Academic literature on the topic 'Liquide non newtonien'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquide non newtonien.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Liquide non newtonien"

1

Shimanovsky, Alexandr, Maryna Kuzniatsova, and Alžbeta Sapietová. "Modeling of Newtonian and Non-Newtonian Liquid Sloshing in Road Tanks while Braking." Applied Mechanics and Materials 611 (August 2014): 137–44. http://dx.doi.org/10.4028/www.scientific.net/amm.611.137.

Full text
Abstract:
Finite element modeling of the Newtonian and non Newtonian liquids oscillations in the cylindrical transport reservoir at its braking was performed. The peculiarities of the Newtonian, Ostwald de Waele and Bingham models of liquid sloshing in tank with internal perforated baffles and without them were analyzed. There were obtained the dependences of hydrodynamic pressures and liquid energy dissipation for Newtonian and non Newtonian liquids considering the different filling level of the reservoir.
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar Jana, Sumit, and Sudip Kumar Das. "TAPERED BUBBLE COLUMN USING PSEUDOPLASTIC NON-NEWTONIAN LIQUIDS – EMPIRICAL CORRELATION FOR PRESSURE DROP." Chemistry & Chemical Technology 11, no. 3 (August 28, 2017): 327–32. http://dx.doi.org/10.23939/chcht11.03.327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baytulenov, Zh B. "A modification of the method of fictitious domains for stationary model of non-Newtonian liquids." International Journal of Mathematics and Physics 6, no. 2 (2015): 16–22. http://dx.doi.org/10.26577/2218-7987-2015-6-2-16-22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Venkatachalam, Sivakumar, Akilamudhan Palaniappan, Senthilkumar Kandasamy, and Kannan Kandasamy. "Prediction of gas holdup in a combined loop air lift fluidized bed reactor using Newtonian and non-Newtonian liquids." Chemical Industry and Chemical Engineering Quarterly 17, no. 3 (2011): 375–83. http://dx.doi.org/10.2298/ciceq110401024v.

Full text
Abstract:
Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work a novel combined loop airlift fluidized bed reactor was developed to study, the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 % and 80 %) were used as Newtonian liquids, different concentrations of Carboxy Methyl Cellulose (0.25 %, 0.6 % and 1.0 %) aqueous solutions were used as non-Newtonian liquids. Different sizes of Spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas holdup for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s.
APA, Harvard, Vancouver, ISO, and other styles
5

Yoshida, Masanori, Hitoshi Igarashi, Kento Iwasaki, Sayaka Fuse, and Aya Togashi. "Evaluation of Viscosity of Non-Newtonian Liquid Foods with a Flow Tube Instrument." International Journal of Food Engineering 11, no. 6 (December 1, 2015): 815–23. http://dx.doi.org/10.1515/ijfe-2015-0138.

Full text
Abstract:
Abstract In a flow tube instrument modeled after a structurally simple and easy-to-use bubble viscometer, bubble ascent and liquid flow were examined to evaluate the physically defined viscosity of non-Newtonian liquid foods. For Newtonian and non-Newtonian test liquids, a dimensionless expression between the friction coefficient and Reynolds number, which was derived through analysis as an annular flow of liquid around bubble, indicated that the flow in the instrument was laminar. Prediction organized based on the empirical relation was advanced for evaluation of the non-Newtonian viscosity. The flow tube instrument was expected to be applicable to the conditions in drinking and eating, from a viewpoint of the characteristic shear rate ranging from 10 to 100 s−1.
APA, Harvard, Vancouver, ISO, and other styles
6

Abukhalifeh, H., M. E. Fayed, and R. Dhib. "Hydrodynamics of TBC with non-Newtonian liquids: Liquid holdup." Chemical Engineering and Processing: Process Intensification 48, no. 7 (July 2009): 1222–28. http://dx.doi.org/10.1016/j.cep.2009.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

SH. AKHATOV, I., M. M. KHASANOV, and I. G. KHUSAINOV. "AUTO- AND CHAOTIC OSCILLATIONS IN HYDRODYNAMICS OF NON-NEWTONIAN LIQUIDS." International Journal of Bifurcation and Chaos 03, no. 04 (August 1993): 1039–44. http://dx.doi.org/10.1142/s0218127493000854.

Full text
Abstract:
A new approach for the description of the rheological behavior of non-Newtonian liquids (clay solutions, polymer solutions, paraffin containing oil) is developed. By this approach the hydrodynamic phenomena in non-Newtonian liquids depend on the nonlinear kinetics of destruction-reconstruction processes for connecting links between the structural elements of the medium. The mathematical model is based on a respective phenomenological nonlinear kinetic equation. For the description of the nonsteady motion of such liquids between the walls of a rotary viscometer, this equation is supplemented with the equation of motion of the liquid and the equation of motion of the mobile cylinder of the viscometer. A numerical analysis of the dependence of the solutions of this system on the number of revolutions per minute is made. According to this analysis auto- and chaotic oscillations of rotary viscometer readings are the consequence of the joint action of kinetic phenomena in the liquid and inertial properties of the mobile part of the viscometer. The numerical results are qualitatively compared with the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Si-Hyung, Hyun-Jung Koh, Seo-Hoon Shim, Hyun-Wook Jung, and Jae-Chun Hyun. "An Optimal Die Design for the Coating Uniformity of Non-Newtonian Liquids in Slot Coating Process." Korean Chemical Engineering Research 49, no. 3 (June 30, 2011): 314–19. http://dx.doi.org/10.9713/kcer.2011.49.3.314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KOPLIK, JOEL, and JAYANTH R. BANAVAR. "MOLECULAR DYNAMICS SIMULATIONS OF NON-NEWTONIAN EXTENSIONAL FLUID FLOWS." International Journal of Modern Physics B 17, no. 01n02 (January 20, 2003): 27–32. http://dx.doi.org/10.1142/s0217979203017047.

Full text
Abstract:
We discuss the use of molecular dynamics computer simulations in the extensional flow dynamics of polymeric, non-Newtonian liquids. The molecular model consists of Lennard-Jones monomers bound into linear chains by FENE potentials, a system known to exhibit characteristic non-Newtonian behavior such as shear thinning and normal stress differences. Here, we simulate liquid bridge flows in which cylinders of such liquids are placed between solid plates and extended to the point of rupture. Measurements of the local fluid stress tensor and interface shape provide information on extensional viscosity and rheology, coupled to microscopic information based on the evolution of molecular configurations. The simulations are in good agreement with laboratory data and with the results of macroscopic numerical calculations where available, but provide new and detailed information on the internal dynamics of liquids in extensional flow.
APA, Harvard, Vancouver, ISO, and other styles
10

Bair, Scott. "Elastohydrodynamic Film Forming With Shear Thinning Liquids." Journal of Tribology 120, no. 2 (April 1, 1998): 173–78. http://dx.doi.org/10.1115/1.2834405.

Full text
Abstract:
Recent advances in high pressure rheometry have elucidated the shear response of liquid lubricants at the high shear stress characteristic of the traction generating region of lubricated concentrated contacts. These new measurement techniques are used to characterize the shear response of shear thinning liquids at low (<10 MPa) shear stress. A recently developed numerical scheme for calculating film thickness is extended to accommodate sliding. Film thickness predictions are compared with measurements using shear thinning liquids including a polymer/mineral oil blend, a highly elastic liquid, and synthetic base oils. Useful insights are provided concerning the effects of pressure-viscosity behavior for Newtonian liquids, sliding, and starvation for non-Newtonian liquids and the relevant shear stress for film forming.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Liquide non newtonien"

1

Tavakoli, Gheynani Touraj. "Hydrodynamique et transfert gaz-liquide non newtonien en fluidisation triphasique." Toulouse, INPT, 1989. http://www.theses.fr/1989INPT039G.

Full text
Abstract:
La fluidisation gaz-liquide-solide est etudiee experimentalement du point de vue hydrodynamique (vitesse minimale, expansion, retentions du liquide et du gaz) et du point de vue transfert de matiere par absorption d'oxygene. Les mesures hydrodynamiques sont effectuees avec divers liquides newtoniens et non newtoniens et par analogie on determine une viscosite apparente. Par rapport a l'eau, l'ecoulement est profondement modifie par la coalescence qui produit un regime a bulles deformees ou a bouchons. Cependant, les retentions sont assez peu influencees par la viscosite de meme que par le diametre des particules. En transfert de matiere, les profils de concentration en oxygene dissous sont traites par le modele a dispersion axiale et fournissent les coefficients caracteristiques, de la dispersion axiale et du transfert volumetrique. L'accroissement de viscosite se traduit essentiellement par une forte reduction du coefficient volumetrique de transfert en raison de la reduction d'aire interfaciale. Par contre, l'influence de la vitesse de gaz reste tres importante. Le modele peut etre ameliore par la prise en compte de la coalescence, par l'intermediaire d'une reduction axiale exponentielle de ce coefficient volumetrique
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Adib Tarif. "Estimation et lois de variation du coefficient de transfert de chaleur surface / liquide en ébullition pour un liquide alimentaire dans un évaporateur à flot tombant." Paris, AgroParisTech, 2008. http://pastel.paristech.org/4544/01/2008AGPT0007.pdf.

Full text
Abstract:
Le coefficient de transfert de chaleur est nécessaire pour concevoir et dimensionner un évaporateur utilisé pour concentrer un liquide, tel que rencontré couramment dans les industries alimentaires. Le coefficient de transfert de chaleur le plus variable et le plus incertain est du côté produit, entre paroi et liquide, noté « h ». Il varie à la fois avec les propriétés thermo-physiques du liquide traité (ηL, σL, λL, ρL, CpL, ω,. . . ) et avec les paramètres du procédés (type d’évaporateur, φ ou Δθ, Γ (δ), P, rugosité de la surface, encrassement, etc), ces grandeurs étant définies dans le texte. Mais h est aussi lié au régime d’ébullition (nucléée ou non nucléée), et pour les évaporateurs de type « flot tombant », au régime d’écoulement laminaire ou turbulent, selon le nombre de Reynolds en film Ref. Nous avons étudié le cas des évaporateurs « à flot tombant », très utilisés dans les industries alimentaires pour concentrer le lait et les produits laitiers, les jus sucrés, les jus de fruits et légumes. L’objectif de notre travail était de définir une méthode fiable et économique pour évaluer a priori le coefficient de transfert de chaleur h côté liquide en ébullition dans un évaporateur flot tombant. La première partie de la thèse a été consacrée à l’analyse bibliographique, qui a révélé une grande incertitude actuelle dans la prévision de h, sur la base des formules de la littérature, et des paramètres descripteurs proposés. La deuxième partie de la thèse a été de concevoir et construire un pilote utilisable pour estimer h, dans des conditions stationnaires connues et reproductibles. Dans la troisième partie, on présente les résultats et commente les lois de variations de h en fonction de la concentration de matière sèche du liquide XMS, de la température d’ébullition de liquide θL (ou P), du flux de chaleur φ ou Δθ, et du débit massique de liquide par unité de périmètre de tube Γ, pour des propriétés de surface de chauffe fixées (ici, paroi en acier inoxydable poli Rs≈0,8 μm). On commente l’effet sur h de chaque variable isolément, les autres étant maintenues constantes, ce qui confirme l’importance de la transition du régime non nucléé au régime nucléé, cette transition variant avec la nature du liquide, sa concentration, et le flux de chaleur. On a aussi montré la possibilité de modéliser un produit donné dans l’ensemble du domaine expérimental, où tous les paramètres peuvent varier simultanément, avec peu de coefficients, selon deux types d’équations (polynomiale et puissance). On a comparé le cas d’un liquide Newtonien (jus sucré) et non Newtonien (solution de CMC dans l’eau). On a aussi observé le débit de mouillage critique Γcri et ses lois de variation. On a aussi démontré la possibilité de simplifier le plan d’expérience, aussi bien pour les liquides Newtoniens que non Newtoniens, tout en gardant un coefficient de corrélation satisfaisant le domaine Γ > Γcri, cette modélisation pouvant servir de base de données produit pour l’ingénierie
The heat transfer coefficient value is necessary to calculate the eat exchange surface when designing an evaporator, as currently used to concentrate liquids in food industry. The boiling heat transfer coefficient on the liquid side (h) is the most uncertain and: it depends on the liquid thermo-physical properties (ηL, σL, λL, ρL, CpL, ω,. . . ) as well as on the process conditions (type of evaporator, φ ou Δθ, Γ (δ), P, surface roughness, fouling, etc). Also, h depends on the boiling regime (non-nucleate or nucleate) and on the flow regime (laminar or turbulent) according to the film Reynolds number in falling film evaporators. The objective of our work is to define an economical and robust method to estimate h in a falling film evaporator which is common in food industry for concentrating fruit juice, milk and sugar solutions. The first section of our study was a bibliographic analysis which revealed the important dispersion among the h values calculated from the formulas cited in literature The second section was to design and construct a laboratory scale falling film evaporator (pilot) used to estimate h at stationary parameters conditions. The third section was to describe the results and variation laws of h versus the liquid dry matter concentration XMS, the boiling temperature θL, the heat flux φ or temperature gap Δθ and mass flow rate per unit of perimeter length Γ (with describing the critical mass flow for some solutions) noted that the nature of heating surface is kept constant during our work. We described the effect of each variable separately on h where, the other variables being kept constant. Also we studied the transition from non nucleate regime, which varied with the nature of liquid and the liquid concentration. Finally, we presented the experimental models for h = f (XMS,θL,φ,Γ) for a Newtonian liquid (sugar solution) and non Newtonian solution (CMC) that may be used for industrial evaporator design after validation. We have also proposed a method for the simplification or the experimental design
APA, Harvard, Vancouver, ISO, and other styles
3

Ali-Adib, Tarif. "Estimation et lois de variation du coefficient de transfert de chaleur surface/ liquide en ébullition pour un liquide alimentaire dans un évaporateur à flot tombant." Phd thesis, AgroParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004544.

Full text
Abstract:
Le coefficient de transfert de chaleur est nécessaire pour concevoir et dimensionner un évaporateur utilisé pour concentrer un liquide, tel que rencontré couramment dans les industries alimentaires. Le coefficient de transfert de chaleur le plus variable et le plus incertain est du coté produit, entre paroi et liquide, noté « h ». Il varie à la fois avec les propriétés thermo-physiques du liquide traité (ηL, σL, λL, ρL , CpL, ω, ...) et avec les paramètres du procédé (type d'évaporateur, φ ou Δθ, Γ (δ), P, rugosité de la surface, encrassement, etc), ces grandeurs étant définies dans le texte. Mais h est aussi lié au régime d'ébullition (nucléée ou non nucléée), et pour les évaporateurs de type « flot tombant », au régime d'écoulement laminaire ou turbulent, selon le nombre de Reynolds en film Ref. Nous avons étudié le cas des évaporateurs « à flot tombant », très utilisés dans les industries alimentaires pour concentrer le lait et les produits laitiers, les jus sucrés, les jus de fruits et légumes. L'objectif de notre travail était de définir une méthode fiable et économique pour évaluer a priori le coefficient de transfert de chaleur h coté liquide en ébullition, dans un évaporateur flot tombant. La première partie de la thèse a été consacrée à l'analyse bibliographique, qui a révélé une grande incertitude actuelle dans la prévision de h, sur la base des formules de la littérature, et des paramètres descripteurs proposés. La deuxième partie de la thèse a été de concevoir et construire un pilote utilisable pour estimer h, dans des conditions stationnaires connues et reproductibles. Dans la troisième partie, on présente les résultats et commente les lois de variations de h en fonction de la concentration de matière sèche du liquide XMS, de la température d'ébullition de liquide θL (ou P), du flux de chaleur φ ou (Δθ), et du débit massique de liquide par unité de périmètre de tube Γ, pour des propriétés de surface de chauffe fixées (ici, paroi en acier inoxydable poli Rs ≈ 0,8 μm). On commente l'effet sur h de chaque variable isolément, les autres étant maintenues constantes, ce qui confirme l'importance de la transition du régime non-nucléé au régime nucléé, cette transition variant avec la nature du liquide, sa concentration, et le flux de chaleur. On a montré la possibilité de modéliser un produit donné dans l'ensemble du domaine expérimental, où tous les paramètres peuvent varier simultanément, avec peu de coefficients, selon deux types d'équations (polynomiale et puissance). On a comparé le cas d'un liquide Newtonien (jus sucré) et non-Newtonien (solution de CMC dans l'eau). On a aussi observé le débit de mouillage critique Γcri et ses lois de variation. On a aussi démontré la possibilité de simplifier le plan d'expérience, aussi bien pour les liquides Newtoniens que non-Newtoniens, tout en gardant un coefficient de corrélation satisfaisant dans le domaine Γ > Γcri, cette modélisation pouvant servir de base de données produit pour l'ingénierie.
APA, Harvard, Vancouver, ISO, and other styles
4

Hoareau, Frédéric. "Étude dynamique et thermique de suspensions solides-liquides non newtoniennes en conduite." Nancy 1, 1996. http://www.theses.fr/1996NAN10305.

Full text
Abstract:
Dans le cadre d'un projet européen F. L. A. I. R. , l'étude du LEMTA-CNRS a porté sur un mélange de sphères dans des liquides newtoniens et non newtoniens de viscosités ou consistances variables. La géométrie d'écoulement se divise en un tube simple suivi d'une succession de convergents-élargissements brusques destines à brasser le fluide. Un élément chauffant en cuivre, identique à la géométrie, a permis de déterminer les coefficients d'échange liquide-sphère et les lois de transfert de chaleur paroi-mélange. Un film vidéo a été réalisé pour suivre le comportement des sphères baignant dans différentes concentrations non newtoniennes coulant dans le tube et la géométrie. Il montre l'accumulation de débris solides en aval de l'élargissement brusque pouvant conduire à l'encrassement dans le cas de fortes concentrations de sphères. Le second résultat montre l'apparition précoce de la turbulence dans la géométrie, à des nombres de Reynolds faibles (Re=200). Pour le tube, l'introduction de sphères accroit la perte de charge et renforce le caractère non newtonien du mélange. Une première campagne de mesure par vélocimétrie laser a donné le champ de vitesse dans la géométrie complexe. Une deuxième campagne mettant en œuvre la technique électrochimique, a permis l'identification des régimes d'écoulement diphasiques. Dans la géométrie, le gradient de vitesse pariétal est nettement accru pour les mélanges liquides non newtoniens-sphères. De même, on constate un accroissement du taux de fluctuation du gradient pariétal de vitesse. Les différentes solutions non-newtoniennes étudiées ont montré une étroite dépendance du gradient pariétal de vitesse avec les interactions particule-liquide, la viscosité du liquide suspendant limitant les propriétés diffusionnelles des sphères. Ceci a été confirmé par l'étude thermique.
APA, Harvard, Vancouver, ISO, and other styles
5

Napitupulu, Farel Hasiholan. "Mesures de la conductivité thermique de fluide non-newtonien à l'aide d'une sonde de mesure de type aiguille, basée sur une méthode thermique impulsionnelle : applications aux solutions aqueuses de polymères hydrosolubles et aux suspensions solide/liquide concentrées." Compiègne, 1988. http://www.theses.fr/1988COMPI278.

Full text
Abstract:
La mesure des caractéristiques thermo physiques de produits fluides non-Newtoniens, en particulier leur conductivité thermique, revêt une grande importance pour le développement de procédés qui impliquent un traitement thermique (réchauffage, refroidissement, cuisson, etc. . . ). Elle permet par ailleurs, d'envisager un contrôle qualité de ces produits quand leurs caractéristiques thermo physiques se trouvent être suffisamment dépendante de leur formulation. Pour le cas de suspensions solide/liquide concentrées, la concentration massique, par exemple, est un paramètre de qualité fondamentale qui influence fortement non seulement les propriétés rhéologiques du produit, fortement dépendantes de la concentration, mais aussi peut constituer une méthode indirecte de contrôle d'une opération de mélange en continue, ou de contrôle de la stabilité sédimentaire par exemple. On présente une sonde thermique de type aiguille, basée sur une méthode thermique impulsionnelle susceptible de mesurer in situ la conductivité thermique apparente de solutions aqueuses de polymères hydrosolubles et de suspensions solide/liquide concentrées. Les variations de la conductivité thermique à 20°C en fonction de la concentration de la solution aqueuse, sont fournies pour trois CMC et un CARBOPOL disponibles commercialement, conférant à la solution des viscosités croissantes. On détermine également les variations de la conductivité thermique de ce type de solution en fonction de la température. En ce qui concerne les mélanges solide/liquide, les suspensions étudiées sont des mélanges pseudo-homogènes de charbon dans l'eau (" liquid coal slurry technology ") et de billes de polystyrène dans l'eau, à comportement rhéologique non-Newtonien
The measurement of the thermophysical properties of non-Newtonian fluids, particularly their thermal conductivity, is highly important for development of processes involving heat treatment (heating, coling, backing, etc. . . ). It also helps to plan the quality control of these products when their thermophysical properties are sufficiently dependent on their formulation. For the case of concentrated solid/liquid suspensions, the mass concentration, for example, is a fundamental quality parameter, which strongly influences not only the product's rheological properties, but also its economics value. The determination of the product's thermal conductivity, which is strongly dependent on concentration, could often an indirect control method of a continuous mixing operation, or, for example, a method to monitor the sedimentative stability. The author presents a needle-type thermal probe, based on the transient heat flow method (line-source technique), designed for the in situ measurement of the apparent thermal conductivity of aqueous solutions of water-soluble polymers and of concentrated solid/liquid suspensions. The thermal conductivity variations at 20°C, versus concentration of the aqueous solution, are given for three CMC and for one CARBOPOL, commercially available, given a large range of viscosity. The thermal conductivity variation versus temperature is also given. The suspension investigated is mixture of coal in water and polystyrene spheres in water. They consist in pseudo homogenous ùixture behaving as highly viscous non-Newtonian fluids
APA, Harvard, Vancouver, ISO, and other styles
6

Fyrippi, Irene. "Flowmetering of non-Newtonian liquids." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poole, Robert John. "Turbulent flow of Newtonian and non-Newtonian liquids through sudden expansions." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Sarah Elizabeth. "Turbulent duct flow of non-Newtonian liquids." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399184.

Full text
Abstract:
The turbulent flow of non-Newtonian fluids in straight ducts has been investigated. Specifically, the fully developed circular pipe flow, axisymmetric sudden expansion flow and fully developed square duct flow were studied. The pipe flow study analysed previous measurements of the mean velocity profiles and friction factor-Reynolds number characteristics of different non-Newtonian fluids in pipe fully developed pipe flows. An investigation of different nondimensional parameters permitted initial progress on developing a correlation between drag reduction and fluid rheology to be made. Comparison of the ranking orders of drag reduction, fluid extensional viscosity and fluid elasticity revealed that these fluid properties are most strongly correlated with drag reduction at low shear/strain rates (that is, in the buffer and outer regions of the boundary layer). The sudden expansion geometry was investigated for flows of aqueous Xanthan gum solution and two reference Newtonian fluids. A smooth contraction was placed at the inlet to the sudden expansion. Few significant differences were observed between the mean flow behaviours of the test fluids for the turbulent Reynolds numbers tested (26,000 and 80,000). These results may reflect the manner in which the rigid, rod-like molecules found in Xanthan gum influence the flow behaviour. Turbulence measurements indicated that all three turbulence components were suppressed for the polymer solution flow within the free shear layer downstream of the expansion. The turbulent flow of two non-Newtonian fluids (a blend ofXanthan gum and Carboxymethylcellulose in water and an aqueous solution of polyacrylamide) in a square duct were compared with a turbulent Newtonian square duct flow. Although suppression of the transverse turbulence components was noted, the polymer solutions also strongly affected the behaviour of the secondary flows found in turbulent non-circular duct flows of Newtonian fluids. Specifically, the secondary flows appeared to be weakened in the polymer blend flow and completely suppressed in the polyacrylamide solution flow. It is anticipated that fluid elasticity is influential in this suppression
APA, Harvard, Vancouver, ISO, and other styles
9

DUTRA, EDUARDO STEIN SOARES. "DISPLACEMENT OF NON-NEWTONIAN LIQUIDS IN ECCENTRIC ANNULI." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=6947@1.

Full text
Abstract:
PETRÓLEO BRASILEIRO S. A.
Após a perfuração de poços de petróleo, a lama utilizada na remoção de cascalho, lubrificação e resfriamento da broca deve ser removida e substituída por uma mistura de cimento. Essa substituição se dá pelo deslocamento de um fluido por outro no espaço anular entre a formação rochosa e a coluna de completação ou revestimento. A mistura de cimento tem a função de garantir a estabilidade estrutural do poço evitando danos ambientais e prejuízos econômicos. Para melhores resultados do processo de cimentação, utilizam-se fluidos intermediários, também chamados de colchões lavadores e espaçadores, entre os fluidos principais. A boa qualidade do deslocamento dos fluidos pode ser avaliada pela forma da interface entre eles. Perfis mais acentuados sugerem um atravessamento indesejável do fluido deslocante (cimento) através do deslocado (fluido de perfuração). Por outro lado, perfis achatados indicam um deslocamento mais eficiente. Neste trabalho foi feita uma análise experimental e numérica do processo de cimentação, investigando a forma da interface e a eficiência do deslocamento dos fluidos. Uma planta experimental vertical foi construída, simulando um processo de deslocamento de fluidos em anulares excêntricos de poços. Com uma câmera digital CCD foram filmadas as interfaces entre os fluidos durante o escoamento e com essas imagens puderam-se comparar os resultados com as simulações numéricas realizadas num softw are comercial, usando o método de volumes finitos. Foram analisados os efeitos de diferentes parâmetros como a excentricidade, o regime de escoamento, e, principalmente o comportamento mecânico dos fluidos envolvidos (reologia) na eficiência do deslocamento. Com base nesses resultados é possível prever quais parâmetros operacionais otimizam o processo de deslocamento.
In cementing processes of oil wells, the mud formerly used to drag the gravel, to lubricate and to cool the drill is removed and substituted by a cement mixture. This substitution is obtained by the displacement of a fluid by another in the annulus between the rock formation and the casing. For best results of cementing process, intermediate fluids, also called spacers, are used between the drill mud and the cement mixture. The displacement process is very complex due to geometry and fluids characteristics. The annular space is eccentric in most cases, and both drilling mud and cement mixtures are non-Newtonian fluids. In this work, an experimental and numerical study is performed to analyze this process. A vertical experimental plant was constructed to simulate the fluid displacement through eccentric annuli. The interface shapes between two adjacent fluids were visualized using a digital CCD camera. The images were compared with the results obtained in the numerical simulations. The numerical solution was obtained via the Finite Volume technique and using the Volume-of-Fluid method. The effects of eccentricity, displacement velocity and rheological parameters on the displacement e± ciency were investigated. Based on these results we can predict the liquid characteristics and the operational parameters that optimize the displacement process.
APA, Harvard, Vancouver, ISO, and other styles
10

BAZZI, MARISA SCHMIDT. "BREAKUP DYNAMICS OF NON-NEWTONIAN THIN LIQUID SHEETS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34574@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE EXCELENCIA ACADEMICA
BOLSA NOTA 10
Filmes finos de líquidos estão presentes em uma gama de aplicações industriais, como processos de atomização e revestimento de substrato. O processo de quebra pode ser divido em duas etapas: o estágio de ruptura, e o estágio de retração. O primeiro, movido pelas forças de van der Waals, ocorre quando uma pequena perturbação cresce e provoca o aparecimento de um pequeno furo no filme. O segundo, movido por forças capilares, provoca o crescimento desse furo levando à desintegração do filme de líquido. A estabilidade de uma cortina de líquido depende das características da perturbação, da espessura do filme e das propriedades do fluido. Análises experimentais mostraram que uma cortina super fina pode ser obtida pela utilização de fluidos viscoelásticos. Os mecanismos físicos associados à esta estabilidade, contudo, não são totalmente compreendidos. Este trabalho apresenta um estudo numérico e teórico dos efeitos das propriedades viscoelásticas na estabilidade de uma cortina de fluido, englobando ambos os estágio do processo. As análises numéricas foram desenvolvidas através da expansão assintótica das variáveis do escoamento com aplicação de um esquema de integração no tempo totalmente implícito. A partir da análise teórica da dinâmica de ruptura foi possível obter um critério de estabilidade linear para perturbações planares e axissimétricas em fluidos Newtonianos e não-Newtonianos. O tempo de ruptura e a velocidade de retração do filme foram calculados numericamente como função das propriedades viscoelásticas do líquido. Resultados mostraram que as forças elásticas atuam de forma a dificultar o processo de quebra e retração. Análises da evolução da espessura mostraram que as propriedades reológicas do fluído também interferem no formato que o filme de fluido assume durante o processo de retração. Para regimes de baixa viscosidade, as forças elásticas atuaram evitando a formação de ondas capilares observadas em fluidos Newtonianos.
Thin free liquid sheets are ubiquitous in many industrial processes, such as atomization and curtain coating. Liquid sheets are susceptible to instabilities at the interface, which can grow, triggering a breakup process. This process can be divided into two different stages: the rupture stage and retraction. The first, driven by van der Waals force, occurs when a small instability grows until it pinches-off the sheet. The second, driven by capillary forces, induces the growth of the hole caused by the pinch-off, leading to the full disintegration of the liquid sheet. The stability of a liquid sheet depends on disturbance characteristics, sheet thickness, and fluid properties. Experimental analyses have shown that thinner stable liquid curtain can be obtained with viscoelastic liquids. The underlyning physical mechanisms associated with increased stability are, however, not fully understood. This work presents a theoretical and numerical analysis of the effect of viscoelasticity on the stability of a thin liquid sheet during both stages of the breakup process. We first analyze the rupture dynamics, deriving linear stability criteria for both planar and axisymmetric perturbations of Newtonian and Oldroyd-B liquids. The time evolution of planar and axisymmetric perturbations in an Oldroyd-B liquid sheet is evaluated using the asymptotic expansion of the flow variables and a fully-implicit time integration scheme. The rupture time and retraction velocity are calculated as a function of the viscoelastic properties. The results show that the liquid rheological behavior does not influence the linear stability criterion. Nevertheless, it has a strong effect on the growth rate of the disturbance and retraction velocity, increasing, thus, the breakup time. The results show that elastic forces act to hinder the rupture and retraction stages. Analysis of the temporal evolution of the thickness profile reveals that liquid rheological behavior also affects the shape of the liquid sheet. For low viscosity regime, the elastic forces damp the capillary waves that arise during the retraction of Newtonian sheets.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Liquide non newtonien"

1

Zour, S. M. Abu. The elongational viscosity of Newtonian and non-Newtonian liquids. Manchester: UMIST, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

IUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids (1993 Kerkrade, Netherlands). IUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids: Proceedings of an IUTAM symposium held in Kerkrade, the Netherlands, 1-3 November 1993. Dordrecht: Kluwer Academic Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yudaev, Vasiliy. Hydraulics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/996354.

Full text
Abstract:
The textbook corresponds to the general education programs of the general courses "Hydraulics" and "Fluid Mechanics". The basic physical properties of liquids, gases, and their mixtures, including the quantum nature of viscosity in a liquid, are described; the laws of hydrostatics, their observation in natural phenomena, and their application in engineering are described. The fundamentals of the kinematics and dynamics of an incompressible fluid are given; original examples of the application of the Bernoulli equation are given. The modes of fluid motion are supplemented by the features of the transient flow mode at high local resistances. The basics of flow similarity are shown. Laminar and turbulent modes of motion in pipes are described, and the classification of flows from a creeping current to four types of hypersonic flow around the body is given. The coefficients of nonuniformity of momentum and kinetic energy for several flows of Newtonian and non-Newtonian fluids are calculated. Examples of solving problems of transient flows by hydraulic methods are given. Local hydraulic resistances, their use in measuring equipment and industry, hydraulic shock, polytropic flow of gas in the pipe and its outflow from the tank are considered. The characteristics of different types of pumps, their advantages and disadvantages, and ways of adjustment are described. A brief biography of the scientists mentioned in the textbook is given, and their contribution to the development of the theory of hydroaeromechanics is shown. The four appendices can be used as a reference to the main text, as well as a subject index. Meets the requirements of the federal state educational standards of higher education of the latest generation. For students of higher educational institutions who study full-time, part-time, evening, distance learning forms of technological and mechanical specialties belonging to the group "Food Technology".
APA, Harvard, Vancouver, ISO, and other styles
4

Dijksman, J. F. IUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids: Proceedings of an IUTAM Symposium held in Kerkrade, The Netherlands, 1-3 November 1993. Dordrecht: Springer Netherlands, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oh, Chang H. Interfacial interaction in two-phase gas-non-Newtonian liquid flow systems. 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

The non-Newtonian heat and mass transport of He II in porous media used for vapor-liquid phase separation: A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Enginering. Los Angeles, Calif: University of California, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States. National Aeronautics and Space Administration, ed. The non-Newtonian heat and mass transport of He II in porous media used for vapor-liquid phase separation: A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Enginering. Los Angeles, Calif: University of California, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Liquide non newtonien"

1

Bird, R. Byron, and John M. Wiest. "Non-Newtonian Liquids." In Handbook of Fluid Dynamics and Fluid Machinery, 223–302. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470172636.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Cunlu, and Chun Yang. "Electrokinetics of Non-Newtonian Liquids." In Encyclopedia of Microfluidics and Nanofluidics, 878–84. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Cunlu, and Chun Yang. "Electrokinetics of Non-Newtonian Liquids." In Encyclopedia of Microfluidics and Nanofluidics, 1–8. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-3-642-27758-0_1717-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Dang, and Junbin Chen. "Percolation of Non-Newtonian Liquid." In Mechanics of Oil and Gas Flow in Porous Media, 283–99. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7313-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jog, Milind A., and Raj M. Manglik. "Drop Impact Dynamics of Newtonian and Non-Newtonian Liquids." In Energy, Environment, and Sustainability, 9–30. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7233-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hermia, Jacques. "Blocking Filtration. Application to Non-Newtonian Fluids." In Mathematical Models and Design Methods in Solid-Liquid Separation, 83–89. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5091-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sobolík, V. "Flow enhancement of non-Newtonian liquids by superposed oscillations." In Progress and Trends in Rheology II, 330–31. Heidelberg: Steinkopff, 1988. http://dx.doi.org/10.1007/978-3-642-49337-9_113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Uddin, J., and S. P. Decent. "Instability of Non-Newtonian Liquid Jets Curved by Gravity." In Progress in Industrial Mathematics at ECMI 2008, 597–602. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12110-4_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Machač, I., P. Mikulášek, and Z. Lecjaks. "Flow of non-Newtonian liquids through fluidized beds of spherical particles." In Progress and Trends in Rheology II, 268–70. Heidelberg: Steinkopff, 1988. http://dx.doi.org/10.1007/978-3-642-49337-9_89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maiti, Samit Bikas, Nirjhar Bar, and Sudip Kumar Das. "Bed Expansion in Two-Phase Liquid–Solid Fluidized Beds with Non-Newtonian Fluids and ANN Modelling." In Advances in Intelligent Systems and Computing, 33–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2188-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Liquide non newtonien"

1

Khare, Prashant, and Vigor Yang. "Breakup of non-Newtonian Liquid Droplets." In 44th AIAA Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-2919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Siginer, Dennis A., Li Yunling, and Thomas E. Jacks. "MARANGONI AND BUOYANCY DRIVEN FLOWS OF NON-NEWTONIAN FLUIDS IN LAYERED FLUID SYSTEMS." In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kawase, Yoshinori, and Kazuhiro Shimizu. "EFFECT OF NON-NEWTONIAN FLOW BEHAVIORS ON SHEAR STRESS IN LIQUID-LIQUID DISPERSION." In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gaudet, S., G. McKinley, and H. Stone. "Extensional deformation of Newtonian and non-Newtonian liquid bridges in microgravity." In 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skelland, A. H. P. "SIMULTANEOUS SOLUTION OF STABILITY, PERMEABILITY, AND SWELLING PROBLEMS IN EMULSION LIQUID MEMBRANES BY NON-NEWTONIAN CONVERSION." In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Owen, I., I. Fyrippi, and M. P. Escudier. "Flowmetering of Shear-Thinning Non-Newtonian Liquids (Keynote)." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45588.

Full text
Abstract:
This paper describes the results of an investigation into the performance of Coriolis, Electromagnetic, and clamp-on single-beam Ultrasonic flowmeters operating with non-Newtonian liquids. The flowmeters have been tested on Newtonian liquids (water and a glycerine/water solution) and non-Newtonian liquids (various polymer solutions and a synthetic clay) with flow rates that span the laminar and turbulent regions. It has been shown that the Coriolis flowmeter operates within the manufacturer’s specification with non-Newtonian liquids. The Electromagnetic flowmeter showed a slight deviation during transition, typically 1%. The Ultrasonic flowmeter showed very significant deviations during transition, typically 15%. It has been clearly demonstrated that flowmeters which are sensitive to flow velocity profile are particularly unsuitable for use with non-Newtonian liquids. Not only do non-Newtonian liquids have different flow velocity profiles to Newtonian liquids, they also have different criteria for laminar/turbulent transition.
APA, Harvard, Vancouver, ISO, and other styles
7

Michels, Alexandre F., Pedro Lovato, Flavio Horowitz, Niklaus Ursus Wetter, and Jaime Frejlich. "Optical Monitoring of Dip Coating: Non-Newtonian liquids." In RIAO∕OPTILAS 2007: 6th Ibero-American Conference on Optics (RIAO); 9th Latin-American Meeting on Optics, Lasers and Applications (OPTILAS). AIP, 2008. http://dx.doi.org/10.1063/1.2926835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Snyder, Sharon, Nicole Arockiam, and Paul Sojka. "Secondary Atomization of Elastic Non-Newtonian Liquid Drops." In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-6822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gao, Jian, Neil S. Rodrigues, Paul E. Sojka, and Jun Chen. "Measurement of Aerodynamic Breakup of Non-Newtonian Drops by Digital In-Line Holography." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-22039.

Full text
Abstract:
Aerodynamic fragmentation of bulk liquid into small droplets is an essential spray process that occurs in a variety of combustion systems. The aerodynamic breakup of non-Newtonian fluids, such as aerospace propellants, bio-fuels, fire-fighting liquids, thermal barrier coatings, water-gel explosives, paints, etc, is involved in many important applications. Non-Newtonian fluids differ from Newtonian fluids in that they do not exhibit a linear shear stress-strain rate relationship. They are employed when the liquid is desirable to have a low viscosity during spray formation (high strain rate) and a higher viscosity when on a target (low strain rate). This useful rheological behavior leads to a significantly different breakup mechanism of non-Newtonian fluids compared to that of Newtonian liquids. Unfortunately, there are limited experimental studies on the aerodynamic breakup of non-Newtonian drops. This is probably due to the difficulty in measuring fragments of complex morphologies. Digital in-line holography (DIH) provides simultaneous measurements of the particle size and position with unique access to three-dimensional (3D) information. Previous applications have demonstrated its applicability to arbitrary-shape particles, capability of extracting 3D morphologies, and effectiveness in characterizing the aerodynamic breakup of Newtonian drops. In the present study, the aerodynamic breakup of non-Newtonian drops is characterized using DIH. The measured characteristics including breakup morphologies, fragment/droplet size distribution and velocity distributions, demonstrate the effectiveness of DIH as a diagnostic tool for non-Newtonian fluids.
APA, Harvard, Vancouver, ISO, and other styles
10

Chaussonnet, G., R. Koch, H. J. Bauer, A. Sänger, T. Jakobs, and T. Kolb. "SPH Simulation of an Air-Assisted Atomizer Operating at High Pressure: Influence of Non-Newtonian Effects." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63033.

Full text
Abstract:
A twin-fluid atomizer configuration is predicted by means of the 2D weakly-compressible Smooth Particle Hydrodynamics (SPH) method and compared to experiments. The setup consists of an axial liquid jet fragmented by a co-flowing high-speed air stream (Ug ≈ 60 m/s) in a pressurized atmosphere up to 11 bar (abs.). Two types of liquid are investigated: a viscous Newtonian liquid (μl = 200 mPas) obtained with a glycerol/water mixture and a viscous non-Newtonian liquid (μl, apparent. ≈ 150 mPas) obtained with a carboxymethyl cellulose (CMC) solution. 3D effects are taken into account in the 2D code by introducing (i) a surface tension term, (ii) a cylindrical viscosity operator and (iii) a modified velocity accounting for the divergence of the volume in the radial direction. The numerical results at high pressure show a good qualitative agreement with experiment, i.e. a correct transition of the atomization regimes with regard to the pressure, and similar dynamics and length scales of the generated ligaments. The predicted frequency of the Kelvin-Helmholtz instability needs a correction factor of 2 to be globally well recovered with the Newtonian liquid. The simulation of the non-Newtonian liquid at high pressure shows a similar breakup regime with finer droplets compared to Newtonian liquids while the simulation at atmospheric pressure shows an apparent viscosity similar to the experiment.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Liquide non newtonien"

1

Mansour, A., and N. Chigier. The physics of non-Newtonian liquid slurry atomization. Part 2: Twin-fluid atomization of non-Newtonian liquids -- First quarterly technical report, 1 January--31 March 1994. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10158834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Yu-Shu, Stefan Finsterle, and Karsten Pruess. EOS3nn: An iTOUGH2 module for non-Newtonian liquid and gasflow. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/881596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vanyagin, A. V., B. A. Gordeev, V. I. Erofeev, and S. N. Okhulkov. MEASUREMENT OF VISCOSITY OF A NON-NEWTONIAN LIQUID IN A ROTARY VISCOSIMETER WITH A FREQUENCY METHOD. Journal Article published February 2020 in Bulletin of Science and Technical Development issue 150, 2020. http://dx.doi.org/10.18411/vntr2020-150-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography