To see the other types of publications on this topic, follow the link: Lithium chlorides.

Journal articles on the topic 'Lithium chlorides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lithium chlorides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Novoselova, Alena, Vladimir Shishkin, and Vladimir Khokhlov. "Redox Potentials of Samarium and Europium in Molten Lithium Chloride." Zeitschrift für Naturforschung A 56, no. 11 (November 1, 2001): 754–56. http://dx.doi.org/10.1515/zna-2001-1110.

Full text
Abstract:
Abstract The samarium (III)/(II) and europium (III)/(II) redox potentials in molten lithium chloride were measured using the direct potentiometric method in the temperature range from 923 to 1094 K. Glassy carbon was used as the indifferent working electrode, and the standard chlorine electrode as a reference. The total concentration of rare-earth chlorides dissolved in molten lithium chloride did not exceed 4.5 mol%.
APA, Harvard, Vancouver, ISO, and other styles
2

Hahn, F. Ekkehardt, and Stefan Rupprecht. "Synthese und Kristallstruktur von [LiCl · 2THF]2 / Synthesis and Crystal Structure of [LiCl · 2THF]2." Zeitschrift für Naturforschung B 46, no. 2 (February 1, 1991): 143–46. http://dx.doi.org/10.1515/znb-1991-0203.

Full text
Abstract:
The reaction of lithiated catechol ligands with W (0)Cl4 produces LiCl as a side product. The lithium chloride from this reaction crystallizes as (THF)2Li(μ-Cl)-,Li(THF)2. The X -ray analysis shows lithium in the center of a distorted tetrahedron made up from two THF molecules and two bridging chlorides with d(Li-Cl) = 2.342(3) and 2.308(3)Å.
APA, Harvard, Vancouver, ISO, and other styles
3

Dippel, Kerstin, Nayla K. Keweloh, Peter G. Jones, Uwe Klingebiel, and Dieter Schmidt. "Synthese und Kristallstruktur eines Lithium(trimethylacetoxy-di-tert-butylsilanolats) / Synthesis and Crystal Structure of a Lithium(trimethylacetoxy-di-tert-butylsilanolate)." Zeitschrift für Naturforschung B 42, no. 10 (October 1, 1987): 1253–55. http://dx.doi.org/10.1515/znb-1987-1008.

Full text
Abstract:
Abstract In an acid medium di-tert-butylsilanediol reacts with acyl chlorides to give the di-tert-butylchlorosilanol (2) and the carboxylic acid. A lithium salt of a silanol-carboxylic acid ester (5) is formed in the reaction of the lithiated diol with 2,2-dimethylpropionyl chloride. 5 reacts with phenylacetyl chloride to give the first mixed dicarboxyl-silane. The crystal structure determination of 5 shows a Li-O-cubane with C = 0 ···Li chelate bonds.
APA, Harvard, Vancouver, ISO, and other styles
4

Rocha e Silva, M., I. T. Velasco, R. I. Nogueira da Silva, M. A. Oliveira, G. A. Negraes, and M. A. Oliveira. "Hyperosmotic sodium salts reverse severe hemorrhagic shock: other solutes do not." American Journal of Physiology-Heart and Circulatory Physiology 253, no. 4 (October 1, 1987): H751—H762. http://dx.doi.org/10.1152/ajpheart.1987.253.4.h751.

Full text
Abstract:
Severe hemorrhage in pentobarbital-anesthetized dogs (25 mg/kg) is reversed by intravenous NaCl (4 ml/kg, 2,400 mosmol/l, 98% long-term survival). This paper compares survival rates and hemodynamic and metabolic effects of hypertonic NaCl with sodium salts (acetate, bicarbonate, and nitrate), chlorides [lithium and tris(hydroxymethyl)aminomethane (Tris)], and nonelectrolytes (glucose, mannitol, and urea) after severe hemorrhage (44.5 +/- 2.3 ml/kg blood loss). Sodium salts had higher survival rates (chloride, 100%; acetate, 72%; bicarbonate, 61%; nitrate, 55%) with normal stable arterial pressure after chloride and nitrate; near normal cardiac output after sodium chloride; normal acid-base equilibrium after all sodium salts; and normal mean circulatory filling pressure after chloride, acetate, and bicarbonate. Chlorides and nonelectrolytes produced low survival rates (glucose and lithium, 5%; mannitol, 11%; Tris, 22%; urea, 33%) with low cardiac output, low mean circulatory filling pressure, and severe metabolic acidosis. Plasma sodium, plasma bicarbonate, mean circulatory filling pressure, cardiac output, and arterial pressure correlated significantly with survival; other parameters, including plasma volume expansion or plasma osmolarity, did not. It is proposed that high plasma sodium is essential for survival.
APA, Harvard, Vancouver, ISO, and other styles
5

Knochel, Paul, Andreas Steib, Sarah Fernandez, Olesya Kuzmina, Martin Corpet, and Corinne Gosmini. "Chromium(II)-Catalyzed Amination of N-Heterocyclic Chlorides with Magnesium Amides." Synlett 26, no. 08 (February 26, 2015): 1049–54. http://dx.doi.org/10.1055/s-0034-1380178.

Full text
Abstract:
We report a ligand-free chromium(II)-catalyzed amination reaction of various N-heterocyclic chlorides. CrCl2 regioselectively catalyzes the reaction of chloropyridines and dichloropyridines, dichloroquinolines, dichloroisoquinolines and dichloroquinoxalines with a range of aliphatic, allylic, benzylic and saturated (hetero)cyclic magnesium amides in the presence of lithium chloride as additive. The reactions were performed at 50 °C in THF and led to the desired aminated products in 56–96% yield.
APA, Harvard, Vancouver, ISO, and other styles
6

Masset, Patrick J., Armand Gabriel, and Jean-Claude Poignet. "Reprocessing of LiH in Molten Chlorides." Zeitschrift für Naturforschung A 63, no. 5-6 (June 1, 2008): 377–84. http://dx.doi.org/10.1515/zna-2008-5-619.

Full text
Abstract:
LiH was used as inactive material to stimulate the reprocessing of lithium tritiate in molten chlorides. The electrochemical properties (diffusion coefficients, apparent standard potentials) were measured by means of transient electrochemical techniques (cyclic voltammetry and chronopotentiometry). At 425 ºC the diffusion coefficient and the apparent standard potential were 2.5 · 10−5 cm2 s−1 and −1.8 V vs. Ag/AgCl, respectively. For the process design the LiH solubility was measured by means of DTA to optimize the LiH concentration in the molten phase. In addition electrolysis tests were carried out at 460 ºC with current densities up to 1 A cm−2 over 24 h. These results show that LiH may be reprocessed in molten chlorides consisting in the production of hydrogen gas at the anode and molten metallic lithium at the cathode.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Shuanshuan, Weichen Huang, Decai Wang, Ping Wei, and Qilong Shen. "Cobalt-catalyzed cross-coupling of lithium (hetero)aryl zincates with heteroaryl chlorides and bromides." Organic Chemistry Frontiers 6, no. 15 (2019): 2630–34. http://dx.doi.org/10.1039/c9qo00551j.

Full text
Abstract:
A mild, efficient and practical Co-catalyzed cross coupling reaction of a variety of activated heteroaryl chlorides and bromides with lithium aryl zincates that were in situ generated from lithium aryl boronates with ZnBr2 was described.
APA, Harvard, Vancouver, ISO, and other styles
8

Obafemi, Craig A., and Choi Chuck Lee. "Lithium aluminium hydride reduction of some triarylvinyl bromides and acetates catalyzed by some transition metal chlorides." Canadian Journal of Chemistry 68, no. 11 (November 1, 1990): 1998–2000. http://dx.doi.org/10.1139/v90-306.

Full text
Abstract:
A number of triarylvinyl halides and acetates were reduced with lithium aluminium hydride using various transition metal chlorides as catalysts. The vinylic halides were reduced to the corresponding alkenes while the vinylic acetates were reduced to mixtures of triarylketones and alcohols. The reduction of labeled vinylic halides did not result in any scrambling of the label from C-2 to C-1. The reactions took place under mild conditions and relatively fast reaction times. Keywords: triarylvinyl chlorides, triarylvinyl acetates, lithium aluminium hydride reduction, 1,2,2-triarylethanol, 1,1,2-tri-p-tolyl[1-13C]ethane.
APA, Harvard, Vancouver, ISO, and other styles
9

Reckeweg, Olaf, Björn Blaschkowski, and Thomas Schleid. "Li5OCl3and Li3OCl: Two Remarkably Different Lithium Oxide Chlorides." Zeitschrift für anorganische und allgemeine Chemie 638, no. 12-13 (August 20, 2012): 2081–86. http://dx.doi.org/10.1002/zaac.201200143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lutz, Heinz Dieter, Klaus Wussow, and Peter Kuske. "Ionic Conductivity, Structural, IR and Raman Spectroscopic Data of Olivine, Sr2PbO4, and Na2CuF4 Type Lithium and Sodium Chlorides Li2ZnCl4 and Na2MCl4 (M = Mg, Ti, Cr, Mn, Co, Zn, Cd)." Zeitschrift für Naturforschung B 42, no. 11 (November 1, 1987): 1379–86. http://dx.doi.org/10.1515/znb-1987-1103.

Full text
Abstract:
The ionic conductivities (complex impedance measurements) of the olivine type Li2ZnCl4, Na2ZnCl4 and Na2CoCl4, the Sr2PbO4 type Na2MgCl4, Na2MnCl4, and Na2CdCl4, and the novel Na2CrCl4 with monoclinically distorted Sr2PbO4 structure (Na2CuF4 type) are presented. The specific conductivities of Li2ZnCl4 and the Na2MCl4 are about three orders of magnitude lower than those of the fast ionic conducting lithium chloride spinels Li[LiM ]Cl4 (M = Mg, Mn. Fe. Cd. etc.) indicating that in the latter compounds the tetrahedrally coordinated lithium ions exhibit higher mobility than those on octahedral sites. The X-ray data including those of Sr2PbO4 type Na2TiCl4 and both the IR and Raman spectra (together with a group theoretical treatment) are also given. The spectra obtained confirm the different structure types of the ternary chlorides.
APA, Harvard, Vancouver, ISO, and other styles
11

Massicot, Fabien, Raphael Schneider, and Yves Fort. "Lithium Hydride Mediated Nickel(0) Catalysed Biaryl Synthesis from Aryl Chlorides and Bromides." Journal of Chemical Research 23, no. 11 (November 1999): 664–65. http://dx.doi.org/10.1177/174751989902301114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Emtsev, V. V., S. V. Grishin, D. I. Maksimov, Yu E. Mamontova, and Yu A. Stekolnikov. "Nanomaterials in Thermal Backup Current Sources." Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 27, no. 1 (2021): 149–56. http://dx.doi.org/10.17277/vestnik.2021.01.pp.149-156.

Full text
Abstract:
The current-voltage characteristics of thermal batteries with anodes based on lithium and its alloys, with cathodes made of iron or cobalt disulfides are presented. The electrolyte-melt is a thickened mixture of fluorides, lithium and potassium chlorides, pyrotechnic mixtures of iron, molybdenum, titanium nanopowders. It is shown that the use of a lithium-boron composite and a “thickened lithium” composite is promising as a material for anodes of high-energy thermal current sources, and for cathodes - a mixture based on synthetic iron disulfide.
APA, Harvard, Vancouver, ISO, and other styles
13

Tofeti Lima, Thamara, and Ki Yong Ann. "Efficiency of Different Electrolytes on Electrochemical Chloride Extraction to Recover Concrete Structures under Chloride-Induced Corrosion." Advances in Materials Science and Engineering 2020 (July 15, 2020): 1–11. http://dx.doi.org/10.1155/2020/6715283.

Full text
Abstract:
Chloride-induced corrosion is one of the main causes of concrete deterioration and imposes a challenge to sustainability. Traditional techniques to repair corroded structures consisted of basically removing the damaged area, which was either economical or sustainable. Therefore, electrochemical chloride extraction (ECE) gained popularity for being an efficient nondestructive treatment applied temporarily to structures. On this line, this manuscript aims to raise the efficiency of ECE by an optimal decision of the treatment setup concerning the electrolyte choice. Three different electrolytes were tested, namely, tap water, calcium hydroxide, and lithium borate. Experimental results pointed to lithium borate as the most efficient electrolyte for extracting chlorides while calcium hydroxide was a better choice to repassivate the structure and even heal cracks, due to a possible electrodeposition of the electrolyte ions on the cement matrix. Thus, depending on the main goal of the treatment, different electrolytes achieve a better performance, which highlights the importance of pretreatment evaluation to see in which stage of corrosion damage is the structure.
APA, Harvard, Vancouver, ISO, and other styles
14

Stepanov, Victor P. "Wetting Behaviour of Gold Electrode and Molten Alkali Chlorides." Zeitschrift für Naturforschung A 74, no. 4 (April 24, 2019): 281–86. http://dx.doi.org/10.1515/zna-2018-0457.

Full text
Abstract:
AbstractThe potential dependence of the contact angle between a gold electrode and lithium, sodium, potassium, rubidium, and caesium chloride melts was studied using the meniscus weight method to establish the patterns of wettability of solid surfaces by ionic melts when changing the composition of the salt phase and the jump of the electric potential. It is found that the forms of the contact angle versus the potential curve of Au change from a convex to a camel-like shape with two maxima upon replacing the lithium chloride with the caesium chloride melt. This phenomenon is explained by the assumption that the adsorption of the halide anions at the positively charged electrode surface has a chemical rather than electrostatic character. The adsorption process is accompanied by a charge transfer through the interface and the formation of covalent bonds between the adsorbent and adsorbate.
APA, Harvard, Vancouver, ISO, and other styles
15

Aghapoor, K., P. Kuske, H. J. Steiner, and H. D. Lutz. "Phase relationships of lithium, manganese, and chromium (III) chlorides - new lithium ion conducting materials." Materials Research Bulletin 28, no. 4 (April 1993): 347–52. http://dx.doi.org/10.1016/0025-5408(93)90067-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Harsanyi, MC, and RK Norris. "Substitution Reactions of α-Alkyl 4- and 5-Nitropyrrol-2-ylmethyl Derivatives." Australian Journal of Chemistry 40, no. 12 (1987): 2063. http://dx.doi.org/10.1071/ch9872063.

Full text
Abstract:
The α-t-butyl 4- and 5-nitropyrrol-2-yl chlorides (5b) and (6b) react with azide, thiocyanate and p- toluenethiolate ions in dimethylformamide through cationic species in an SN 1-type process, rather than by the SRNl or SN(AEAE) processes, by which their analogues in the benzene, furan or thiophen systems react. These reactions are so facile that they take place in the aqueous dimethylformamide solutions produced during the workup of reaction mixtures. Solvolysis of (5b) or (6b) in methanol produces high yields of the corresponding methyl ethers (5f) and (6f) The chloride (6b) reacts with methoxide ion to produce the diene (33), which reacts reversibly with excess methoxide to give polymethoxylated derivatives. The mesitoic ester (3d) and the acetic ester (3c) are sufficiently unreactive by the cationic pathway, unlike the highly reactive chlorides (3b) and (4c), to allow reaction with the lithium salt (16) and the tetrabutylammonium salt (17) of 2-nitropropane to occur by an SRNl mechanism to give the C- alkylate (3e).
APA, Harvard, Vancouver, ISO, and other styles
17

Shimokawa, Jun, Hideki Yorimitsu, Keitaro Fukui, and Hayate Saito. "Palladium-Catalyzed Silylation of Aryl Chlorides with Bulky Dialkoxydisilanes." Synlett 31, no. 13 (April 2, 2020): 1328–32. http://dx.doi.org/10.1055/s-0039-1690877.

Full text
Abstract:
Arylsilanes bearing a bulky alkoxy group on the silicon were synthesized from aryl chlorides and dialkoxydisilanes under reaction conditions utilizing SingaCycle-A3 as a palladium precatalyst and lithium benzoate in wet DMA. This report proposes the first direct and catalytic method for introducing tert-butoxy- or 1-adamantyloxysilyl groups onto various aryl moieties through the silylation reaction.
APA, Harvard, Vancouver, ISO, and other styles
18

Vejdělek, Zdeněk, and Miroslav Protiva. "1-(4-Cyclopentylphenyl)piperazine and its 4-substituted derivatives; Synthesis and biological screening." Collection of Czechoslovak Chemical Communications 52, no. 7 (1987): 1834–40. http://dx.doi.org/10.1135/cccc19871834.

Full text
Abstract:
Heating the hydrochlorides of 4-cyclopentylaniline and diethanolamine to 250 °C gave 1-(4-cyclopentylphenyl)piperazine (I). Acylation of I with ethyl formate and the corresponding acyl chlorides gave the amides II, VI, and VII which were reduced with lithium aluminium hydride to the piperazines III, VIII, and IX. Treatment of I with benzyl chloride and with 4-chloro-1-(4-fluorophenyl)butan-1-one under different conditions led to compounds IX and XI. Addition reaction of I to 1,2-epoxybutane resulted in the amino alcohol V. The products showed marginal tranquillizing activity (especially compound VIII), some antimicrobial activity in vitro and some anthelmintic activity.
APA, Harvard, Vancouver, ISO, and other styles
19

Reckeweg, Olaf, Bjoern Blaschkowski, and Thomas Schleid. "ChemInform Abstract: Li5OCl3and Li3OCl: Two Remarkably Different Lithium Oxide Chlorides." ChemInform 44, no. 3 (January 15, 2013): no. http://dx.doi.org/10.1002/chin.201303012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chang, Kai-Guo, and Min-Shou Zhao. "Co-deposition of lithium with rare earth from molten chlorides." Chinese Journal of Chemistry 9, no. 1 (August 27, 2010): 27–33. http://dx.doi.org/10.1002/cjoc.19910090104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Reznikov, A. A., and V. A. Shaposhnik. "Association of ions in solutions of lithium and sodium chlorides." Russian Journal of Physical Chemistry A 81, no. 2 (February 2007): 179–81. http://dx.doi.org/10.1134/s0036024407020069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vidiakina, A. A., N. A. Bogachev, M. Yu Skripkin, and A. S. Mereshchenko. "Study of Tetraethylammonium and Lithium Chlorides Dissociation in Acetonitrile Solutions." Russian Journal of General Chemistry 90, no. 9 (September 2020): 1703–5. http://dx.doi.org/10.1134/s1070363220090170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Markovski, Leonid N., Vadim M. Timoshenko, Alexander B. Rozhenko, and Yuri G. Shermolovich. "On the reaction of 1,1-dichloropolyfluoroalkylsulfenyl chlorides with lithium hexamethyldisilylamide." Journal of Fluorine Chemistry 66, no. 1 (January 1994): 7–8. http://dx.doi.org/10.1016/0022-1139(93)02897-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jiang, Ming, Sankha Mukherjee, Zhi Wen Chen, Li Xin Chen, Meng Lu Li, Hai Yan Xiao, Chan Gao, and Chandra Veer Singh. "Materials perspective on new lithium chlorides and bromides: insights into thermo-physical properties." Physical Chemistry Chemical Physics 22, no. 39 (2020): 22758–67. http://dx.doi.org/10.1039/d0cp02946g.

Full text
Abstract:
The lithium halides with larger bulk and shear moduli and improved ductility can be effective in suppressing the growth of Li dendrites and improving interfacial compatibility between the electrode and electrolyte, and thus they are promising SSEs.
APA, Harvard, Vancouver, ISO, and other styles
25

Hernández Torres, Gloria, Sabine Choppin, and Françoise Colobert. "Efficient Suzuki–Miyaura Coupling Reactions between Lithium Alkynyltrimethylborates and Aryl Chlorides." European Journal of Organic Chemistry 2006, no. 6 (March 2006): 1450–54. http://dx.doi.org/10.1002/ejoc.200500697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

MARKOVSKI, L. N., V. M. TIMOSHENKO, A. B. ROZHENKO, and YU G. SHERMOLOVICH. "ChemInform Abstract: The Reaction of 1,1-Dichloropolyfluoroalkylsulfenyl Chlorides with Lithium Hexamethyldisilylamide." ChemInform 25, no. 24 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199424200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Alonso, Francisco, and Miguel Yus. "New synthetic methodologies based on active transition metals." Pure and Applied Chemistry 80, no. 5 (January 1, 2008): 1005–12. http://dx.doi.org/10.1351/pac200880051005.

Full text
Abstract:
Active transition metals, namely, nickel, copper and iron, have been prepared by the reduction of the corresponding chlorides with lithium and a catalytic amount of an arene. These metals, in the form of nanoparticles, have found application in the reduction of a wide variety of functional groups as well as in the alkylation of methyl ketones with primary alcohols.
APA, Harvard, Vancouver, ISO, and other styles
28

Jang, Junhyuk, Tackjin Kim, Sungbin Park, Gha-Young Kim, Sihyoung Kim, and Sungjai Lee. "Evaporation behavior of lithium, potassium, uranium and rare earth chlorides in pyroprocessing." Journal of Nuclear Materials 497 (December 2017): 30–36. http://dx.doi.org/10.1016/j.jnucmat.2017.10.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kharina, E. A., R. Yu Kaichenkova, A. S. Dedyukhin, A. V. Shchetinskii, L. F. Yamshchikov, and V. A. Volkovich. "Thermodynamics of Rare-Earth Metal Chlorides in the Melts Based on a Eutectic Mixture of Lithium, Potassium, and Cesium Chlorides." Russian Metallurgy (Metally) 2019, no. 2 (February 2019): 194–96. http://dx.doi.org/10.1134/s0036029519020113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Salarzadeh, I., and SA Tariq. "The Reactions of 11 Compounds of Copper, Silver and Chromium With the Molten Lithium-Sodium-Potassium Carbonate Eutectic." Australian Journal of Chemistry 39, no. 7 (1986): 1119. http://dx.doi.org/10.1071/ch9861119.

Full text
Abstract:
The reactions of Cu2Cl2, CuCl2, AgCl , AgNO3, CrCl2, CrCl3, Cr2O3, K2CrO4, K2Cr2O7, K2Cr3O10 and CrO3 with the molten lithium-sodium-potassium carbonate eutectic were investigated under argon as well as carbon dioxide atmospheres. Copper(I) and copper(II) chlorides reacted to produce CuO with the evolution of CO and CO2 respectively. The silver compounds reacted to produce silver metal and a mixture of O2 and CO2. Chromium(II) and chromium(III) chlorides and Cr2O3 were converted into alkali-metal chromate(III) species. Potassium chromate(VI) was found to be stable in the eutectic. Chromium(VI) oxide, dichromate(VI) and trichromate (VI) accepted oxide ions from the carbonate eutectic, and were ultimately converted into chromate(VI). Carbon dioxide was evolved in all the reactions of the chromium compounds; however, the CrCl2 reaction produced a mixture of CO and CO2. The temperature ranges of the reactions and their stoichiometries were established.
APA, Harvard, Vancouver, ISO, and other styles
31

Yang, Hao, Yifan Ouyang, Yutong Sun, Zhe Wang, Xuanli Zhu, Xiaoli Tan, Hao Wang, and Wei Hong. "Facile Synthesis of 1-(4-Bromophenyl)-1H-Tetrazol-5-Amine and Related Amide Derivatives." Journal of Chemical Research 41, no. 10 (October 2017): 581–85. http://dx.doi.org/10.3184/174751917x15064232103128.

Full text
Abstract:
An efficient one-pot synthesis of 1-(4-bromophenyl)-1 H-tetrazol-5-amine was performed using 4-bromoaniline as the starting material. A novel and widely applicable amidation procedure was then employed, whereby 1-(4-bromophenyl)-1 H-tetrazol-5-amine was acylated with different acyl chlorides in the presence of lithium bis(trimethylsilyl)amide as catalyst, for the high-yield synthesis of [1-(4-bromophenyl)-1 H-tetrazol-5-yl]amide derivatives.
APA, Harvard, Vancouver, ISO, and other styles
32

Simpson, Michael F., Tae-Sic Yoo, Daniel Labrier, Michael Lineberry, Michael Shaltry, and Supathorn Phongikaroon. "SELECTIVE REDUCTION OF ACTIVE METAL CHLORIDES FROM MOLTEN LiCl-KCl USING LITHIUM DRAWDOWN." Nuclear Engineering and Technology 44, no. 7 (October 25, 2012): 767–72. http://dx.doi.org/10.5516/net.06.2011.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Partik, M., and H. D. Lutz. "Lithium vanadium chlorides-phase transition, crystal structure of the mixed valence compound Li1.3V1.2Cl4." Materials Research Bulletin 32, no. 8 (August 1997): 1073–78. http://dx.doi.org/10.1016/s0025-5408(97)00083-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Massicot, Fabien, Raphaël Schneider, and Yves Fort. "Lithium Hydride Mediated Nickel(0) Catalysed Biaryl Synthesis from Aryl Chlorides and Bromides." Journal of Chemical Research, no. 11 (1999): 664–65. http://dx.doi.org/10.1039/a905378f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Naik, Mehraj-ud-din, Sami-ullah Rather, Chang Su So, Sang Woon Hwang, Ae Rhan Kim, and Kee Suk Nahm. "Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides." International Journal of Hydrogen Energy 34, no. 21 (November 2009): 8937–43. http://dx.doi.org/10.1016/j.ijhydene.2009.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Гребенчиков, О. А., И. С. Касаткина, А. Н. Кузовлев, А. В. Лобанов, and А. В. Ершов. "Influence of lithium chloride on neutrophil activation in the development of systemic inflammatory response syndrome in patients after on-pump cardiac surgery." ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia», no. 4() (December 18, 2020): 47–53. http://dx.doi.org/10.25557/0031-2991.2020.04.47-53.

Full text
Abstract:
Цель исследования - изучение in vitro действия хлорида лития на активность нейтрофилов человека при действии сывороток пациентов с синдромом системного воспалительного ответа, развившемся после операций на сердце с искусственным кровообращением. Методика. Исследование проводили in vitro на нейтрофилах, выделенных из крови 6 здоровых доноров. Нейтрофилы активировали при помощи сыворотки пациентов с синдромом системного воспалительного ответа (ССВО), перенесших операции на сердце с искусственным кровообращением (ИК). Активность нейтрофилов оценивали с использованием флуоресцентных антител к маркерам дегрануляции CD11b и CD66b. Уровень апоптоза и некроза нейтрофилов оценивали через 22 ч после выделения из крови здоровых доноров; количественная оценка была проведена с использованием аннексина V и иодистого пропидия на проточном цитофлуориметре. Интактные и активированные нейтрофилы обрабатывали раствором хлорида лития в концентрациях 0,3; 3,0 и 9,0 мМ. Результаты. Инкубация нейтрофилов с сывороткой крови пациентов с ССВО после операций на сердце с ИК увеличивала экспрессию CD11b в 1,5 раза и экспрессию CD66b в 1,4 раза в сравнении с экспрессией на интактных нейтрофилах. Инкубация нейтрофилов с сывороткой крови пациентов с ССВО и раствором хлорида лития в концентрациях 3,0 и 9,0 мМ приводило к статистически значимому снижению уровня экспрессии CD11b CD66b на поверхности нейтрофилов в сравнении с активированными контрольными. Установлено, что хлорид лития в концентрациях 3,0 и 9,0 мМ возвращал уровни экспрессии CD11b и CD66b на активированных нейтрофилах к уровню экспрессии на интактных нейтрофилах. В концентрации 0,3 мМ хлорид лития, используемый при инкубации с активированными нейтрофилами, не вызывал значимого снижения экспрессии CD11b и CD66b относительно контрольных активированных нейтрофилов. Экспрессия CD11b и CD66b на активированных нейтрофилах при их инкубации с хлоридом лития в концентрации 0,3 мМ была значимо выше относительно экспрессии данных молекул на интактных нейтрофилах. Сыворотка пациентов с развившемся ССВО снижала спонтанный апоптоз нейтрофилов, а раствор хлорида лития в концентрации 3,0 или 9,0 мМ, добавленный в среду инкубации, увеличивал способность нейтрофилов к спонтанному апоптозу. Заключение. Хлорид лития оказывал противовоспалительный эффект снижал дегрануляцию и активацию нйтрофилов посредством уменьшения уровня экспрессии молекул CD11b и CD66b на поверхности нейтрофилов, которые предварительно были активированы сыворотками пациентов с ССВО. В концентрации 3,0 мМ и выше хлорид лития индуцировал спонтанный апоптоз нейтрофилов, активированных сыворотками пациентов с ССВО после операций на сердце с ИК. The aim of this work was to study the anti-inflammatory effect of lithium chloride on human neutrophils in vitro under the action of the serum of patients with systemic inflammatory response syndrome (SIRS), which developed after on-pump cardiac surgery. Methods. The study was performed on neutrophils isolated from the blood of five healthy donors, which was activated using serum from patients with SIRS. Neutrophil activity was assessed using fluorescent antibodies to CD11b and CD66b degranulation markers. The level of apoptosis and necrosis of human neutrophils was evaluated 22 hours after isolation. Quantification was performed using annexin V and propidium iodide on a flow cytometer. Intact and activated neutrophils were treated with 0.3, 3.0 аnd 9.0 mM lithium chlorides. Results. Incubation of neutrophils with the blood serum of patients with SIRS after on-pump cardiac surgery increased the expression of CD11b by 1.5 times and the expression of CD66b by 1.4 times compared to expression on intact neutrophils. Incubation of neutrophils with blood serum of patients with SIRS and 3.0 and 9.0 mM lithium chloride solutions led to a statistically significant decrease in the level of expression of CD11b CD66b on the surface of neutrophils in comparison with control activated neutrophils. It was found that 3.0 and 9.0 mM lithium chloride solutions returned the expression levels of CD11b and CD66b on activated neutrophils to the expression level on intact neutrophils. 0.3 mM of lithium chloride, used during incubation with activated neutrophils, did not cause a significant decrease in the expression of CD11b and CD66b relative to control activated neutrophils. The expression of CD11b and CD66b on activated neutrophils during their incubation with 0.3 mM of lithium chloride was significantly higher relative to the expression of these molecules on intact neutrophils. The serum of patients with advanced SIRS decreased the ability of neutrophils to spontaneous apoptosis. 3.0 or 9.0 mM lithium chloride solutions added to the incubation medium increased the ability of neutrophils to spontaneous apoptosis. Conclusion. Lithium chloride reduced the degranulation and activation of neutrophils by reducing the expression level of CD11b and CD66b molecules on the surface of neutrophils that were previously activated by the serum of patients with SIRS. This effect determines the anti-inflammatory influence of lithium chloride. Lithium chloride at 3.0 mM and higher induced spontaneous apoptosis of neutrophils activated by the serum of patients with SIRS after on-pump cardiac surgery.
APA, Harvard, Vancouver, ISO, and other styles
37

Fujii, Nobutaka, Kazuo Nakai, Hiromu Habashita, Hidenori Yoshizawa, Toshiro Ibuka, Fabrice Garrido, André Mann, Yukiyasu Chounan, and Yoshinori Yamamoto. "SN2′ selective alkylation of allylic chlorides and mesylates with RZnX reagents generated from Grignard reagents, zinc chloride, lithium chloride, and Cu(II)-salts." Tetrahedron Letters 34, no. 26 (June 1993): 4227–30. http://dx.doi.org/10.1016/s0040-4039(00)60534-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Knochel, Paul, Zhi-Liang Shen, and Korbinian Sommer. "Expedient Preparation of Aryllithium and Arylzinc Reagents from Aryl Chlorides Using Lithium 4,4′-Di-tert-Butylbiphenylide and Zinc(II) Chloride." Synthesis 47, no. 17 (May 19, 2015): 2617–30. http://dx.doi.org/10.1055/s-0034-1380697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Milin, Yusheng Yang, Wei Han, Mei Li, Ke Ye, Yi Sun, and Yongde Yan. "Electrodeposition of magnesium–lithium–dysprosium ternary alloys with controlled components from dysprosium oxide assisted by magnesium chloride in molten chlorides." Journal of Solid State Electrochemistry 17, no. 10 (July 9, 2013): 2671–78. http://dx.doi.org/10.1007/s10008-013-2146-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kovalevskii, A. V., and O. V. El’kin. "Corrosion of samarium and lanthanum in molten eutectoid mixture of lithium and potassium chlorides." Russian Journal of Electrochemistry 48, no. 12 (December 2012): 1201–3. http://dx.doi.org/10.1134/s1023193512120051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Maltsev, D. S., V. A. Volkovich, and B. D. Vasin. "Redox potentials of uranium in molten eutectic mixture of lithium, potassium, and cesium chlorides." Russian Metallurgy (Metally) 2016, no. 8 (August 2016): 729–32. http://dx.doi.org/10.1134/s0036029516080115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Murai, Toshiaki, Mikio Yamamoto, and Shinzi Kato. "Amination reaction of allylic chlorides with silver iodide/lithium N,N-disilylamide mixed reagents." Journal of the Chemical Society, Chemical Communications, no. 11 (1990): 789. http://dx.doi.org/10.1039/c39900000789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Xu, Qian, Carsten Schwandt, and Derek J. Fray. "Electrochemical investigation of lithium and tin reduction at a graphite cathode in molten chlorides." Journal of Electroanalytical Chemistry 562, no. 1 (January 2004): 15–21. http://dx.doi.org/10.1016/j.jelechem.2003.07.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Jin, Qingwu, and Robert M. Coates. "Synthesis of Methoxynor Polyisoprenoid Alcohols by Alkylation of (3-Methoxyallyl)lithium Reagents." Collection of Czechoslovak Chemical Communications 67, no. 1 (2002): 55–74. http://dx.doi.org/10.1135/cccc20020055.

Full text
Abstract:
A series of six methyl enol ether analogs 8-13 of geraniol, (E,E)-farnesol, and (E,E,E)-geranylgeraniol was synthesized from a group of three allylic methyl ethers and three allylic chlorides. Lithiation of the 1-methyl-, or 1-alkenylvinyl ethers with sec-butyllithium at -78 °C followed by alkylations of the resulting (Z)-(3-methoxyallyl)lithium reagents afforded the six possible Z-configured(trans) methoxynor polyprenyl benzyl ethers bearing the methoxy substituent at the internal and terminal double bonds with high Z/E ratios (5 : 1-31 : 1) and 47-80% yields. Reductive cleavage of the benzyl groups with lithium in liquid ammonia gave the corresponding methoxynor polyprenols. 11-Methoxy-18-nor and 7-methoxy-19-nor geranylgeraniols (13 and 12) were converted to the corresponding diphosphates, 7 and 32, by the Poulter displacement method. The stability of the enol ether in 7 in aqueous solution at pH 8 was verified by NMR analyses. The diphosphates of the methoxynor polyprenols may prove useful as substrate analogs for terpene synthases to capture transient intermediates in cyclization reactions catalyzed by these enzymes.
APA, Harvard, Vancouver, ISO, and other styles
45

Lexa, Dusan, and Irving Johnson. "Occlusion and ion exchange in the molten (lithium chloride-potassium chloride-alkali metal chloride) salt + zeolite 4A system with alkali metal chlorides of sodium, rubidium, and cesium." Metallurgical and Materials Transactions B 32, no. 3 (June 2001): 429–35. http://dx.doi.org/10.1007/s11663-001-0028-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tian, Xin, Roland Fröhlich, and Norbert W. Mitzel. "The Crystal Structures Of Dimeric Di(tert-butyl)Aluminium And -Gallium Iodides." Zeitschrift für Naturforschung B 60, no. 3 (March 1, 2005): 247–50. http://dx.doi.org/10.1515/znb-2005-0302.

Full text
Abstract:
The syntheses of ditbutylaluminium and -gallium iodide via metathesis reactions of the respective chlorides with lithium iodide are reported. The compounds were identified by elemental analyses, multinuclear NMR spectroscopy (1H, 13C, 27Al) and mass spectra (EI). The structures obtained by single crystal X-ray diffraction reveal that the new compound tBu2AlI crystallizes in the monoclinic crystal system, space group P21/n, as a dimer with a planar Al2I2 four-membered ring. The crystal structure of the monoclinic structure of tBu2GaI was redetermined. Its mass spectra reveal the existence of trimers and dimers in addition to the predominant monomeric species in gas phase
APA, Harvard, Vancouver, ISO, and other styles
47

Herberhold, Max, Christian Köhler, Volker Tröbs, and Bernd Wrackmeyer. "Tri(Terf-Butyl)plumbyl-phosphanes, Synthesis and Multinuclear Magnetic Resonance." Zeitschrift für Naturforschung B 55, no. 10 (October 1, 2000): 939–45. http://dx.doi.org/10.1515/znb-2000-1008.

Full text
Abstract:
AbstractThe reaction of tri(tert-butyl)plumbyl-lithium (1) with various phosphorus chlorides was studied. With diphenyl- and amino(phenyl)phosphorus chlorides the formation of hexa(tertbutyl) diplumbane (2) and tetraphenyldiphosphane (3) or the respective 1,2-bis(am ino)-1,2-diphenyl- diphosphanes [e. g. 5: amino = PhCH2(tBu)N] was dominant. The presence of at least one tert-butyl group at the phosphorus atom gave access to tri(tert-butyl)plumbyl-di(tert-butyl) phosphane (4) and to tri(tert-butyl)plumbyl-amino(tert-butyl)phosphanes [amino = tBu(H)N (6), Me(Ph)N (7), PhCH2(Me)N (8), PhCH2(tBu)N (9)] via the reaction of 1 with the corresponding phosphorus chlorides. Side products were again 2 and the corresponding diphosphanes, unidentified compounds, and in two cases, bis(phosphanyl)-di(tert-butyl)plumbanes [phosphanyl = tBu(H)N(tBu)P (10), Me(Ph)N(tBu)P (11)]. Trimethylplumbyl-benzyl(methyl)- amino(tert-butyl)phosphane (12) was prepared for comparison. All compounds were characterized by their 1H , 13C, 15N (9 ),31P and 207Pb NMR data. The coupling constants 1J(207Pb,31P) are large and negative, whereas the coupling constants 1J(207Pb, 13C) are small and can be of either sign. The coupling constants 2J(31P-N-13C) of 6 - 12 indicate a preferred conformation of the substituents at phosphorus and nitrogen
APA, Harvard, Vancouver, ISO, and other styles
48

Massicot, Fabien, Raphael Schneider, and Yves Fort. "ChemInform Abstract: Lithium Hydride Mediated Nickel(0) Catalyzed Biaryl Synthesis from Aryl Chlorides and Bromides." ChemInform 31, no. 8 (June 10, 2010): no. http://dx.doi.org/10.1002/chin.200008113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhang, Xin-Hao, Shu-Jian Chen, Hu Cai, Hee-Jung Im, Tianniu Chen, Xianghua Yu, Xuetai Chen, Zhenyang Lin, Yun-Dong Wu, and Zi-Ling Xue. "Unexpected Formation of (Dimethylaminomethylene)methylamide Complexes from the Reactions between Metal Chlorides and Lithium Dimethylamide." Organometallics 27, no. 6 (March 2008): 1338–41. http://dx.doi.org/10.1021/om701173m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Habboush, D. A., D. H. Kerridge, and S. A. Tariq. "Molten lithium carbonate—sodium carbonate—potassium carbonate eutectic: The reaction of four lanthanide(III) chlorides." Thermochimica Acta 84 (March 1985): 13–18. http://dx.doi.org/10.1016/0040-6031(85)85370-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography