To see the other types of publications on this topic, follow the link: Lithium aluminum titanate phosphate.

Journal articles on the topic 'Lithium aluminum titanate phosphate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lithium aluminum titanate phosphate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Benato, Roberto, Sebastian Dambone Sessa, Maura Musio, Francesco Palone, and Rosario Polito. "Italian Experience on Electrical Storage Ageing for Primary Frequency Regulation." Energies 11, no. 8 (2018): 2087. http://dx.doi.org/10.3390/en11082087.

Full text
Abstract:
The paper describes the results of different types of ageing tests performed by Terna (the Italian Transmission System Operator) applied to several electrochemical technologies, namely lithium-based and sodium-nickel chloride-based technologies. In particular, the tested lithium-based technologies exploit a graphite-based anode and the following cathode electrochemistries: lithium iron phosphate, lithium nickel cobalt aluminium, lithium nickel cobalt manganese, and lithium titanate. These tests have been performed in the storage labs located in Sardinia (Codrongianos) and Sicily (Ciminna). The
APA, Harvard, Vancouver, ISO, and other styles
2

Wibowo, Arie, Radian Febi Indrawan, Lia Amelia Tresna Wulan Asri, Susanto Sigit Rahardi, and Bambang Sunendar Purwasasmita. "The influence of chitosan concentration on morphology and conductivity of lithium aluminium titanate phosphate for solid electrolytes of lithium-ion battery application." IOP Conference Series: Materials Science and Engineering 509 (May 3, 2019): 012021. http://dx.doi.org/10.1088/1757-899x/509/1/012021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Xiaobin, Huei Peng, Hewu Wang, and Minggao Ouyang. "Hybrid Lithium Iron Phosphate Battery and Lithium Titanate Battery Systems for Electric Buses." IEEE Transactions on Vehicular Technology 67, no. 2 (2018): 956–65. http://dx.doi.org/10.1109/tvt.2017.2749882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Jeng-Yu, Chao-Chia Hsu, Hsin-Ping Ho, and She-huang Wu. "Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries." Electrochimica Acta 87 (January 2013): 126–32. http://dx.doi.org/10.1016/j.electacta.2012.08.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Qian, Xinming Zhang, Ya Zhang, and Qiang Shen. "Influence of lithium phosphate on the structural and lithium-ion conducting properties of lithium aluminum titanium phosphate pellets." Ionics 27, no. 6 (2021): 2473–81. http://dx.doi.org/10.1007/s11581-021-04011-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Pengfei, Peng Li, Ting-Feng Yi, et al. "Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum." Journal of Power Sources 293 (October 2015): 33–41. http://dx.doi.org/10.1016/j.jpowsour.2015.05.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mahmoud, Morsi, Yuantao Cui, Magnus Rohde, Carlos Ziebert, Guido Link, and Hans Seifert. "Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte." Materials 9, no. 7 (2016): 506. http://dx.doi.org/10.3390/ma9070506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thokchom, Joykumar S., Nutan Gupta, and Binod Kumar. "Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass–Ceramic." Journal of The Electrochemical Society 155, no. 12 (2008): A915. http://dx.doi.org/10.1149/1.2988731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cui, Y., M. Rohde, T. L. Reichmann, M. M. Mahmoud, C. Ziebert, and H. J. Seifert. "Ionic Conductivity and Stability of the Lithium Aluminum Germanium Phosphate." ECS Transactions 72, no. 8 (2016): 139–46. http://dx.doi.org/10.1149/07208.0139ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wiemer, Jan L., Martin Schäfer, and Karl-Michael Weitzel. "Li+ Ion Site Energy Distribution in Lithium Aluminum Germanium Phosphate." Journal of Physical Chemistry C 125, no. 9 (2021): 4977–85. http://dx.doi.org/10.1021/acs.jpcc.0c11164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ushakov, Arseni V., Semen V. Makhov, Nelly A. Gridina, Aleksandr V. Ivanishchev, and Irina M. Gamayunova. "Rechargeable lithium-ion system based on lithium-vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning." Monatshefte für Chemie - Chemical Monthly 150, no. 3 (2019): 499–509. http://dx.doi.org/10.1007/s00706-019-2374-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Balaji Rao, R., and Ch Krishan Kishore Reddy. "Transport Properties and Scaling Spectra of Lithium Gallium Titanate Phosphate Glass Ceramics Materials." International Journal of Advanced Materials Manufacturing and Characterization 3, no. 1 (2013): 307–10. http://dx.doi.org/10.11127/ijammc.2013.02.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

WANG, Ying, Wenlong ZHANG, Yanfeng XING, suqun CAO, Xinyi DAI, and Jingze LI. "Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V." Journal of Inorganic Materials 36, no. 9 (2021): 999. http://dx.doi.org/10.15541/jim20200576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cui Qiaoqiao, 崔乔乔, 丁明烨 Ding Mingye, 倪亚茹 Ni Yaru, and 陆春华 Lu Chunhua. "Ultra-Violet Transmission and Structure of Lithium Aluminum Silicate-Phosphate Glasses." Acta Optica Sinica 33, no. 11 (2013): 1116004. http://dx.doi.org/10.3788/aos201333.1116004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zangina, Tasiu, Jumiah Hassan, Khamirul Amin Matori, Raba`ah Syahidah Azis, Chifu Ebenezer Ndikilar, and Fatin Hana Naning. "Dielectric Relaxation Analysis of Chemical Solid Electrolyte Lithium Aluminum Titanium Phosphate." Asian Journal of Applied Sciences 11, no. 1 (2017): 46–55. http://dx.doi.org/10.3923/ajaps.2018.46.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Yingjia, Jian Chen, and Jing Gao. "Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte." Solid State Ionics 318 (May 2018): 27–34. http://dx.doi.org/10.1016/j.ssi.2017.10.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

KIMURA, MUNEHIRO, KONRAD ŚWIERCZEK, JACEK MARZEC, and JANINA MOLENDA. "INFLUENCE OF ALUMINUM ON PHYSICO-CHEMICAL PROPERTIES OF LITHIUM IRON PHOSPHATE." Functional Materials Letters 04, no. 02 (2011): 123–27. http://dx.doi.org/10.1142/s1793604711001877.

Full text
Abstract:
In this work we present results of measurements of structural (XRD), microstructural (SEM, EDX, TEM) and transport (electrical conductivity, Seebeck coefficient) properties as well as results of Mössbauer and FTIR spectroscopy studies of phospho-olivine materials with assumed chemical composition Li 1-3x Al x FePO 4 (x = 0, 0.001, 0.005, 0.01, 0.02, 0.05 and 0.1). Based on the performed research, possibility of lithium sublattice doping by Al is discussed. Additionally, initial results of electrochemical tests of lithium batteries with obtained, phospho-olivine based cathode materials are prov
APA, Harvard, Vancouver, ISO, and other styles
18

He, Kun, Yanhang Wang, Chengkui Zu, et al. "Crystallization kinetics of lithium aluminum germanium phosphate glass by DSC technique." Journal of Wuhan University of Technology-Mater. Sci. Ed. 27, no. 1 (2012): 63–66. http://dx.doi.org/10.1007/s11595-012-0408-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bhanja, Piyali, Chenrayan Senthil, Astam Kumar Patra, Manickam Sasidharan, and Asim Bhaumik. "NASICON type ordered mesoporous lithium-aluminum-titanium-phosphate as electrode materials for lithium-ion batteries." Microporous and Mesoporous Materials 240 (March 2017): 57–64. http://dx.doi.org/10.1016/j.micromeso.2016.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kim, Seul-Ki, Yun-Chae Jung, Duck-Hyun Kim, Woo-Cheol Shin, Makoto Ue, and Dong-Won Kim. "Lithium-Ion Cells Assembled with Flexible Hybrid Membrane Containing Li+-Conducting Lithium Aluminum Germanium Phosphate." Journal of The Electrochemical Society 163, no. 6 (2016): A974—A980. http://dx.doi.org/10.1149/2.0831606jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Deiner, L. Jay, Thomas G. Howell, Gary M. Koenig, and Michael A. Rottmayer. "Interfacial reaction during co‐sintering of lithium manganese nickel oxide and lithium aluminum germanium phosphate." International Journal of Applied Ceramic Technology 16, no. 4 (2019): 1659–67. http://dx.doi.org/10.1111/ijac.13242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Stewart, Sarah, Paul Albertus, Venkat Srinivasan, et al. "Optimizing the Performance of Lithium Titanate Spinel Paired with Activated Carbon or Iron Phosphate." Journal of The Electrochemical Society 155, no. 3 (2008): A253. http://dx.doi.org/10.1149/1.2830552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Le, Hang T. T., Ramchandra S. Kalubarme, Duc Tung Ngo, et al. "Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium–oxygen batteries." Journal of Power Sources 274 (January 2015): 1188–99. http://dx.doi.org/10.1016/j.jpowsour.2014.10.146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bi, Haijun, Huabing Zhu, Lei Zu, Shuanghua He, Yong Gao, and Song Gao. "Pneumatic separation and recycling of anode and cathode materials from spent lithium iron phosphate batteries." Waste Management & Research: The Journal for a Sustainable Circular Economy 37, no. 4 (2019): 374–85. http://dx.doi.org/10.1177/0734242x18823939.

Full text
Abstract:
A novel approach to recycling of copper and aluminum fragments in the crushed products of spent lithium iron phosphate batteries was proposed to achieve their eco-friendly processing. The model of pneumatic separation that determines the optimal airflow velocity was established using aerodynamics. The influence of the airflow velocity, and the density and thickness, and their ratios, of the aluminum and copper fragments on pneumatic separation were evaluated. The results show that the optimal airflow velocities of copper and aluminum fragments with and without the electrode materials are 3.27m
APA, Harvard, Vancouver, ISO, and other styles
25

Cui, Yuantao, Morsi M. Mahmoud, Magnus Rohde, Carlos Ziebert, and Hans Juergen Seifert. "Thermal and ionic conductivity studies of lithium aluminum germanium phosphate solid-state electrolyte." Solid State Ionics 289 (June 2016): 125–32. http://dx.doi.org/10.1016/j.ssi.2016.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Yijie, Chao Li, Bojie Li, et al. "Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries." Advanced Energy Materials 8, no. 16 (2018): 1702374. http://dx.doi.org/10.1002/aenm.201702374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Popovici, Daniel, Hideyuki Nagai, Seigo Fujishima, and Jun Akedo. "Preparation of Lithium Aluminum Titanium Phosphate Electrolytes Thick Films by Aerosol Deposition Method." Journal of the American Ceramic Society 94, no. 11 (2011): 3847–50. http://dx.doi.org/10.1111/j.1551-2916.2011.04551.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gellert, Michael, Enkhetsetseg Dashjav, Daniel Grüner, Qianli Ma, and Frank Tietz. "Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate." Ionics 24, no. 4 (2017): 1001–6. http://dx.doi.org/10.1007/s11581-017-2276-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Feng, Yi, Lei Jun Shao, Bang Ling Zhang, et al. "Cost-Benefit Analysis Model of Single and Hybrid Energy Storage System in Active Distribution Network." Applied Mechanics and Materials 672-674 (October 2014): 503–8. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.503.

Full text
Abstract:
The active distribution network is an effective approach to solve the problem such as the high penetration of intermittent renewable energy. This paper constructs single and hybrid energy storage battery systems in the active distribution network, calculates the economic benefits of the single and hybrid energy storage systems from six aspects in annual electricity sale revenue, ancillary revenue, investment cost, maintenance cost, landed cost and power shortage punishment cost. Take the lithium iron phosphate battery as single system, the lithium iron phosphate battery and Lithium titanate ba
APA, Harvard, Vancouver, ISO, and other styles
30

Zhu, Yaqi, Yunfeng Zhang, and Li Lu. "Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic." Journal of Power Sources 290 (September 2015): 123–29. http://dx.doi.org/10.1016/j.jpowsour.2015.04.170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhu, Hongzheng, Anil Prasad, Somi Doja, Lukas Bichler, and Jian Liu. "Spark Plasma Sintering of Lithium Aluminum Germanium Phosphate Solid Electrolyte and its Electrochemical Properties." Nanomaterials 9, no. 8 (2019): 1086. http://dx.doi.org/10.3390/nano9081086.

Full text
Abstract:
Sodium superionic conductor (NASICON)-type lithium aluminum germanium phosphate (LAGP) has attracted increasing attention as a solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), due to the good ionic conductivity and highly stable interface with Li metal. However, it still remains challenging to achieve high density and good ionic conductivity in LAGP pellets by using conventional sintering methods, because they required high temperatures (>800 °C) and long sintering time (>6 h), which could cause the loss of lithium, the formation of impurity phases, and thus the red
APA, Harvard, Vancouver, ISO, and other styles
32

Kothari, Dharmesh H., and D. K. Kanchan. "Study of Study of electrical properties of gallium-doped lithium titanium aluminum phosphate compounds." Ionics 21, no. 5 (2014): 1253–59. http://dx.doi.org/10.1007/s11581-014-1287-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Krishna Kishore Reddy, Ch, R. Balaji Rao, and M. V. Ramana Reddy. "Effect of Al2O3 nanocrystals on the structural and electrical studies of lithium titanate phosphate glass ceramic matrix." Journal of Physics and Chemistry of Solids 74, no. 8 (2013): 1093–100. http://dx.doi.org/10.1016/j.jpcs.2013.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Reddy, Ch Krishna Kishore, Balaji Rao Ravuri, Ch V. Koti Reddy, and K. Veerabhadra Rao. "Influence of nanocrystalline phases on the electrical properties of lithium titanate phosphate glass ceramics mixed with Ga2O3nanocrystals." Phase Transitions 85, no. 3 (2012): 218–34. http://dx.doi.org/10.1080/01411594.2011.603072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Clayton, D. R., D. Lepage, P. N. Plassmeyer, C. J. Page, and M. C. Lonergan. "Low-temperature fabrication of lithium aluminum oxide phosphate solid electrolyte thin films from aqueous precursors." RSC Advances 7, no. 12 (2017): 7046–51. http://dx.doi.org/10.1039/c6ra27857d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Meza-Rocha, A. N., A. Speghini, J. Franchini, R. Lozada-Morales, and U. Caldiño. "Multicolor emission in lithium-aluminum-zinc phosphate glasses activated with Dy3+, Eu3+ and Dy3+/Eu3+." Journal of Materials Science: Materials in Electronics 28, no. 14 (2017): 10564–72. http://dx.doi.org/10.1007/s10854-017-6830-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, John S., Ping Liu, Souren Soukiazian, et al. "Evaluation of lithium ion cells with titanate negative electrodes and iron phosphate positive electrode for start–stop applications." Journal of Power Sources 256 (June 2014): 288–93. http://dx.doi.org/10.1016/j.jpowsour.2014.01.079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gellert, Michael, Katharina I. Gries, Chihiro Yada, Fabio Rosciano, Kerstin Volz, and Bernhard Roling. "Grain Boundaries in a Lithium Aluminum Titanium Phosphate-Type Fast Lithium Ion Conducting Glass Ceramic: Microstructure and Nonlinear Ion Transport Properties." Journal of Physical Chemistry C 116, no. 43 (2012): 22675–78. http://dx.doi.org/10.1021/jp305309r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tan, Guoqiang, Feng Wu, Li Li, Yadong Liu, and Renjie Chen. "Magnetron Sputtering Preparation of Nitrogen-Incorporated Lithium–Aluminum–Titanium Phosphate Based Thin Film Electrolytes for All-Solid-State Lithium Ion Batteries." Journal of Physical Chemistry C 116, no. 5 (2012): 3817–26. http://dx.doi.org/10.1021/jp207120s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhu, Yaqi, Tian Wu, Jianguo Sun, and Masashi Kotobuki. "Highly conductive lithium aluminum germanium phosphate solid electrolyte prepared by sol-gel method and hot-pressing." Solid State Ionics 350 (July 2020): 115320. http://dx.doi.org/10.1016/j.ssi.2020.115320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Abd-Elnaiem, Alaa M., and M. Rashad. "Morphology of anodic aluminum oxide anodized in a mixture of phosphoric acid and lithium phosphate monobasic." Materials Research Express 6, no. 1 (2018): 016412. http://dx.doi.org/10.1088/2053-1591/aae32d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Soares, Roque S., Regina C. C. Monteiro, Maria M. R. A. Lima, Bogdan A. Sava, and Mihail Elisa. "Phase transformation and microstructural evolution after heat treatment of a terbium-doped lithium–aluminum phosphate glass." Journal of Materials Science 49, no. 13 (2014): 4601–11. http://dx.doi.org/10.1007/s10853-014-8162-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Stenina, Irina A., and Andrey B. Yaroslavtsev. "Nanomaterials for lithium-ion batteries and hydrogen energy." Pure and Applied Chemistry 89, no. 8 (2017): 1185–94. http://dx.doi.org/10.1515/pac-2016-1204.

Full text
Abstract:
Abstract Development of alternative energy sources is one of the main trends of modern energy technology. Lithium-ion batteries and fuel cells are the most important among them. The increase in the energy and power density is the essential aspect which determined their future development. We provide a brief review of the state of developments in the field of nanosize electrode materials and electrolytes for lithium-ion batteries and hydrogen energy. The presence of relatively inexpensive and abundant elements, safety and low volume change during the lithium intercalation/deintercalation proces
APA, Harvard, Vancouver, ISO, and other styles
44

Levit, Or, Pengyu Xu, Boris Shvartsev, et al. "Interphases Formation and Analysis at the Lithium–Aluminum–Titanium–Phosphate (LATP) and Lithium–Manganese Oxide Spinel (LMO) Interface during High‐Temperature Bonding." Energy Technology 8, no. 12 (2020): 2000634. http://dx.doi.org/10.1002/ente.202000634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Shaofei, Liubin Ben, Hong Li, and Liquan Chen. "Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range." Solid State Ionics 268 (December 2014): 110–16. http://dx.doi.org/10.1016/j.ssi.2014.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Thokchom, Joykumar S., and Binod Kumar. "The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic." Journal of Power Sources 195, no. 9 (2010): 2870–76. http://dx.doi.org/10.1016/j.jpowsour.2009.11.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Khan, Ashraf, Cheol-Woo Ahn, Jungho Ryu, et al. "Effect of annealing on properties of lithium aluminum germanium phosphate electrolyte thick films prepared by aerosol deposition." Metals and Materials International 20, no. 2 (2014): 399–404. http://dx.doi.org/10.1007/s12540-014-1018-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Xiao, Qian Wu, Siyuan Li, et al. "Lithium-Aluminum-Phosphate coating enables stable 4.6 V cycling performance of LiCoO2 at room temperature and beyond." Energy Storage Materials 37 (May 2021): 67–76. http://dx.doi.org/10.1016/j.ensm.2021.01.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Le, Hang T. T., Duc Tung Ngo, Ramchandra S. Kalubarme, Guozhong Cao, Choong-Nyeon Park, and Chan-Jin Park. "Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries." ACS Applied Materials & Interfaces 8, no. 32 (2016): 20710–19. http://dx.doi.org/10.1021/acsami.6b05301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Du, Shuanglong, Ming Jia, Yun Cheng, et al. "Study on the thermal behaviors of power lithium iron phosphate (LFP) aluminum-laminated battery with different tab configurations." International Journal of Thermal Sciences 89 (March 2015): 327–36. http://dx.doi.org/10.1016/j.ijthermalsci.2014.11.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!