyer_John_31.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rasmussen, Måns. "Conceptual Design of an Air-Launched Three-Staged Orbital Launch Vehicle." Thesis, KTH, Rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302775.

Full text
Abstract:
The objective of this study was to design a launch vehicle capable of deploying a nanosatellite into a Sun-synchronous orbit at 500 km orbital altitude from the JAS 39E/F Gripen fighter aircraft. This was achieved by first performing theoretical calculations for the required nozzles and solid propellant grain configurations for the first two solid stages, followed by the necessary liquid propellant configuration for the third stage. Lastly, two methods were investigated in solving the trajectory ascent problem for the launch vehicle design. First, by stating the trajectory problem as an initial value problem while guessing a Sigmoidal steering law. Secondly, by stating the trajectory problem as a boundary value problem. The latter was solved by transcribing the trajectory problem into a nonlinear program where a parametric steering law was derived using a Sequential quadratic programming algorithm.Ultimately, resulting in a launch vehicle design with a gross lift-off mass of 1,289 kg, capable of launching an 8.4 kg payload into the targeted orbit, with suggested modifications to increase the possible payload mass to 12.9 kg.
Målet med den här studien var att designa en luftlanserad trestegsraket kapabel till att transportera en nanosatellit upp till en solsynkron omloppsbana på 500 km altitud från ett JAS 39E/F Gripen jaktflygplan. Det gjordes genom att först beräkna de nödvändiga dysorna och krutladdningsformerna för de två första stegen tillsammans med en flytande bränsledesign för det tredje steget. Två metoder undersöktes för bananalysen. Först genom att anta en Sigmoidal styrningsfunktion för pitchen, sedan genom att transkribera problemet till ett icke-linjärt program där en parametrisk styrlag togs fram genom att använda en Sequential quadratic programming algoritm. Slutligen presenterades en raketdesign med en total vikt på 1 289 kg, kapabel till att skjuta upp en nyttolast på 8,4 kg till den önskade omloppsbanan tillsammans med förslag som kan öka den möjliga nyttolasten till 12,9 kg.
APA, Harvard, Vancouver, ISO, and other styles
13

Zubrin, Robert M. "The conceptual design of a Mars nuclear landing and ascent vehicle utilizing indigenous propellant /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/10673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Raynal, Ludovic. "Instabilité et entrainement à l'interface d'une couche de mélange liquide-gaz." Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10222.

Full text
Abstract:
Le present travail concerne l'etude d'une couche de melange entre une phase liquide lente et une phase gazeuse rapide. Cette etude s'inscrit dans le cadre des recherches sur les mecanismes de brisure primaire appliquees au probleme de combustion dans les moteurs fusee. Nous nous sommes interesses a determiner experimentalement des grandeurs globales caracteristiques de l'entrainement comme la longueur de dard liquide, c'est a dire la longueur de coherence du jet liquide, et l'angle d'ouverture du spray, ainsi que les mecanismes fins de l'instabilite de cet ecoulement cisaille. La modification de la tension de surface et de la viscosite du liquide a permis de montrer que la longueur de dard n'est correlee ni par le nombre de weber ni par le nombre de reynolds liquide. On montre que le parametre principal qui quantifie l'entrainement de liquide, et qui donc fixe cette longueur, est le rapport des flux de quantite de mouvement. Une correlation impliquant ce parametre et le nombre de reynolds de l'ecoulement de gaz est proposee. L'angle d'ejection est quant a lui essentiellement constant si l'on se place dans le referentiel lie a l'interface, il vaut alors approximativement 50 degres. Ces deux resultats experimentaux sont confortes par des modeles simples. La destabilisation de l'interface et sa dependance sur les conditions initiales sont bien predites par une analyse de stabilite lineaire de l'ecoulement liquide-gaz. Il s'avere que la longueur et la vitesse caracteristiques du probleme sont respectivement fixees par l'epaisseur de vorticite du profil de vitesse du gaz et par la moyenne des vitesses des courants ponderees par la racine de leur densite. Ce resultat est obtenu quelque soit la nature des ecoulements (laminaires ou turbulents) en sortie d'injecteurs. Enfin, les mecanismes possibles gouvernant la formation des gouttes a partir des perturbations de surface sont discutes.
APA, Harvard, Vancouver, ISO, and other styles
15

Louis, Neven. "Numerical simulations of thedecomposition of a greenpropellant." Thesis, KTH, Mekanik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-250021.

Full text
Abstract:
Concerns about the use of certain chemical species within the aerospace field are growing in recent years. A European regulation, REACh, now makes the use of hydrazine uncertain in – among others- attitude control thrusters. Green monopropellants, which are alternatives for this species already exist, but they all require a catalyst to react. Catalysts constitute the limiting factor for the lifespan of satellites because of the number of thermal cycles they endure. A joint project between ONERA, the French aerospace research center and CNES, the French space agency, was born to develop a high-performance green monopropellant thruster operating without any catalyst. Sizing the thruster and particularly its combustion chamber is not an easy task because of the explosive properties and the lack of knowledge regarding the monopropellant reaction process. The thesis aims at simulating the flow in a combustion chamber using CNES05, a new promising green monopropellant. This monopropellant has a very low vapor pressure and is an energetic liquid. As such, its reaction above a certain temperature -which is called decompositionis not well understood and must be observed closely. For this matter, a test bench was created, and it paved the way for the development of a specific model of decomposition. Indeed, even if the CNES05 decomposition cannot be modeled with the classical theory of isolated droplets, the setup showed us the order of magnitude of the reaction kinetics and the presence of a break up phenomenon. Using this model, the simulations of the flow inside the combustion chamber give us the heat flux profile through its walls, a sizing parameter for the thruster. Large recirculation zones are observed and the influence of the angle of injection seems to be the major injection parameter of influence. The sensitivity of the parameters used in the model is also studied.
APA, Harvard, Vancouver, ISO, and other styles
16

Davis, R. Benjamin. "Techniques to Assess Acoustic-Structure Interaction in Liquid Rocket Engines." Diss., 2008. http://hdl.handle.net/10161/601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pizzarelli, Marco. "Modeling of cooling channel flow in liquid-propellant rocket engines." Doctoral thesis, 2008. http://hdl.handle.net/11573/917898.

Full text
Abstract:
Ever since the development of liquid rocket engine, there has been a need to predict the peak heat flux that affects the engine material and thus to control the wall thermal behavior of rocket engine. To prevent thermal failure, the engine is generally cooled by means of a coolant that flows in passages that line the hottest part of the engine (i.e., combustion chamber and nozzle wall). This is the fluid-cooling system. If the coolant is one of the propellants, once it passes through the cooling circuit, it can be injected into the combustion chamber or it can be dumped overboard. The former case is referred to as Regenerative cooling system while the latter as dump cooling system. In case of high performance cryogenic rocket engine (such as LO2/hydrogen and LO2/methane engines) the coolant working pressure is supercritical and thus it behaves far from a liquid or a perfect gas. The fluid-cooling system (often referred to regenerative cooling because of the limited application of the dump cooling) of cryogenic rocket engines, is the technological background of this Ph.D. thesis. It is common and well confirmed practice in industry to analyze wall thermal behaviour of liquid rocket engine by means of simple and fast tools based on semi-empirical relationships. These relationships are generally calibrated by means of data collected in experimental tests of subscale engines. Industrial tools provide reasonable results but they are not able to accurately describe many phenomena that occur in the hot-wall/coolant environment, such as three-dimensional effects, asymmetric heat flux distribution in the material and supercritical behaviour of the coolant. For that reason, to circumvent the uncertainties of the design tools, regenerative systems are often over dimensioned. Moreover, these tools are deeply related to the engine for which they have been calibrated and thus they cannot be easily extended for a new generation of engines. In last years new approaches have risen; in fact new geometry configuration (i.e., high aspect ratio cooling channels) and new coolants (such as methane) to be used in the next future, have imposed more accurate analysis tools, such as three-dimensional Navier Stokes solver to describe coolant flow and three-dimensional Fourier analysis to describe wall thermal transmission. Simplified approaches are always used since, due to the limited computer power, three-dimensional tools are not suitable as design tools. However, accurate three-dimensional analysis can be integrated with simple and fast design tool in order to better describe and comprehend the phenomena that occur in the hot-wall/coolant environment. The aim of this study is to present and provide suitable theoretical and numerical tools able to describe the thermal behaviour that occur in regenerative cooling system, with special regard to the subcritical/supercritical coolant flow inside cooling channels. This aim has been achieved in three steps: A suitable mathematical description of thermophysical properties of coolants has been adopted. According to this mathematical modeling, computer subroutines describing the thermophysics of typical coolants (such as hydrogen and methane) have been implemented; A suitable physical and mathematical model able to describe both the wall thermal behaviour and the coolant flow that occur in regeneratively cooled rocket engines has been developed and implemented in a numerical code. The model is an extension of the typical 1D-model in the sense that it is able to describe the coolant and fin thermal stratification that occurs in high aspect ratio cooling channels. For that reason this model will be referred to as a quasi-2D model. The coolant thermophysical properties have been provided by means of the above mentioned hydrogen-methane subroutines. The code has been successfully validated with respect to the literature data; At last, a Navier-Stokes solver able to describe the high Reynolds number turbulent flow of generic fluid in three-dimensional cooling channels has been developed. This numerical tool has been successfully validated by comparison with exact solutions and literature data. Furthermore three-dimensional flow fields for a cryogenic fluid (methane) have been computed to analyze the coolant behavior inside straight channels with rectangular cross section and to discuss the channel aspect ratio effect on the cooling performances.
APA, Harvard, Vancouver, ISO, and other styles
18

Warren, William. "Experimental Techniques for the Study of Liquid Monopropellant Combustion." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11072.

Full text
Abstract:
Propellants based on hydroxylammonium nitrate (HAN) have shown promise as a hydrazine replacement because of their comparably low toxicity, low vapor pressure, high specific impulse and high density. Herein, the recent history of advanced monopropellant research is explored, and new experimental techniques are presented to investigate the combustion behavior of a potential hydrazine replacement propellant. Nitromethane, a widely available monopropellant with a recent resurgence in research, is utilized in the current study as a proof of concept for the newly designed equipment and as a step towards investigating more-advanced, HAN-based monopropellants. A strand bomb facility capable of supporting testing at up to 340 atm was employed, and experiments were performed between 28 atm and 130 atm. Burning rate data for nitromethane are calculated from experiments and a power correlation is established as r(mm/s) = 0.33[P(MPa)]^1.02. A comparison with available literature reveals this correlation to be very much in agreement to other studies of nitromethane. Other physical characteristics of nitromethane combustion are presented. Updates to the facility and new methods to examine the combustion of liquid propellant are described in detail. Special focus is given to procedures and safety information.
APA, Harvard, Vancouver, ISO, and other styles
19

Biju, Kumar K. S. "Role Of Hydrogen Injection Temperature On The Combustion Instability Of Cryogenic Rocket Engine." Thesis, 2012. http://etd.iisc.ac.in/handle/2005/2297.

Full text
Abstract:
Physical mechanism for high frequency instability in cryogenic engines at low hydrogen injection temperature has been a subject of debate for long time. Experimental and early developmental studies revealed no instabilities and it was only much later when liquid hydrogen at lower initial temperature (~50 to 100 K) was injected into the combustion chamber that instabilities were detected. From the compilations of the experimental data related to the instability of cryogenic engines by Hulka and Hutt, it was found that the instability was strongly connected to the temperature of hydrogen. Experiments conducted with hydrogen temperature ramping from a higher value to lower values indicated that the temperatures in excess of 90 K favor stability under most practical operating conditions. Even though this has been known for over forty years, there has been no clear and simple explanation for this. Many physical mechanisms have been hypothesized to explain how temperature ramping causes instability, but all appear to have limited range of applicability. Current understanding of cryogenic engine combustion instability has been achieved through a combination of experimental investigation and approximate analytical models as well as CFD tools. Various researchers have tried to link the low hydrogen injection temperature combustion instability phenomena with various potential mechanisms for combustion instability. They involve coupling of combustion acoustics with atomization, vaporization, mixing, chemical kinetics or any combination of these processes. Various studies related to the effect of recess, injector hydrodynamics, acoustic damping of gas liquid scheme injectors and effect of drop size distribution on the stability characteristics of cryogenic engines were compiled in the thesis. Several researchers examined fuel droplet vaporization as the rate controlling mechanism. Recently a new method for the evaluation of stability characteristics of the engine using model chamber were proposed by Russians and this is based on mixing as the rate controlling mechanism. Pros and cons of this method were discussed. Some people examined the combustion instability of rocket engines based on chemistry dynamics. A considerable amount of analytical and numerical studies were carried out by various researchers for finding out the cause of combustion instability. Because of the limitations of their analysis, they could not successfully explain the cause of combustion instability at low hydrogen injection temperature. A compilation of previous numerical studies were carried out. A number of researchers have applied CFD in the study of combustion instabilities in liquid propellant rocket engines. In the present thesis, a theoretical model has been developed based on the vaporization of droplets to predict the stability characteristics of the engine. The proposed concept focuses on three dimensional simulation of combustion instability for giving some meaningful explanations for the experimental work presented in the literature. In the present study the pressure wave corresponding to the transverse modes were superimposed on a three dimensional steady state operating conditions. Steady state parameters were obtained from the three dimensional combustion modeling. The conservation equations for mass, momentum and energy are non dimensionalized for facilitating the order of magnitude analysis. In order to do the stability analysis, variables are represented as the sum of their steady values and deviation from the steady state. A harmonic time dependence is assumed for the perturbations. For the transverse mode of oscillations independent variables of the zeroth order equations are r and θ only and the dependant variables are not functions of the axial distance. The axial dependence comes only through the first order equations. In this analysis, the wave motion in the combustion chamber is assumed to be linear, confining the nonlinearity to the vaporization process only. The reason behind making this assumption is that the vaporization process is the major mechanism driving the instability. Vaporization histories of liquid oxygen drops in a combustor with superimposed transverse oscillations were computed and stability characteristics of the engine were estimated. The stability characteristics of the engine are accessed from the solutions of first order equations. Effects of various parameters like droplet diameter, hydrogen injection temperature and hydrogen injection area on the stability characteristics of cryogenic engines are studied. A comparison of predicted and published experimental results was made which showed general agreement between experiment and computation. The present study and experimental results show clearly that hydrogen injection velocity is the critical parameter for instability rather than hydrogen injection temperature. What has happened in actual experiments when hydrogen injection temperature is varied is an effective alteration of the injection velocity that leads to the situation of instability. For higher relative velocity between hydrogen and liquid oxygen, the response of the vaporization rate in the presence of pressure wave is minimum compared to lower relative velocity. Due to this cryogenic engines will go to unstable mode at lower relative velocity.
APA, Harvard, Vancouver, ISO, and other styles
20

Biju, Kumar K. S. "Role Of Hydrogen Injection Temperature On The Combustion Instability Of Cryogenic Rocket Engine." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2297.

Full text
Abstract:
Physical mechanism for high frequency instability in cryogenic engines at low hydrogen injection temperature has been a subject of debate for long time. Experimental and early developmental studies revealed no instabilities and it was only much later when liquid hydrogen at lower initial temperature (~50 to 100 K) was injected into the combustion chamber that instabilities were detected. From the compilations of the experimental data related to the instability of cryogenic engines by Hulka and Hutt, it was found that the instability was strongly connected to the temperature of hydrogen. Experiments conducted with hydrogen temperature ramping from a higher value to lower values indicated that the temperatures in excess of 90 K favor stability under most practical operating conditions. Even though this has been known for over forty years, there has been no clear and simple explanation for this. Many physical mechanisms have been hypothesized to explain how temperature ramping causes instability, but all appear to have limited range of applicability. Current understanding of cryogenic engine combustion instability has been achieved through a combination of experimental investigation and approximate analytical models as well as CFD tools. Various researchers have tried to link the low hydrogen injection temperature combustion instability phenomena with various potential mechanisms for combustion instability. They involve coupling of combustion acoustics with atomization, vaporization, mixing, chemical kinetics or any combination of these processes. Various studies related to the effect of recess, injector hydrodynamics, acoustic damping of gas liquid scheme injectors and effect of drop size distribution on the stability characteristics of cryogenic engines were compiled in the thesis. Several researchers examined fuel droplet vaporization as the rate controlling mechanism. Recently a new method for the evaluation of stability characteristics of the engine using model chamber were proposed by Russians and this is based on mixing as the rate controlling mechanism. Pros and cons of this method were discussed. Some people examined the combustion instability of rocket engines based on chemistry dynamics. A considerable amount of analytical and numerical studies were carried out by various researchers for finding out the cause of combustion instability. Because of the limitations of their analysis, they could not successfully explain the cause of combustion instability at low hydrogen injection temperature. A compilation of previous numerical studies were carried out. A number of researchers have applied CFD in the study of combustion instabilities in liquid propellant rocket engines. In the present thesis, a theoretical model has been developed based on the vaporization of droplets to predict the stability characteristics of the engine. The proposed concept focuses on three dimensional simulation of combustion instability for giving some meaningful explanations for the experimental work presented in the literature. In the present study the pressure wave corresponding to the transverse modes were superimposed on a three dimensional steady state operating conditions. Steady state parameters were obtained from the three dimensional combustion modeling. The conservation equations for mass, momentum and energy are non dimensionalized for facilitating the order of magnitude analysis. In order to do the stability analysis, variables are represented as the sum of their steady values and deviation from the steady state. A harmonic time dependence is assumed for the perturbations. For the transverse mode of oscillations independent variables of the zeroth order equations are r and θ only and the dependant variables are not functions of the axial distance. The axial dependence comes only through the first order equations. In this analysis, the wave motion in the combustion chamber is assumed to be linear, confining the nonlinearity to the vaporization process only. The reason behind making this assumption is that the vaporization process is the major mechanism driving the instability. Vaporization histories of liquid oxygen drops in a combustor with superimposed transverse oscillations were computed and stability characteristics of the engine were estimated. The stability characteristics of the engine are accessed from the solutions of first order equations. Effects of various parameters like droplet diameter, hydrogen injection temperature and hydrogen injection area on the stability characteristics of cryogenic engines are studied. A comparison of predicted and published experimental results was made which showed general agreement between experiment and computation. The present study and experimental results show clearly that hydrogen injection velocity is the critical parameter for instability rather than hydrogen injection temperature. What has happened in actual experiments when hydrogen injection temperature is varied is an effective alteration of the injection velocity that leads to the situation of instability. For higher relative velocity between hydrogen and liquid oxygen, the response of the vaporization rate in the presence of pressure wave is minimum compared to lower relative velocity. Due to this cryogenic engines will go to unstable mode at lower relative velocity.
APA, Harvard, Vancouver, ISO, and other styles
21

Rakesh, P. "A Study of the Characteristics of Gas-On-Liquid Impinging Injectors." Thesis, 2014. http://etd.iisc.ac.in/handle/2005/3126.

Full text
Abstract:
The work presented here pertains to investigations on gas-on-liquid type of impinging injectors with a generic approach with prospective applications in several areas, and at places with particular emphasis on cryogenic or semi-cryogenic liquid propellant rockets. In such rockets, one of the components arrives at the injector in a gaseous phase after passing through the regenerative coolant passages or a preceding combustion stage. Most often, the injectors in such systems are of shear coaxial type. The shear coaxial injectors suffer from several disadvantages like complexity in design, manufacture and quality control. Adoption of impinging jet configuration can alleviate these problems in addition to providing further benefits in terms of cost, robustness in high temperature environment and manifolding. However, there is very little literature on gas-on-liquid injectors either in this context or in any other Even for the simplest form of impinging injectors such as like-on-like doublets, literature provides no conclusive direction at describing a spray from the theoretical models of physical mechanisms. Empirical approach is still the prime mode of obtaining a proper understanding of the phenomena. Steady state spray characterization includes mainly of describing the spatial distribution of liquid mass and drop size distribution as a function of geometric and injection parameters. The parameters that are likely to have an impact on spray characteristics are orifice diameter, ratio of orifice length to diameter, pre-impingement length of individual jets, inter orifice distance, impingement angle, jet velocity and condition of the jet just before impingement. The gas-on- liquid configuration is likely to experience some qualitative changes because of the expansion of the gas jet. The degree to which each one of the above variables influences the drop size and mass distribution having implication to combustion performance forms the core theme of the thesis. A dedicated experimental facility has been built, calibrated and deployed exhaustively. While spray drop size measurement is done largely by a laser diffraction instrument, some of the cases warranted an image processing technique. Two different image processing algorithms are developed in-house for this purpose. The granulometric image processing method developed earlier in the group for cryogenic sprays is modified and its applicability to gas-on-liquid impinging sprays are verified. Another technique based on the Hough transform which is feature extraction technique for extracting quantitative information has also been developed and used for gas-on-liquid impinging injectors. A comparative study of conventional liquid-on-liquid doublet with gas-on-liquid impinging injectors are first made to establish the importance of studying gas-on-liquid impinging injectors. The study identifies the similarities and differences between the two types and highlights the features that make such injectors attractive as replacements to coaxial configuration. Spray structure, drop-size mass distributions are quantified for the purpose of comparison. This is followed by a parametric study of the gas-on-liquid impinging injectors carried out using identified control variables. Though momentum ratio appeared to be a suitable parameter to describe the spray at any given impingement angle, the variations due to impingement angle had to be factored in. It was found that normal gas momentum to liquid mass is an apt parameter to generalize the spray characteristics. It was also found that using identical nozzles for desired mass ratio could lead to rather large deflection of the spray which may not be acceptable in combustion chamber design. One way of overcoming this is to work with unequal orifice sizes for gas and liquid. It was found that using smaller gas orifice for a given liquid orifice resulted in lower SMD (Sauter Mean Diameter of the spray) for constant gas and liquid mass flow rates. This is attributable to the high dynamic pressure of gas in the case of smaller gas orifices for the same mass flow rate. The impinging liquid jets with unequal momentum in the doublet configuration would result in non-uniform mass and mixture ratio distribution within the combustion chamber which may have to operate under varying conditions of mass flow rates and/or mixture ratio. The symmetrical arrangement of triplet configuration can eliminate this problem at the same time generating finely atomized spray and a homogeneous mixture ratio. In view of the scanty literature available in this field, the atomization characteristics of the spray generated by liquid centered triplet jets are examined in detail. It was found that as in the case of gas-on-liquid impinging doublets, normal gas momentum to liquid mass is an ideal parameter in describing the spray. Variants of this configuration are studied recently for many other applications too. As done in the case of doublets, efforts have also been made to compare gas centered triplet to liquid-liquid triplet. It was found that the trend of SMD of gas centered triplet is different from that of liquid-liquid triplets, thus pointing to a different mechanism in play. The SMD in the case of liquid-liquid triplets decreases monotonically with increasing specific normal momentum. It is to be noted that specific normal momentum is an ideal parameter for describing the spray characteristics of liquid-liquid triplets and doublets. In the case of gas centered triplet the SMD first increases and then decreases with specific normal momentum, the inversion point depends on the gas mass flow rate for a constant specific normal momentum. The thesis concludes with a summary of the major observations of spray structures for all the above injector configurations and quantifies the parametric dependencies that would be of use to engineering design
APA, Harvard, Vancouver, ISO, and other styles
22

Rakesh, P. "A Study of the Characteristics of Gas-On-Liquid Impinging Injectors." Thesis, 2014. http://hdl.handle.net/2005/3126.

Full text
Abstract:
The work presented here pertains to investigations on gas-on-liquid type of impinging injectors with a generic approach with prospective applications in several areas, and at places with particular emphasis on cryogenic or semi-cryogenic liquid propellant rockets. In such rockets, one of the components arrives at the injector in a gaseous phase after passing through the regenerative coolant passages or a preceding combustion stage. Most often, the injectors in such systems are of shear coaxial type. The shear coaxial injectors suffer from several disadvantages like complexity in design, manufacture and quality control. Adoption of impinging jet configuration can alleviate these problems in addition to providing further benefits in terms of cost, robustness in high temperature environment and manifolding. However, there is very little literature on gas-on-liquid injectors either in this context or in any other Even for the simplest form of impinging injectors such as like-on-like doublets, literature provides no conclusive direction at describing a spray from the theoretical models of physical mechanisms. Empirical approach is still the prime mode of obtaining a proper understanding of the phenomena. Steady state spray characterization includes mainly of describing the spatial distribution of liquid mass and drop size distribution as a function of geometric and injection parameters. The parameters that are likely to have an impact on spray characteristics are orifice diameter, ratio of orifice length to diameter, pre-impingement length of individual jets, inter orifice distance, impingement angle, jet velocity and condition of the jet just before impingement. The gas-on- liquid configuration is likely to experience some qualitative changes because of the expansion of the gas jet. The degree to which each one of the above variables influences the drop size and mass distribution having implication to combustion performance forms the core theme of the thesis. A dedicated experimental facility has been built, calibrated and deployed exhaustively. While spray drop size measurement is done largely by a laser diffraction instrument, some of the cases warranted an image processing technique. Two different image processing algorithms are developed in-house for this purpose. The granulometric image processing method developed earlier in the group for cryogenic sprays is modified and its applicability to gas-on-liquid impinging sprays are verified. Another technique based on the Hough transform which is feature extraction technique for extracting quantitative information has also been developed and used for gas-on-liquid impinging injectors. A comparative study of conventional liquid-on-liquid doublet with gas-on-liquid impinging injectors are first made to establish the importance of studying gas-on-liquid impinging injectors. The study identifies the similarities and differences between the two types and highlights the features that make such injectors attractive as replacements to coaxial configuration. Spray structure, drop-size mass distributions are quantified for the purpose of comparison. This is followed by a parametric study of the gas-on-liquid impinging injectors carried out using identified control variables. Though momentum ratio appeared to be a suitable parameter to describe the spray at any given impingement angle, the variations due to impingement angle had to be factored in. It was found that normal gas momentum to liquid mass is an apt parameter to generalize the spray characteristics. It was also found that using identical nozzles for desired mass ratio could lead to rather large deflection of the spray which may not be acceptable in combustion chamber design. One way of overcoming this is to work with unequal orifice sizes for gas and liquid. It was found that using smaller gas orifice for a given liquid orifice resulted in lower SMD (Sauter Mean Diameter of the spray) for constant gas and liquid mass flow rates. This is attributable to the high dynamic pressure of gas in the case of smaller gas orifices for the same mass flow rate. The impinging liquid jets with unequal momentum in the doublet configuration would result in non-uniform mass and mixture ratio distribution within the combustion chamber which may have to operate under varying conditions of mass flow rates and/or mixture ratio. The symmetrical arrangement of triplet configuration can eliminate this problem at the same time generating finely atomized spray and a homogeneous mixture ratio. In view of the scanty literature available in this field, the atomization characteristics of the spray generated by liquid centered triplet jets are examined in detail. It was found that as in the case of gas-on-liquid impinging doublets, normal gas momentum to liquid mass is an ideal parameter in describing the spray. Variants of this configuration are studied recently for many other applications too. As done in the case of doublets, efforts have also been made to compare gas centered triplet to liquid-liquid triplet. It was found that the trend of SMD of gas centered triplet is different from that of liquid-liquid triplets, thus pointing to a different mechanism in play. The SMD in the case of liquid-liquid triplets decreases monotonically with increasing specific normal momentum. It is to be noted that specific normal momentum is an ideal parameter for describing the spray characteristics of liquid-liquid triplets and doublets. In the case of gas centered triplet the SMD first increases and then decreases with specific normal momentum, the inversion point depends on the gas mass flow rate for a constant specific normal momentum. The thesis concludes with a summary of the major observations of spray structures for all the above injector configurations and quantifies the parametric dependencies that would be of use to engineering design
APA, Harvard, Vancouver, ISO, and other styles
23

Ganu, Hrishikesh Vidyadhar. "A Morphological Technique For Direct Drop Size Measurement Of Cryogenic Sprays." Thesis, 2005. https://etd.iisc.ac.in/handle/2005/1481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ganu, Hrishikesh Vidyadhar. "A Morphological Technique For Direct Drop Size Measurement Of Cryogenic Sprays." Thesis, 2005. http://etd.iisc.ernet.in/handle/2005/1481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gadgil, Hrishikesh Prabhakar. "Studies On Impinging-Jet Atomizers." Thesis, 2007. https://etd.iisc.ac.in/handle/2005/485.

Full text
Abstract:
Characteristics of impinging-jet atomizers in the context of application in liquid propulsion systems are studied in this thesis. A review of past studies on impinging jets revealed the necessity of a correlation in terms of injector parameters for predicting Sauter Mean Diameter (SMD) of a spray. So, an experimental study of atomization in doublet and triplet impinging jet injectors is conducted using water as the stimulant? The major injector parameters considered are orifice diameter, impingement angle and jet velocity. Relative influences of these parameters are explained in terms of a single parameter, specific normal momentum. SMD of the spray reduces as specific normal momentum is increased. A universal expression between non-dimensional SMD and specific normal momentum is obtained, which satisfactorily predicts SMD in doublets as well as triplets. Noting that practical impinging injectors are likely to have skewness (partial impingement), the study is extended to understand the behavior of such jets. In perfectly impinging doublet, a high aspect ratio ellipse-like mass distribution pattern is obtained with major axis normal to the plane of two jets whereas in skewed jets the major axis turns from its normal position. A simple correlation is obtained, which shows that this angle of turn is a function of skewness fraction and impingement angle only and is independent of injection velocity. Experimental data from both mass distribution and photographic technique validate this prediction. SMD is found to decrease as skewness is increased. This may be the combined effect of shearing of liquid sheet at the point of impingement and more sheet elongation. Hence, skewness turns out to be an important parameter in controlling drop size.
APA, Harvard, Vancouver, ISO, and other styles
26

Gadgil, Hrishikesh Prabhakar. "Studies On Impinging-Jet Atomizers." Thesis, 2007. http://hdl.handle.net/2005/485.

Full text
Abstract:
Characteristics of impinging-jet atomizers in the context of application in liquid propulsion systems are studied in this thesis. A review of past studies on impinging jets revealed the necessity of a correlation in terms of injector parameters for predicting Sauter Mean Diameter (SMD) of a spray. So, an experimental study of atomization in doublet and triplet impinging jet injectors is conducted using water as the stimulant? The major injector parameters considered are orifice diameter, impingement angle and jet velocity. Relative influences of these parameters are explained in terms of a single parameter, specific normal momentum. SMD of the spray reduces as specific normal momentum is increased. A universal expression between non-dimensional SMD and specific normal momentum is obtained, which satisfactorily predicts SMD in doublets as well as triplets. Noting that practical impinging injectors are likely to have skewness (partial impingement), the study is extended to understand the behavior of such jets. In perfectly impinging doublet, a high aspect ratio ellipse-like mass distribution pattern is obtained with major axis normal to the plane of two jets whereas in skewed jets the major axis turns from its normal position. A simple correlation is obtained, which shows that this angle of turn is a function of skewness fraction and impingement angle only and is independent of injection velocity. Experimental data from both mass distribution and photographic technique validate this prediction. SMD is found to decrease as skewness is increased. This may be the combined effect of shearing of liquid sheet at the point of impingement and more sheet elongation. Hence, skewness turns out to be an important parameter in controlling drop size.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography