Academic literature on the topic 'Liquide non newtonien'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquide non newtonien.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Liquide non newtonien"
Shimanovsky, Alexandr, Maryna Kuzniatsova, and Alžbeta Sapietová. "Modeling of Newtonian and Non-Newtonian Liquid Sloshing in Road Tanks while Braking." Applied Mechanics and Materials 611 (August 2014): 137–44. http://dx.doi.org/10.4028/www.scientific.net/amm.611.137.
Full textKumar Jana, Sumit, and Sudip Kumar Das. "TAPERED BUBBLE COLUMN USING PSEUDOPLASTIC NON-NEWTONIAN LIQUIDS – EMPIRICAL CORRELATION FOR PRESSURE DROP." Chemistry & Chemical Technology 11, no. 3 (August 28, 2017): 327–32. http://dx.doi.org/10.23939/chcht11.03.327.
Full textBaytulenov, Zh B. "A modification of the method of fictitious domains for stationary model of non-Newtonian liquids." International Journal of Mathematics and Physics 6, no. 2 (2015): 16–22. http://dx.doi.org/10.26577/2218-7987-2015-6-2-16-22.
Full textVenkatachalam, Sivakumar, Akilamudhan Palaniappan, Senthilkumar Kandasamy, and Kannan Kandasamy. "Prediction of gas holdup in a combined loop air lift fluidized bed reactor using Newtonian and non-Newtonian liquids." Chemical Industry and Chemical Engineering Quarterly 17, no. 3 (2011): 375–83. http://dx.doi.org/10.2298/ciceq110401024v.
Full textYoshida, Masanori, Hitoshi Igarashi, Kento Iwasaki, Sayaka Fuse, and Aya Togashi. "Evaluation of Viscosity of Non-Newtonian Liquid Foods with a Flow Tube Instrument." International Journal of Food Engineering 11, no. 6 (December 1, 2015): 815–23. http://dx.doi.org/10.1515/ijfe-2015-0138.
Full textAbukhalifeh, H., M. E. Fayed, and R. Dhib. "Hydrodynamics of TBC with non-Newtonian liquids: Liquid holdup." Chemical Engineering and Processing: Process Intensification 48, no. 7 (July 2009): 1222–28. http://dx.doi.org/10.1016/j.cep.2009.04.007.
Full textSH. AKHATOV, I., M. M. KHASANOV, and I. G. KHUSAINOV. "AUTO- AND CHAOTIC OSCILLATIONS IN HYDRODYNAMICS OF NON-NEWTONIAN LIQUIDS." International Journal of Bifurcation and Chaos 03, no. 04 (August 1993): 1039–44. http://dx.doi.org/10.1142/s0218127493000854.
Full textLee, Si-Hyung, Hyun-Jung Koh, Seo-Hoon Shim, Hyun-Wook Jung, and Jae-Chun Hyun. "An Optimal Die Design for the Coating Uniformity of Non-Newtonian Liquids in Slot Coating Process." Korean Chemical Engineering Research 49, no. 3 (June 30, 2011): 314–19. http://dx.doi.org/10.9713/kcer.2011.49.3.314.
Full textKOPLIK, JOEL, and JAYANTH R. BANAVAR. "MOLECULAR DYNAMICS SIMULATIONS OF NON-NEWTONIAN EXTENSIONAL FLUID FLOWS." International Journal of Modern Physics B 17, no. 01n02 (January 20, 2003): 27–32. http://dx.doi.org/10.1142/s0217979203017047.
Full textBair, Scott. "Elastohydrodynamic Film Forming With Shear Thinning Liquids." Journal of Tribology 120, no. 2 (April 1, 1998): 173–78. http://dx.doi.org/10.1115/1.2834405.
Full textDissertations / Theses on the topic "Liquide non newtonien"
Tavakoli, Gheynani Touraj. "Hydrodynamique et transfert gaz-liquide non newtonien en fluidisation triphasique." Toulouse, INPT, 1989. http://www.theses.fr/1989INPT039G.
Full textAli, Adib Tarif. "Estimation et lois de variation du coefficient de transfert de chaleur surface / liquide en ébullition pour un liquide alimentaire dans un évaporateur à flot tombant." Paris, AgroParisTech, 2008. http://pastel.paristech.org/4544/01/2008AGPT0007.pdf.
Full textThe heat transfer coefficient value is necessary to calculate the eat exchange surface when designing an evaporator, as currently used to concentrate liquids in food industry. The boiling heat transfer coefficient on the liquid side (h) is the most uncertain and: it depends on the liquid thermo-physical properties (ηL, σL, λL, ρL, CpL, ω,. . . ) as well as on the process conditions (type of evaporator, φ ou Δθ, Γ (δ), P, surface roughness, fouling, etc). Also, h depends on the boiling regime (non-nucleate or nucleate) and on the flow regime (laminar or turbulent) according to the film Reynolds number in falling film evaporators. The objective of our work is to define an economical and robust method to estimate h in a falling film evaporator which is common in food industry for concentrating fruit juice, milk and sugar solutions. The first section of our study was a bibliographic analysis which revealed the important dispersion among the h values calculated from the formulas cited in literature The second section was to design and construct a laboratory scale falling film evaporator (pilot) used to estimate h at stationary parameters conditions. The third section was to describe the results and variation laws of h versus the liquid dry matter concentration XMS, the boiling temperature θL, the heat flux φ or temperature gap Δθ and mass flow rate per unit of perimeter length Γ (with describing the critical mass flow for some solutions) noted that the nature of heating surface is kept constant during our work. We described the effect of each variable separately on h where, the other variables being kept constant. Also we studied the transition from non nucleate regime, which varied with the nature of liquid and the liquid concentration. Finally, we presented the experimental models for h = f (XMS,θL,φ,Γ) for a Newtonian liquid (sugar solution) and non Newtonian solution (CMC) that may be used for industrial evaporator design after validation. We have also proposed a method for the simplification or the experimental design
Ali-Adib, Tarif. "Estimation et lois de variation du coefficient de transfert de chaleur surface/ liquide en ébullition pour un liquide alimentaire dans un évaporateur à flot tombant." Phd thesis, AgroParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004544.
Full textHoareau, Frédéric. "Étude dynamique et thermique de suspensions solides-liquides non newtoniennes en conduite." Nancy 1, 1996. http://www.theses.fr/1996NAN10305.
Full textNapitupulu, Farel Hasiholan. "Mesures de la conductivité thermique de fluide non-newtonien à l'aide d'une sonde de mesure de type aiguille, basée sur une méthode thermique impulsionnelle : applications aux solutions aqueuses de polymères hydrosolubles et aux suspensions solide/liquide concentrées." Compiègne, 1988. http://www.theses.fr/1988COMPI278.
Full textThe measurement of the thermophysical properties of non-Newtonian fluids, particularly their thermal conductivity, is highly important for development of processes involving heat treatment (heating, coling, backing, etc. . . ). It also helps to plan the quality control of these products when their thermophysical properties are sufficiently dependent on their formulation. For the case of concentrated solid/liquid suspensions, the mass concentration, for example, is a fundamental quality parameter, which strongly influences not only the product's rheological properties, but also its economics value. The determination of the product's thermal conductivity, which is strongly dependent on concentration, could often an indirect control method of a continuous mixing operation, or, for example, a method to monitor the sedimentative stability. The author presents a needle-type thermal probe, based on the transient heat flow method (line-source technique), designed for the in situ measurement of the apparent thermal conductivity of aqueous solutions of water-soluble polymers and of concentrated solid/liquid suspensions. The thermal conductivity variations at 20°C, versus concentration of the aqueous solution, are given for three CMC and for one CARBOPOL, commercially available, given a large range of viscosity. The thermal conductivity variation versus temperature is also given. The suspension investigated is mixture of coal in water and polystyrene spheres in water. They consist in pseudo homogenous ùixture behaving as highly viscous non-Newtonian fluids
Fyrippi, Irene. "Flowmetering of non-Newtonian liquids." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400185.
Full textPoole, Robert John. "Turbulent flow of Newtonian and non-Newtonian liquids through sudden expansions." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399176.
Full textSmith, Sarah Elizabeth. "Turbulent duct flow of non-Newtonian liquids." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399184.
Full textDUTRA, EDUARDO STEIN SOARES. "DISPLACEMENT OF NON-NEWTONIAN LIQUIDS IN ECCENTRIC ANNULI." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=6947@1.
Full textApós a perfuração de poços de petróleo, a lama utilizada na remoção de cascalho, lubrificação e resfriamento da broca deve ser removida e substituída por uma mistura de cimento. Essa substituição se dá pelo deslocamento de um fluido por outro no espaço anular entre a formação rochosa e a coluna de completação ou revestimento. A mistura de cimento tem a função de garantir a estabilidade estrutural do poço evitando danos ambientais e prejuízos econômicos. Para melhores resultados do processo de cimentação, utilizam-se fluidos intermediários, também chamados de colchões lavadores e espaçadores, entre os fluidos principais. A boa qualidade do deslocamento dos fluidos pode ser avaliada pela forma da interface entre eles. Perfis mais acentuados sugerem um atravessamento indesejável do fluido deslocante (cimento) através do deslocado (fluido de perfuração). Por outro lado, perfis achatados indicam um deslocamento mais eficiente. Neste trabalho foi feita uma análise experimental e numérica do processo de cimentação, investigando a forma da interface e a eficiência do deslocamento dos fluidos. Uma planta experimental vertical foi construída, simulando um processo de deslocamento de fluidos em anulares excêntricos de poços. Com uma câmera digital CCD foram filmadas as interfaces entre os fluidos durante o escoamento e com essas imagens puderam-se comparar os resultados com as simulações numéricas realizadas num softw are comercial, usando o método de volumes finitos. Foram analisados os efeitos de diferentes parâmetros como a excentricidade, o regime de escoamento, e, principalmente o comportamento mecânico dos fluidos envolvidos (reologia) na eficiência do deslocamento. Com base nesses resultados é possível prever quais parâmetros operacionais otimizam o processo de deslocamento.
In cementing processes of oil wells, the mud formerly used to drag the gravel, to lubricate and to cool the drill is removed and substituted by a cement mixture. This substitution is obtained by the displacement of a fluid by another in the annulus between the rock formation and the casing. For best results of cementing process, intermediate fluids, also called spacers, are used between the drill mud and the cement mixture. The displacement process is very complex due to geometry and fluids characteristics. The annular space is eccentric in most cases, and both drilling mud and cement mixtures are non-Newtonian fluids. In this work, an experimental and numerical study is performed to analyze this process. A vertical experimental plant was constructed to simulate the fluid displacement through eccentric annuli. The interface shapes between two adjacent fluids were visualized using a digital CCD camera. The images were compared with the results obtained in the numerical simulations. The numerical solution was obtained via the Finite Volume technique and using the Volume-of-Fluid method. The effects of eccentricity, displacement velocity and rheological parameters on the displacement e± ciency were investigated. Based on these results we can predict the liquid characteristics and the operational parameters that optimize the displacement process.
BAZZI, MARISA SCHMIDT. "BREAKUP DYNAMICS OF NON-NEWTONIAN THIN LIQUID SHEETS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34574@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE EXCELENCIA ACADEMICA
BOLSA NOTA 10
Filmes finos de líquidos estão presentes em uma gama de aplicações industriais, como processos de atomização e revestimento de substrato. O processo de quebra pode ser divido em duas etapas: o estágio de ruptura, e o estágio de retração. O primeiro, movido pelas forças de van der Waals, ocorre quando uma pequena perturbação cresce e provoca o aparecimento de um pequeno furo no filme. O segundo, movido por forças capilares, provoca o crescimento desse furo levando à desintegração do filme de líquido. A estabilidade de uma cortina de líquido depende das características da perturbação, da espessura do filme e das propriedades do fluido. Análises experimentais mostraram que uma cortina super fina pode ser obtida pela utilização de fluidos viscoelásticos. Os mecanismos físicos associados à esta estabilidade, contudo, não são totalmente compreendidos. Este trabalho apresenta um estudo numérico e teórico dos efeitos das propriedades viscoelásticas na estabilidade de uma cortina de fluido, englobando ambos os estágio do processo. As análises numéricas foram desenvolvidas através da expansão assintótica das variáveis do escoamento com aplicação de um esquema de integração no tempo totalmente implícito. A partir da análise teórica da dinâmica de ruptura foi possível obter um critério de estabilidade linear para perturbações planares e axissimétricas em fluidos Newtonianos e não-Newtonianos. O tempo de ruptura e a velocidade de retração do filme foram calculados numericamente como função das propriedades viscoelásticas do líquido. Resultados mostraram que as forças elásticas atuam de forma a dificultar o processo de quebra e retração. Análises da evolução da espessura mostraram que as propriedades reológicas do fluído também interferem no formato que o filme de fluido assume durante o processo de retração. Para regimes de baixa viscosidade, as forças elásticas atuaram evitando a formação de ondas capilares observadas em fluidos Newtonianos.
Thin free liquid sheets are ubiquitous in many industrial processes, such as atomization and curtain coating. Liquid sheets are susceptible to instabilities at the interface, which can grow, triggering a breakup process. This process can be divided into two different stages: the rupture stage and retraction. The first, driven by van der Waals force, occurs when a small instability grows until it pinches-off the sheet. The second, driven by capillary forces, induces the growth of the hole caused by the pinch-off, leading to the full disintegration of the liquid sheet. The stability of a liquid sheet depends on disturbance characteristics, sheet thickness, and fluid properties. Experimental analyses have shown that thinner stable liquid curtain can be obtained with viscoelastic liquids. The underlyning physical mechanisms associated with increased stability are, however, not fully understood. This work presents a theoretical and numerical analysis of the effect of viscoelasticity on the stability of a thin liquid sheet during both stages of the breakup process. We first analyze the rupture dynamics, deriving linear stability criteria for both planar and axisymmetric perturbations of Newtonian and Oldroyd-B liquids. The time evolution of planar and axisymmetric perturbations in an Oldroyd-B liquid sheet is evaluated using the asymptotic expansion of the flow variables and a fully-implicit time integration scheme. The rupture time and retraction velocity are calculated as a function of the viscoelastic properties. The results show that the liquid rheological behavior does not influence the linear stability criterion. Nevertheless, it has a strong effect on the growth rate of the disturbance and retraction velocity, increasing, thus, the breakup time. The results show that elastic forces act to hinder the rupture and retraction stages. Analysis of the temporal evolution of the thickness profile reveals that liquid rheological behavior also affects the shape of the liquid sheet. For low viscosity regime, the elastic forces damp the capillary waves that arise during the retraction of Newtonian sheets.
Books on the topic "Liquide non newtonien"
Zour, S. M. Abu. The elongational viscosity of Newtonian and non-Newtonian liquids. Manchester: UMIST, 1991.
Find full textIUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids (1993 Kerkrade, Netherlands). IUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids: Proceedings of an IUTAM symposium held in Kerkrade, the Netherlands, 1-3 November 1993. Dordrecht: Kluwer Academic Publishers, 1995.
Find full textYudaev, Vasiliy. Hydraulics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/996354.
Full textDijksman, J. F. IUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids: Proceedings of an IUTAM Symposium held in Kerkrade, The Netherlands, 1-3 November 1993. Dordrecht: Springer Netherlands, 1995.
Find full textOh, Chang H. Interfacial interaction in two-phase gas-non-Newtonian liquid flow systems. 1985.
Find full textThe non-Newtonian heat and mass transport of He II in porous media used for vapor-liquid phase separation: A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Enginering. Los Angeles, Calif: University of California, 1985.
Find full textUnited States. National Aeronautics and Space Administration, ed. The non-Newtonian heat and mass transport of He II in porous media used for vapor-liquid phase separation: A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Enginering. Los Angeles, Calif: University of California, 1985.
Find full textBook chapters on the topic "Liquide non newtonien"
Bird, R. Byron, and John M. Wiest. "Non-Newtonian Liquids." In Handbook of Fluid Dynamics and Fluid Machinery, 223–302. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470172636.ch3.
Full textZhao, Cunlu, and Chun Yang. "Electrokinetics of Non-Newtonian Liquids." In Encyclopedia of Microfluidics and Nanofluidics, 878–84. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1717.
Full textZhao, Cunlu, and Chun Yang. "Electrokinetics of Non-Newtonian Liquids." In Encyclopedia of Microfluidics and Nanofluidics, 1–8. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-3-642-27758-0_1717-2.
Full textLi, Dang, and Junbin Chen. "Percolation of Non-Newtonian Liquid." In Mechanics of Oil and Gas Flow in Porous Media, 283–99. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7313-2_9.
Full textJog, Milind A., and Raj M. Manglik. "Drop Impact Dynamics of Newtonian and Non-Newtonian Liquids." In Energy, Environment, and Sustainability, 9–30. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7233-8_2.
Full textHermia, Jacques. "Blocking Filtration. Application to Non-Newtonian Fluids." In Mathematical Models and Design Methods in Solid-Liquid Separation, 83–89. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5091-7_5.
Full textSobolík, V. "Flow enhancement of non-Newtonian liquids by superposed oscillations." In Progress and Trends in Rheology II, 330–31. Heidelberg: Steinkopff, 1988. http://dx.doi.org/10.1007/978-3-642-49337-9_113.
Full textUddin, J., and S. P. Decent. "Instability of Non-Newtonian Liquid Jets Curved by Gravity." In Progress in Industrial Mathematics at ECMI 2008, 597–602. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12110-4_95.
Full textMachač, I., P. Mikulášek, and Z. Lecjaks. "Flow of non-Newtonian liquids through fluidized beds of spherical particles." In Progress and Trends in Rheology II, 268–70. Heidelberg: Steinkopff, 1988. http://dx.doi.org/10.1007/978-3-642-49337-9_89.
Full textMaiti, Samit Bikas, Nirjhar Bar, and Sudip Kumar Das. "Bed Expansion in Two-Phase Liquid–Solid Fluidized Beds with Non-Newtonian Fluids and ANN Modelling." In Advances in Intelligent Systems and Computing, 33–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2188-1_3.
Full textConference papers on the topic "Liquide non newtonien"
Khare, Prashant, and Vigor Yang. "Breakup of non-Newtonian Liquid Droplets." In 44th AIAA Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-2919.
Full textSiginer, Dennis A., Li Yunling, and Thomas E. Jacks. "MARANGONI AND BUOYANCY DRIVEN FLOWS OF NON-NEWTONIAN FLUIDS IN LAYERED FLUID SYSTEMS." In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.170.
Full textKawase, Yoshinori, and Kazuhiro Shimizu. "EFFECT OF NON-NEWTONIAN FLOW BEHAVIORS ON SHEAR STRESS IN LIQUID-LIQUID DISPERSION." In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.500.
Full textGaudet, S., G. McKinley, and H. Stone. "Extensional deformation of Newtonian and non-Newtonian liquid bridges in microgravity." In 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-696.
Full textSkelland, A. H. P. "SIMULTANEOUS SOLUTION OF STABILITY, PERMEABILITY, AND SWELLING PROBLEMS IN EMULSION LIQUID MEMBRANES BY NON-NEWTONIAN CONVERSION." In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.420.
Full textOwen, I., I. Fyrippi, and M. P. Escudier. "Flowmetering of Shear-Thinning Non-Newtonian Liquids (Keynote)." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45588.
Full textMichels, Alexandre F., Pedro Lovato, Flavio Horowitz, Niklaus Ursus Wetter, and Jaime Frejlich. "Optical Monitoring of Dip Coating: Non-Newtonian liquids." In RIAO∕OPTILAS 2007: 6th Ibero-American Conference on Optics (RIAO); 9th Latin-American Meeting on Optics, Lasers and Applications (OPTILAS). AIP, 2008. http://dx.doi.org/10.1063/1.2926835.
Full textSnyder, Sharon, Nicole Arockiam, and Paul Sojka. "Secondary Atomization of Elastic Non-Newtonian Liquid Drops." In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-6822.
Full textGao, Jian, Neil S. Rodrigues, Paul E. Sojka, and Jun Chen. "Measurement of Aerodynamic Breakup of Non-Newtonian Drops by Digital In-Line Holography." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-22039.
Full textChaussonnet, G., R. Koch, H. J. Bauer, A. Sänger, T. Jakobs, and T. Kolb. "SPH Simulation of an Air-Assisted Atomizer Operating at High Pressure: Influence of Non-Newtonian Effects." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63033.
Full textReports on the topic "Liquide non newtonien"
Mansour, A., and N. Chigier. The physics of non-Newtonian liquid slurry atomization. Part 2: Twin-fluid atomization of non-Newtonian liquids -- First quarterly technical report, 1 January--31 March 1994. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10158834.
Full textWu, Yu-Shu, Stefan Finsterle, and Karsten Pruess. EOS3nn: An iTOUGH2 module for non-Newtonian liquid and gasflow. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/881596.
Full textVanyagin, A. V., B. A. Gordeev, V. I. Erofeev, and S. N. Okhulkov. MEASUREMENT OF VISCOSITY OF A NON-NEWTONIAN LIQUID IN A ROTARY VISCOSIMETER WITH A FREQUENCY METHOD. Journal Article published February 2020 in Bulletin of Science and Technical Development issue 150, 2020. http://dx.doi.org/10.18411/vntr2020-150-2.
Full text