Journal articles on the topic 'Liquid superlubricity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Liquid superlubricity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zeng, Qunfeng, and Wenling Zhang. "A Systematic Review of the Recent Advances in Superlubricity Research." Coatings 13, no. 12 (2023): 1989. http://dx.doi.org/10.3390/coatings13121989.
Full textLi, Jinjin, Chenhui Zhang, Mingming Deng, and Jianbin Luo. "Investigation of the difference in liquid superlubricity between water- and oil-based lubricants." RSC Advances 5, no. 78 (2015): 63827–33. http://dx.doi.org/10.1039/c5ra10834a.
Full textGao, Xinlei, Yuwei Cheng, Miaomiao Shi, Hao Chen, Li Wu, and Tingting Wang. "Design of Superlubricity System Using Si3N4/Polyimide as the Friction Pair and Nematic Liquid Crystals as the Lubricant." Polymers 15, no. 18 (2023): 3693. http://dx.doi.org/10.3390/polym15183693.
Full textGe, Xiangyu, Zhiyuan Chai, Qiuyu Shi, Yanfei Liu, Jiawei Tang, and Wenzhong Wang. "Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts." Materials 15, no. 10 (2022): 3546. http://dx.doi.org/10.3390/ma15103546.
Full textDu, Changhe, Tongtong Yu, Zishuai Wu, et al. "Achieving macroscale superlubricity with ultra-short running-in period by using polyethylene glycol-tannic acid complex green lubricant." Friction 11, no. 5 (2023): 748–62. http://dx.doi.org/10.1007/s40544-022-0660-3.
Full textLi, Jinjin, Chenhui Zhang, and Jianbin Luo. "Effect of pH on the liquid superlubricity between Si3N4 and glass achieved with phosphoric acid." RSC Adv. 4, no. 86 (2014): 45735–41. http://dx.doi.org/10.1039/c4ra04970e.
Full textGong, Penghui, Yishen Qu, Wei Wang, Fanfan Lv, and Jie Jin. "Macroscale Superlubricity of Black Phosphorus Quantum Dots." Lubricants 10, no. 7 (2022): 158. http://dx.doi.org/10.3390/lubricants10070158.
Full textXiao, Chen, Jinjin Li, Lei Chen, et al. "Speed dependence of liquid superlubricity stability with H3PO4 solution." RSC Adv. 7, no. 78 (2017): 49337–43. http://dx.doi.org/10.1039/c7ra09217b.
Full textXiao, Chen, Jinjin Li, Jian Gong, et al. "Gradual degeneration of liquid superlubricity: Transition from superlubricity to ordinary lubrication, and lubrication failure." Tribology International 130 (February 2019): 352–58. http://dx.doi.org/10.1016/j.triboint.2018.10.008.
Full textSmith, Alexander M., James E. Hallett, and Susan Perkin. "Solidification and superlubricity with molecular alkane films." Proceedings of the National Academy of Sciences 116, no. 51 (2019): 25418–23. http://dx.doi.org/10.1073/pnas.1910599116.
Full textMa, Qiang, Tao He, Arman Mohammad Khan, Q. Wang, and Yip-Wah Chung. "Achieving macroscale liquid superlubricity using glycerol aqueous solutions." Tribology International 160 (August 2021): 107006. http://dx.doi.org/10.1016/j.triboint.2021.107006.
Full textMa, Wei, Zhenbin Gong, Kaixiong Gao, Li Qiang, Junyan Zhang, and Shurong Yu. "Superlubricity achieved by carbon quantum dots in ionic liquid." Materials Letters 195 (May 2017): 220–23. http://dx.doi.org/10.1016/j.matlet.2017.02.135.
Full textLiu, Pengxiao, Yuhong Liu, Ye Yang, Zhe Chen, Jinjin Li, and Jianbin Luo. "Mechanism of Biological Liquid Superlubricity of Brasenia schreberi Mucilage." Langmuir 30, no. 13 (2014): 3811–16. http://dx.doi.org/10.1021/la500193n.
Full textTang, Huajie, Xinchun Chen, Wenli Deng, and Jianbin Luo. "Comprehensive review: Advances and critical mechanisms in liquid superlubricity." Advances in Colloid and Interface Science 344 (October 2025): 103585. https://doi.org/10.1016/j.cis.2025.103585.
Full textMa, Qiang, Shijian Wang, and Guangneng Dong. "Macroscale liquid superlubricity achieved with mixtures of fructose and diols." Wear 484-485 (November 2021): 204037. http://dx.doi.org/10.1016/j.wear.2021.204037.
Full textWang, Hongdong, and Yuhong Liu. "Superlubricity achieved with two-dimensional nano-additives to liquid lubricants." Friction 8, no. 6 (2020): 1007–24. http://dx.doi.org/10.1007/s40544-020-0410-3.
Full textLiang, Hongyu, Hongfei Li, Cheng Yang, et al. "Exploring viscosity metrics for hydrogen-bond dominated liquid superlubricity using ionic liquid analogue models." Colloids and Surfaces A: Physicochemical and Engineering Aspects 715 (June 2025): 136614. https://doi.org/10.1016/j.colsurfa.2025.136614.
Full textCastellanos-Leal, Edgar Leonardo, Angel Osuna-Zatarain, and Alejandra Garcia-Garcia. "Frictional Properties of Two-Dimensional Nanomaterials as an Additive in Liquid Lubricants: Current Challenges and Potential Research Topics." Lubricants 11, no. 3 (2023): 137. http://dx.doi.org/10.3390/lubricants11030137.
Full textWen, Xiangli, Pengpeng Bai, Yuanzhe Li, et al. "Effects of Abrasive Particles on Liquid Superlubricity and Mechanisms for Their Removal." Langmuir 37, no. 12 (2021): 3628–36. http://dx.doi.org/10.1021/acs.langmuir.0c03607.
Full textGao, Yuan, Liran Ma, Yong Liang, Bohong Li, and Jianbin Luo. "Water molecules on the liquid superlubricity interfaces achieved by phosphoric acid solution." Biosurface and Biotribology 4, no. 3 (2018): 94–98. http://dx.doi.org/10.1049/bsbt.2018.0021.
Full textGe, Xiangyu, Jinjin Li, Chenhui Zhang, and Jianbin Luo. "Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive." Langmuir 34, no. 12 (2018): 3578–87. http://dx.doi.org/10.1021/acs.langmuir.7b04113.
Full textLi, Jinjin, Chenhui Zhang, Peng Cheng, Xinchun Chen, Weiqi Wang, and Jianbin Luo. "AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles." Langmuir 32, no. 22 (2016): 5593–99. http://dx.doi.org/10.1021/acs.langmuir.6b01237.
Full textSchreiber, P. J., and J. Schneider. "Liquid superlubricity obtained for self-mated silicon carbide in nonaqueous low-viscosity fluid." Tribology International 134 (June 2019): 7–14. http://dx.doi.org/10.1016/j.triboint.2019.01.031.
Full textGe, Xiangyu, Jinjin Li, Chenhui Zhang, Zhongnan Wang, and Jianbin Luo. "Superlubricity of 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate Ionic Liquid Induced by Tribochemical Reactions." Langmuir 34, no. 18 (2018): 5245–52. http://dx.doi.org/10.1021/acs.langmuir.8b00867.
Full textJiang, Yuanyuan, Chen Xiao, Lei Chen, et al. "Temporary or permanent liquid superlubricity failure depending on shear-induced evolution of surface topography." Tribology International 161 (September 2021): 107076. http://dx.doi.org/10.1016/j.triboint.2021.107076.
Full textHua, Jing, Marcus Björling, Roland Larsson, and Yijun Shi. "Controllable superlubricity achieved with mixtures of green ionic liquid and glycerol aqueous solution via humidity." Journal of Molecular Liquids 345 (January 2022): 117860. http://dx.doi.org/10.1016/j.molliq.2021.117860.
Full textLi, Hua, Ross J. Wood, Mark W. Rutland, and Rob Atkin. "An ionic liquid lubricant enables superlubricity to be “switched on” in situ using an electrical potential." Chemical Communications 50, no. 33 (2014): 4368. http://dx.doi.org/10.1039/c4cc00979g.
Full textGe, Xiangyu, Jinjin Li, Hongdong Wang, Chenhui Zhang, Yuhong Liu, and Jianbin Luo. "Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid." Carbon 151 (October 2019): 76–83. http://dx.doi.org/10.1016/j.carbon.2019.05.070.
Full textGao, Qiulong, Jinxia Hu, Dong Pei, Zhangpeng Li, Jinqing Wang, and Shengrong Yang. "Design and synthesis of boric acid-based deep eutectic solvents for green liquid superlubricity and bio-lubrication applications." Next Materials 8 (July 2025): 100572. https://doi.org/10.1016/j.nxmate.2025.100572.
Full textGoti, Edoardo, Andrea Mura, Haozhe Wang, Xiang Ji, and Jing Kong. "Comparison of the Tribological Behaviour of Various Graphene Nano-Coatings as a Solid Lubricant for Copper." Applied Sciences 13, no. 14 (2023): 8540. http://dx.doi.org/10.3390/app13148540.
Full textZhang, Yunxiao, Hua Li, Jianan Wang, Debbie S. Silvester, Gregory G. Warr, and Rob Atkin. "Potential-dependent superlubricity of stainless steel and Au(1 1 1) using a water-in-surface-active ionic liquid mixture." Journal of Colloid and Interface Science 678 (January 2025): 355–64. http://dx.doi.org/10.1016/j.jcis.2024.08.187.
Full textGu, Yanqi, Shuang Yi, Qiang Xu, et al. "Terahertz time-domain spectroscopy of nanoadditive macroscale superlubricity: Quantitative hydration investigation and deeper insight into the solid-liquid synergistic lubrication." Tribology International 195 (July 2024): 109634. http://dx.doi.org/10.1016/j.triboint.2024.109634.
Full textChen, Junzhao, Yu Zhao, Ruirui Wang, and Pengfei Wang. "Super-Low Friction Electrification Achieved on Polytetrafluoroethylene Films-Based Triboelectric Nanogenerators Lubricated by Graphene-Doped Silicone Oil." Micromachines 14, no. 9 (2023): 1776. http://dx.doi.org/10.3390/mi14091776.
Full textQi, Wei, Lei Chen, Hui Li, Lieming Tang, and Zhiliang Xu. "Solid–Liquid Composite Lubrication (SLCL) Based on Diamond-Like Carbon (DLC) Coatings and Lubricating Oils: Properties and Challenges." Coatings 14, no. 12 (2024): 1475. http://dx.doi.org/10.3390/coatings14121475.
Full textZheng, Qingkai, Muhammad Chhattal, Changning Bai, et al. "Superlubricity of PTFE triggered by green ionic liquids." Applied Surface Science 614 (March 2023): 156241. http://dx.doi.org/10.1016/j.apsusc.2022.156241.
Full textGe, Xiangyu, Xiaodong Wu, Qiuyu Shi, Yanfei Liu, and He Liang. "Influence of Electrical Stimulation on the Friction Performance of LiPF6-Based Ionic Liquids." Lubricants 12, no. 5 (2024): 167. http://dx.doi.org/10.3390/lubricants12050167.
Full textZhang, Yunxiao, Mark W. Rutland, Jiangshui Luo, Rob Atkin, and Hua Li. "Potential-Dependent Superlubricity of Ionic Liquids on a Graphite Surface." Journal of Physical Chemistry C 125, no. 7 (2021): 3940–47. http://dx.doi.org/10.1021/acs.jpcc.0c10804.
Full textWojciechowski, Ł., K. J. Kubiak, S. Boncel, et al. "Towards the superlubricity of polymer–steel interfaces with ionic liquids and carbon nanotubes." Tribology International 191 (March 2024): 109203. http://dx.doi.org/10.1016/j.triboint.2023.109203.
Full textGe, Xiangyu, Jinjin Li, Chenhui Zhang, Yuhong Liu, and Jianbin Luo. "Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions." ACS Applied Materials & Interfaces 11, no. 6 (2019): 6568–74. http://dx.doi.org/10.1021/acsami.8b21059.
Full textHan, Tianyi, Shuowen Zhang, and Chenhui Zhang. "Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms." Friction, March 22, 2022. http://dx.doi.org/10.1007/s40544-021-0586-1.
Full textYi, Shuang, Yitong Guo, Jinjin Li, Yuxin Zhang, Aiguo Zhou, and Jianbin Luo. "Two-dimensional molybdenum carbide (MXene) as an efficient nanoadditive for achieving superlubricity under ultrahigh pressure." Friction, April 12, 2022. http://dx.doi.org/10.1007/s40544-022-0597-6.
Full textZheng, Zhiwen, Xiaolong Liu, Hongxiang Yu, Haijie Chen, Dapeng Feng, and Dan Qiao. "Insight into macroscale superlubricity of polyol aqueous solution induced by protic ionic liquid." Friction, April 12, 2022. http://dx.doi.org/10.1007/s40544-021-0563-8.
Full textWu, Hongxing, Junqin Shi, Hang Li, et al. "Versatile Superlubricity via Boronizing on Engineering Alloys: Insights into In Situ Passivation Mechanism." Advanced Materials, May 15, 2025. https://doi.org/10.1002/adma.202504124.
Full textZheng, Zhiwen, Xiaolong Liu, Guowei Huang, et al. "Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface." Friction, December 4, 2021. http://dx.doi.org/10.1007/s40544-021-0545-x.
Full textRen, Xiaoyong, Xiao Yang, Guoxin Xie, et al. "Superlubricity under ultrahigh contact pressure enabled by partially oxidized black phosphorus nanosheets." npj 2D Materials and Applications 5, no. 1 (2021). http://dx.doi.org/10.1038/s41699-021-00225-0.
Full textGe, Xiangyu, Zhiyuan Chai, Qiuyu Shi, et al. "Functionalized graphene-oxide nanosheets with amino groups facilitate macroscale superlubricity." Friction, April 25, 2022. http://dx.doi.org/10.1007/s40544-021-0583-4.
Full textGe, Xiangyu, Zhiyuan Chai, Qiuyu Shi, et al. "Functionalized graphene-oxide nanosheets with amino groups facilitate macroscale superlubricity." Friction, April 25, 2022. http://dx.doi.org/10.1007/s40544-021-0583-4.
Full textHofmann, Stefan, Jingyu Hou, Thomas Lohner, and Karsten Stahl. "Elastohydrodynamic Lubrication Mechanisms of Aqueous Polyethylene Glycols." Tribology Letters 73, no. 2 (2025). https://doi.org/10.1007/s11249-025-01962-9.
Full textAyyagari, Aditya, Kazi Istiaque Alam, Diana Berman, and Ali Erdemir. "Progress in Superlubricity Across Different Media and Material Systems—A Review." Frontiers in Mechanical Engineering 8 (August 12, 2022). http://dx.doi.org/10.3389/fmech.2022.908497.
Full textTan, Shanchao, Jiayu Tao, Wendi Luo, et al. "Insight Into the Superlubricity and Self-Assembly of Liquid Crystals." Frontiers in Chemistry 9 (June 11, 2021). http://dx.doi.org/10.3389/fchem.2021.668794.
Full text