Academic literature on the topic 'Liquide de pyrolyse'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquide de pyrolyse.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Liquide de pyrolyse"
Luck, F., C. Bonnin, G. Niel, and G. Naud. "Caractérisation des sous-produits d'oxydation des boues en conditions sous-critiques et supercritiques." Revue des sciences de l'eau 8, no. 4 (April 12, 2005): 481–92. http://dx.doi.org/10.7202/705234ar.
Full textJoo, Junghee, Heeyoung Choi, Kun-Yi Andrew Lin, and Jechan Lee. "Pyrolysis of Denim Jeans Waste: Pyrolytic Product Modification by the Addition of Sodium Carbonate." Polymers 14, no. 22 (November 21, 2022): 5035. http://dx.doi.org/10.3390/polym14225035.
Full textASSUMPÇÃO, Luiz Carlos Fonte Nova de, Mônica Regina da Costa MARQUES, and Montserrat Motas CARBONELL. "CO-PYROLYSIS OF POLYPROPYLENE WITH PETROLEUM OF BACIA DE CAMPOS." Periódico Tchê Química 06, no. 11 (January 20, 2009): 23–30. http://dx.doi.org/10.52571/ptq.v6.n11.2009.24_periodico11_pgs_23_30.pdf.
Full textPurevsuren, Barnasan, Otgonchuluun Dashzeveg, Ariunaa Alyeksandr, Narangerel Janchig, and Jargalmaa Soninkhuu. "Pyrolysis of pine wood and characterisation of solid and liquid products." Mongolian Journal of Chemistry 19, no. 45 (December 28, 2018): 24–31. http://dx.doi.org/10.5564/mjc.v19i45.1086.
Full textMurat, Martyna, Jaromír Lederer, Alena Rodová, and José Miguel Hidalgo Herrador. "Hydrodeoxygenation and pyrolysis of free fatty acids obtained from waste rendering fat." Eclética Química Journal 45, no. 3 (July 1, 2020): 28–36. http://dx.doi.org/10.26850/1678-4618eqj.v45.3.2020.p28-36.
Full textServe, L., F. Gadel, J. L. Lliberia, and J. L. Blaz. "Caractères biogéochimiques de la matière organique dans la colonne d'eau et les sédiments d'un écosystème saumâtre: l'étang de Thau - Variations saisonnières." Revue des sciences de l'eau 12, no. 4 (April 12, 2005): 619–42. http://dx.doi.org/10.7202/705369ar.
Full textAsueta, Asier, Laura Fulgencio-Medrano, Rafael Miguel-Fernández, Jon Leivar, Izotz Amundarain, Ana Iruskieta, Sixto Arnaiz, Jose Ignacio Gutiérrez-Ortiz, and Alexander Lopez-Urionabarrenechea. "A Preliminary Study on the Use of Highly Aromatic Pyrolysis Oils Coming from Plastic Waste as Alternative Liquid Fuels." Materials 16, no. 18 (September 20, 2023): 6306. http://dx.doi.org/10.3390/ma16186306.
Full textFombu, A. H., A. E. Ochonogor, and O. E. Olayide. "Use of Response Surface Methodology in Optimizing the Production yield of Biofuel from Cashew Nut Shell through the Process of Pyrolysis." IOP Conference Series: Earth and Environmental Science 1178, no. 1 (May 1, 2023): 012017. http://dx.doi.org/10.1088/1755-1315/1178/1/012017.
Full textCARNEIRO, Débora da Silva, and Mônica Regina da Costa MARQUES. "CO-PYROLYSIS OF POLYETHYLENE S WASTE WITH BACIA DE CAMPOS'S GASOIL." Periódico Tchê Química 07, no. 13 (January 20, 2010): 16–21. http://dx.doi.org/10.52571/ptq.v7.n13.2010.17_periodico13_pgs_16_21.pdf.
Full textVan Rensburg, Melissa Lisa, S'phumelele Lucky Nkomo, and Ntandoyenkosi Malusi Mkhize. "Characterization and pyrolysis of post-consumer leather shoe waste for the recovery of valuable chemicals." Detritus, no. 14 (March 31, 2021): 92–107. http://dx.doi.org/10.31025/2611-4135/2021.14064.
Full textDissertations / Theses on the topic "Liquide de pyrolyse"
Fouchères, Marie-Christine. "Contribution à l'étude analytique d'hydroliquéfiats du charbon obtenus par divers procédés catalytiques." Metz : Université Metz, 2008. ftp://ftp.scd.univ-metz.fr/pub/Theses/1984/Foucheres.Marie_Christine.SMZ8405.pdf.
Full textBoer, Febrina. "Valorization of sugarcane bagasse via slow pyrolysis and its by-product for the protection of wood." Electronic Thesis or Diss., Paris, AgroParisTech, 2021. http://www.theses.fr/2021AGPT0008.
Full textBiomass residue—such as sugarcane bagasse—has great potential in providing renewable energy sources. However, its natural properties such as low density, low calorific value, and biodegradation susceptibility can limit its utilization. To improve its energy efficiency, slow pyrolysis—the process of thermal decomposition in an oxygen-deficient environment—can be applied by transforming the biomass into carbon-rich char. In a typical slow pyrolysis scenario, biomass is slowly heated to produce mainly char, where the organic vapors are often considered secondary products. However, there is an interest to recover this by-product by condensing the organic vapor generated during pyrolysis for various purposes. Moreover, this product has a long history due to its benefits as a bio-pesticide used by traditional farmers, notably in Asian countries. In this study, bagasse was slow-pyrolyzed to co-produce char and pyrolysis liquid using a laboratory fixed bed reactor. Different parameters were tested, such as temperatures (400 °C and 500 °C), heating rate (1 °C/min and 10 °C/min), and holding time (30 min and 60 min). This study aims to evaluate the valorization potential of bagasse with the purpose of energy densification (conversion of biomass into char) and valorizing the utilization of its by-product (pyrolysis liquid) for wood protection.Results showed that the yield of char decrease with the increase of pyrolysis temperature but results in the favorable calorific value improvement; while at the same time generating a high mass of liquid yield. The optimum pyrolysis condition to co-produce char and pyrolysis liquid was at 500 °C temperature and 10 °C/min of heating rate, yielding 28.97% char and 55.46% liquid. The principal compounds of pyrolysis liquid were water, acetic acid, glycolaldehyde, 1-hydroxy-2-propanone, methanol, formic acid, levoglucosan, furfural, followed by some phenol compounds and guaiacol derivatives. Pyrolysis liquid also exhibits anti-fungal and anti-termite activity at relatively low concentrations in the Petri-dishes bioassays. When treated to beech and pine wood, pyrolysis liquid indicates good protection towards termites (Reticulitermes flavipes) and Basidiomycete fungi (Coniophora puteana and Rhodonia placenta, cubic rot and Trametes versicolor, a fibrous rot) at concentration 50% and 100%. However, it remains leachable when exposed to water or high humidity, which indicates that future studies should be conducted to find out how to decrease its leachability.Keywords: biomass, char, slow pyrolysis, sugarcane bagasse, pyrolysis liquid, wood protection
L'homme, Christelle. "Analyse des fructooligosasaccharides dans les fruits frais et les aliments à base de fruits par chromatographie liquide haute performance échangeuse d'anions avec détection par ampérométrie pulsée. Etude de leur dégradation thermique." Aix-Marseille 3, 2002. http://www.theses.fr/2002AIX30026.
Full textWe describe the suitability of high-performance anion-exchange chromatography coupled with pulsed amperometric detection to identify and quantify fructan in fresh fruits as well as in commercial stewed fruits. Three fructooligosaccharides (FOS) were detected: 1-kestose, nystose and inulobiose. FOS contents vary with species, variety, maturity of fruit. Amount of 1-kestose decreases during stewed fruit manufacturing (pasteurization, cooking). Thermic degradation (80ʿC-120ʿC) of FOS solutions (pH 4. 0, 7. 0 and 9. 0) was studied. FOS hydrolysis decreases at increasing pH values and increases with temperature. At pH 4, a reaction mechanism was proposed. In addition, a study realised on a human colon carcinoma cell-line HT-29 shows no toxicity of FOS on these cells
Breyer, Sacha. "Etude du procédé de co-pyrolyse de déchets plastiques et d’huiles de lubrification usagées dans le but de produire un combustible liquide alternatif." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/238688.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Lesueur, Dominique. "La RMN du carbone-13, outil d'analyse : contribution à l'étude d'huiles essentielles du Viet-Nam et d'un liquide de pyrolyse de la biomasse." Corte, 2005. http://www.theses.fr/2005CORT3089.
Full textThe objective of this study was a contribution to the development of the 13c nmr as a tool for identification and quantitative determination of the components of natural mixtures. This technique was applied to the caracterization of essential oils from vietnam and a bio-oil. The chromatographic and spectroscopic data of acyclic, non terpenic compounds, bearing different fractions (alcohols, acetates and aldehydes, satured and unsatured) were determined. The signals of the c4 and c5 carbons of α,β-unsatured aldehydes were deshielded and shielded respectively, compared with those of the corresponding alcohols. These differences are probably the consequence of conjugation and are no dependant of the chain length. A detailed an alysis by 13c nmr of the essential oil of piper bavinum from vietnam allowed the direct identification of 38 components. The chemical composition of various essential oils from vietnam was determined by combination of gc(ri), gc-ms and 13c nmr. The composition of some of these oils was reported for the first time and some others oils exhibited an antibacterial activity. A bio-oil was fractionated and the fractions were analysed by complementary analytical techniques (gpc, irft, gc-ms and 13c nmr). Three families of components were distinguished: alcanes, anhydrosugars and phenolic compounds (monomers and oligomers). The oligomers have a mass up to 5000 g. Mol-1. Finally, a quantitative sequence was implemented to determine, by 13c nmr, the content of hydroxyacetaldehyde (monomeric and dimeric forms) in the bio-oils
Dez, Romuald. "Du précurseur liquide au matériau massif : Synthèse de nanopoudres SiCN & SiCNYAIO : Elaboration de nanocomposites Si(3)N(4)-SiC : Ductilité à haute température." Limoges, 2003. http://www.theses.fr/2003LIMO0026.
Full textTsotetzo, Honore. "Valorisation des polysaccharides marins : élaboration de nanocomposites et synthèse de graphène dopé." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC216/document.
Full textThe chemistry have to develop new research axis both respectful of the nature and joining an eco-compatible global approach. In this context, use natural polysaccharides allow to synthesize innovative materials for applications in many industries fields. The aim of this work is add value to the marine polysaccharide such as chitosan and κ-carrageenan through two research axis.The first axis is consecrated to increase the mechanical, electrical and color sorption properties by introduce graphene filler in biopolymer matrice. An easy and original protocol allowed scattering very effectively graphene in chitosan to design films and aerogels nanocomposites. The analyse of nanocomposite films show an improvement of stiffness, tensile strength and elongation break at the same time with low content of graphene. However, the percolation threshold was not reach to bring electrics properties in films. The study of chitosan/graphene aerogel reveals that graphene allows an increase of color agent adsorbing power such as eosin Y compared with aerogels chitosan.The second axis concerns the introduction of heteroatom in graphene carbon structure. To obtain nitrogen-doped graphene and sulphur-doped graphene, it requires the synthesis of marine polysaccharide aerogel, and their pyrolysis under controlled conditions. The carbon aerogels are exfoliated in water with sonification. Amine groups in chitosan allowed through this process a nitrogen-doped graphene with high yield and nitrogen rate of 5 %. Moreover, it was possible to modulate nitrogen rate with ionic liquid such as [EMIm][dca]. So the nitrogen atom rate increases from 5% to 11%. In similar way, sulfate group in κ-carrageenan gives sulphur-doped graphene with sulphur rate of 1,5%
Castelbuono, Joseph. "THE IDENTIFICATION OF IGNITABLE LIQUIDS IN THE PRESENCE OF PYROLYSIS PRODUCTS: GENERATION OF A PYROLYSIS PRODUCT DATABASE." Master's thesis, Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002429.
Full textSalter, Elizabeth H. "Catalytic pyrolysis of biomass for improved liquid fuel quality." Thesis, Aston University, 2001. http://publications.aston.ac.uk/9633/.
Full textKantarelis, Efthymios. "Catalytic Steam Pyrolysis of Biomass for Production of Liquid Feedstock." Doctoral thesis, KTH, Energi- och ugnsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142412.
Full textDet nuvarande samhällets behov av bränslen och kemiska produkter är starkt knutet till fossila resurser. Detta beroende kan leda till ekonomisk instabilititet, politiska svårigheter och osäker leveranssäkerhet. Dessutom riskeras allvarliga skador i framtiden på grund av global uppvärmning, vilket är relaterat till det ökande och massiva användandet av fossila bränslen. Biomassa är en förnybar resurs som är tillgänglig idag, möjlig att utnyttja för produktion av diverse flytande, gasformiga och fasta produkter. Dessa produkter, beroende på biogeniskt ursprung, betraktas som koldioxidneutrala och kan därför generera koldioxidkrediter. Processande av biomassa kan möta utmaningen av minskad fossilbränsleanvändning, genom produktion av flytande råvara som kan reducera beroendet och/eller möta ökad efterfrågan, via en snabbt expanderande termokemisk teknik - pyrolys. Det slutgiltiga målet med en sådan process är att producera en flytande produkt med förbättrade egenskaper som direkt skulle kunna användas som flytande bränslen, bränsleadditiv och/eller som råmaterial i moderna oljeraffinaderier och petrokemiska komplex. Vätskor som utvinns från termiska processer är problematiska med avseende på hantering och slutanvändningen i olika applikationer, därmed behövs olika spår för produktion av avancerade flytande råvaror. Heterogena katalysen har länge tjänat raffinaderi- och petrokemisk industri, som producerar ett brett utbud av bränslen och produkter, lämpliga för säker användning. Kombinationen av biomassapyrolys och heterogen katalys (genom att bringa pyrolysångorna i kontakt med en lämplig katalysator) är ett väldigt lovande spår. I denna avhandling undersöks användningen av biomassa för produktion av flytande råvara, via pyrolys över en flerfunktionel katalysator i ångatmosfär. Ångpyrolys i en fastbäddsreaktor visade att ånga kan betraktas som ett reaktivt medium, även vid låga temperaturer, som påverkar utbyten och sammansättning av alla produkter. Avgasningen sker snabbare och den slutliga flykthalten i kolresterna blir lägren vid användning av ånga. Snabbpyrolys i ångatmosfär resulterar i förbättrad och mer kontrollerad termisk nedbrytning av biomassa, vilket ger ett högre vätskeutbyte och en något deoxygenerad flytande produkten. ångpyrolys i kombination med bimetalliska NiV-katalysatorer, ger upphov till en flytande råvara med förbättrad kvalitet och selektiv deoxygenering. Dock med ett minskande utbyte som följd. Kombinationen av metall och en sur katalysator (Ni-V/HZSM5) visade förstärkt deoxygenering med bibehållen vätehalt i den flytande produkten. Den slutliga syrehalten i vätskan var 12.83 vikt% vid en zeolithalt (HZSM5) på 75 vikt%, dock med ett kraftigt minskande vätskeutbyte. Dessutom noterades ökad koksbildning på katalysatormaterialet med den högsta zeolithalten. Ökad rymd-tid för katalysatorn (τ) ger ett lägre vätskeutbyte med reducerad syrehalt (7.79 vikt% vid τ=2h) och ökad aromathalt. Koksbildning på ytan, per massenhet katalysatormaterial, minskade vid längre rymd-tider medan utbytet av kolrester förblev opåverkat. Undersökningen av stabiliteten hos hybridkatalysatorn visade inga strukturella defekter och ingen signifikant minskad aktivitet efter regenerering vid låg temperatur (550οC).
Οι σύγχρονες ανάγκες της κοινωνίας για παραγωγή υγρών καυσίμων και χημικών προϊόντων εξαρτώνται από τους ορυκτούς πόρους. Αυτή η εξάρτηση μπορεί να οδηγήσει σε οικονομικά προβλήματα, πολιτκή αστάθεια, όπως επίσης και αβεβαιότητα στις προμήθειες της ενεργειακής εφοδιαστικής αλυσίδας. Επιπροσθέτως, μια δραματική «παράπλευρη απώλεια» η οποία θέτει σε κίνδυνο το μέλλον του πλανήτη είναι η υπερθέρμανσή του, η οποία έχει συσχετισθεί με την εκτεταμένη χρήση ορυκτών πόρων. Σήμερα, η βιομάζα είναι η μόνη ανανεώσιμη πηγή από την οποία μπορούν να παραχθούν υγρά, αέρια και στερεά προϊόντα, που λόγω της λιγνοκυταρρινικής τους προελεύσεως, η συνεισφορά τους στις εκομπές CO2 θεώρειται μηδενική. Η θερμοχημική επεξεργασία της βιομάζας συνεισφέρει στον περιορισμό της χρήσης ορυκτών πόρων, με την παραγωγή υγρών προϊόντων, τα οποία μπορούν να μειώσουν την εξάρτηση ή /και την αυξημένη ζήτηση μέσω μιας ταχέως αναπτυσόμενης τεχνολογίας, της πυρόλυσης. Στόχος της διεργασίας είναι η παραγωγή υγρών προϊόντων με ιδιότητες, που επιτρέπουν την απευθείας χρήση τους ως υγρά καύσιμα ή ως πρώτη ύλη, για την παραγώγη χημικών προϊόντων σε συγχρονες μονάδες διύλισης πετρελαίου και σε πετροχημικά συγκτροτήματα. Εν τούτοις, τα υγρά προϊόντα της θερμικής διάσπασης (πυρόλυση) είναι προβληματικά στη διαχείρηση και στις τελικές τους εφαρμογές, λόγω της σύστασής τους. Ως εκ τούτου, απαιτούνται νέες τεχνικές για παραγωγή προηγμένων υγρών προοϊόντων. Η ετερογενής κατάλυση έχει επιτυχώς εφαρμοσθεί στην πετρελαϊκή και χημική βιομηχανία, παράγοντας ένα μεγάλο εύρος προϊόντων. Ο συνδυασμός της με την πυρόλυση (φέρνοντας σε επαφη τα υγρά/ατμούς με κατάλληλο καταλύτη) αποτελεί μια πολλά υποσχόμενη ενναλακτική. Στην παρούσα διατριβή μελετάται η αξιοποίηση βιομάζας για παραγωγή υγρών προϊόντων μέσω καταλυτικής πυρόλυσης, με χρήση πολυλειτουρικού καταλύτη (multi-functional catalyst) υπό την παρουσία ατμού. Η χρήση ατμου κατά τη διαρκειά πυρόλυσης βιομαζας σε αντιδραστήρα σταθερής κλίνης, μεταβάλει τη σύσταση των επιμέρους προϊόντων. Η παρουσία ατμού έχει ως αποτέλεσμα την ταχύτερη αποπτητικοποίηση του υλικού, ενώ παράλληλα η περιεκτικότητα του υπολειπόμενου εξανθρακώματος σε πτητικά είναι μικρότερη. Τα πειραματικά αποτελέσματα ταχείας πυρόλυσης σε αντιδραστήρα ρευστοστερεάς κλίνης δείχνουν ό,τι η χρήση ατμού βελτιώνει την θερμική διάσπαση της βιομαζας, αυξάνοντας την απόδοση σε υγρά προϊοντά, ενώ παράλληλα βοηθάει στην αποξυγόνωσή τους. Ο συνδυασμός της πυρόλυσης υπό την παρουσία ατμού και διμεταλλικού καταλύτη νικελίου–βαναδίου μπορεί να βελτιώσει την ποιότητα των παραγόμενων υγρών (αποξυγόνωση) με παραλλήλη μείωση της απόδοσής τους, ενώ μπορεί να παράγει προϊόντα εκλεκτικής αποξυγόνωσης. Συνδυασμός μεταλλικών και ζεολιθικών καταλυτών (Ni-V/HZSM5) εμφανίζει βελτιωμένη δραστικότητα στις αντιδράσεις αποξυγόνωσης, με παράλληλη συγκράτηση υδρογόνου (Η) στα υγρά προϊόντα. Η τελική περιεκτικότητα των υγρών προϊόντων σε οξυγόνου (Ο) μετά από 90 min αντίδρασης είναι 12.83 wt%, με περιεκτικότητα ζεόλιθου (ΗZSΜ5) ~75 wt% στον καταλύτη. Ωστόσο, η αυξηση της περεικτικότητας σε ζεόλιθο έχει ως αποτέλεσμα την αύξηση των επικαθήσεων άνθρακα επάνω στον κατάλυτη, καθώς και την σημαντική μειώση της απόδοσης των υγρών προϊόντων (24.35wt% επι ξηρής βιομάζας). Η αύξηση του χώρου χρόνου του καταλύτη (τ) έχει ως αποτέλεσμα: τη μείωση των υγρών προϊόντων, τη μείωση του περιεχόμενου Ο στα υγρά προϊόντα (7.79 wt% at τ =2h), την αύξηση των αρωματικών υδρογονανθράκων και τη μείωση του επικαθήμενου κωκ ανά μονάδα μάζας καταλύτη. Η απόδοση του εξανθρακώματος παρέμεινε πρακτικά αμετάβλητη. Η αναγέννηση του υβριδικού καταλύτη σε χαμηλές θερμοκρασιές (550οC) δεν επέφερε σημαντικές δομικές αλλαγές και απώλεια δραστικότητας.
QC 20140306
Books on the topic "Liquide de pyrolyse"
Bridgwater, A. V., and G. Grassi, eds. Biomass Pyrolysis Liquids Upgrading and Utilization. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4.
Full textV, Bridgwater A., Grassi G. 1929-, and Commission of the European Communities. Directorate-General for Science, Research, and Development. Biomass Unit., eds. Biomass pyrolysis liquids: Upgrading and utilisation. London: Elsevier Applied Science, 1991.
Find full textBridge, Sonia Alicia. Flash pyrolysis of biomass for liquid fuels. Birmingham: Aston University. Department of Chemical Engineering and Applied Chemistry, 1990.
Find full textLi, Zhiru. The degradation effects of pyrolysis liquids on metals, plastics and elastomers. Ottawa: National Library of Canada, 2001.
Find full textOasmaa, Anja. A guide to physical property characterisation of biomass-derived fast pyrolysis liquids. Espoo [Finland]: Technical Research Centre of Finland, 2001.
Find full text(Editor), A. V. Bridgwater, and G. Grassi (Editor), eds. Biomass Pyrolysis Liquids Upgrading and Utilization. Springer, 1991.
Find full textBridgwater, A. V., and G. Grassi. Biomass Pyrolysis Liquids Upgrading and Utilization. Springer London, Limited, 2012.
Find full textPhysical characterisation of biomass-based pyrolysis liquids: Application of standard fuel oil analyses. 1997.
Find full textLiquid hydrocarbons from catalytic pyrolysis of sewage sludge lipid and canola oil: Evaluation of fuel properties. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1995.
Find full textBook chapters on the topic "Liquide de pyrolyse"
Bridgwater, Anthony V. "Upgrading Fast Pyrolysis Liquids." In Thermochemical Processing of Biomass, 157–99. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119990840.ch6.
Full textAlbrecht, Karl O., Mariefel V. Olarte, and Huamin Wang. "Upgrading Fast Pyrolysis Liquids." In Thermochemical Processing of Biomass, 207–55. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119417637.ch7.
Full textBridgwater, A. V., and S. A. Bridge. "A Review of Biomass Pyrolysis and Pyrolysis Technologies." In Biomass Pyrolysis Liquids Upgrading and Utilization, 11–92. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_2.
Full textSolantausta, Yrjö, and Kai SipilÄ. "Pyrolysis in Finland." In Biomass Pyrolysis Liquids Upgrading and Utilization, 327–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_15.
Full textBridgwater, A. V. "Integrated Liquid Fuel Processes." In Biomass Pyrolysis Liquids Upgrading and Utilization, 243–62. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_10.
Full textRupp, Martin. "Utilisation of Pyrolysis Liquids in Refineries." In Biomass Pyrolysis Liquids Upgrading and Utilization, 219–25. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_8.
Full textGrassi, G. "The European Energy from Biomass Programme." In Biomass Pyrolysis Liquids Upgrading and Utilization, 1–10. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_1.
Full textMezerette, Corinne, and Philippe Girard. "Environmental Aspects of Gaseous Emissions from Wood Carbonisation and Pyrolysis Processes." In Biomass Pyrolysis Liquids Upgrading and Utilization, 263–87. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_11.
Full textRupp, Martin. "Pilot Plant Requirements." In Biomass Pyrolysis Liquids Upgrading and Utilization, 289–98. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_12.
Full textLuengo, Carlos A., and Mario O. Cencig. "Biomass Pyrolysis in Brazil: Status Report." In Biomass Pyrolysis Liquids Upgrading and Utilization, 299–309. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_13.
Full textConference papers on the topic "Liquide de pyrolyse"
Brown, Alexander L., Curtis D. Mowry, and Ted T. Borek. "Bench-Scale Pyrolysis of Wood Pellets." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63718.
Full textMartin-Lara, M., F. Ortega, H. J. Pula, P. Sanchez, M. Zamorano, and M. Calero. "CATALYTIC PYROLYSIS OF DISCARDED COVID-19 MASKS OVER SEPIOLITE." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/4.2/s18.06.
Full textColantoni, Simone, Alessandro Corradetti, Umberto Desideri, and Francesco Fantozzi. "Thermodynamic Analysis and Possible Applications of the Integrated Pyrolysis Fuel Cell Plant (IPFCP)." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27713.
Full textFlatabø, Gudny Øyre, and Wenche Hennie Bergland. "Anaerobic Co-Digestion of Products from Biosolids Pyrolysis – Implementation in ADM1." In 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim, Norway, September 20-21, 2022. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp192059.
Full textJua´rez, Jaime J., Victor R. Contreras, Gaston R. Haupert, Steven Hill, and Daren E. Daugaard. "Fast Pyrolysis of Distillated Ashe Juniper Biomass." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88022.
Full textPutra, Putri Humairah Monashofian, Shaifulazuar Rozali, Muhamad Fazly Abdul Patah, and Aida Idris. "Microwave Pyrolysis of Polypropylene with Iron Susceptor." In International Technical Postgraduate Conference 2022. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.141.29.
Full textPolaert, Isabelle, Lilivet Ubiera, Lokmane Abdelouahed, and Bechara Taouk. "MICROWAVE PYROLYSIS OF BIOMASS IN A ROTATORY KILN REACTOR: DEEP CHARACTERIZATION AND COMPARATIVE ANALYSIS OF PYROLYTIC LIQUIDS PRODUCTS." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9807.
Full textZhang, Zhixiao, Xintian Zhao, Eilhann Kwon, and Marco J. Castaldi. "Experimental Research on Microwave Induced Thermal Decomposition of Printed Circuit Board Wastes." In 18th Annual North American Waste-to-Energy Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/nawtec18-3536.
Full textYi Wei and Hanwu Lei. "Advanced upgrading of pyrolysis oil via liquid-liquid extraction." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131594590.
Full text"Complex processing of liquid pyrolysis products." In Chemical technology and engineering. Lviv Polytechnic National University, 2021. http://dx.doi.org/10.23939/cte2021.01.098.
Full textReports on the topic "Liquide de pyrolyse"
Oyama, Ted, Foster Agblevor, Francine Battaglia, and Michael Klein. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060205.
Full textDiebold, J. P. A review of the toxicity of biomass pyrolysis liquids formed at low temperatures. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/468520.
Full textGajewski, J. J., and G. C. Paul. Gas and liquid phase pyrolysis of tetralin: A reconciliation of apparently contradictory data. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/7172244.
Full textGajewski, J. J., and G. C. Paul. Gas and liquid phase pyrolysis of tetralin: A reconciliation of apparently contradictory data. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10176955.
Full textPaulechka, Eugene, Vladimir Diky, and Abhijit Dutta. Evaluation of Experimental and Predicted Vapor-Liquid Equilibrium Data for Systems Relevant to Biomass Fast Pyrolysis and Catalytic Upgrading. National Institute of Standards and Technology, March 2021. http://dx.doi.org/10.6028/nist.ir.8357.
Full textPaulechka, Eugene, Vladimir Diky, and Abhijit Dutta. Evaluation of Experimental and Predicted Vapor-Liquid Equilibrium Data for Systems Relevant to Biomass Fast Pyrolysis and Catalytic Upgrading. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1776562.
Full text