Academic literature on the topic 'Lithium-free'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium-free.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lithium-free"
Shen, Kai, Zhenjiang Cao, Yongzheng Shi, Yongzheng Zhang, Bin Li, and Shubin Yang. "3D Printing Lithium Salt towards Dendrite-free Lithium Anodes." Energy Storage Materials 35 (March 2021): 108–13. http://dx.doi.org/10.1016/j.ensm.2020.11.022.
Full textBalaish, Moran, Emanuel Peled, Diana Golodnitsky, and Yair Ein-Eli. "Liquid-Free Lithium-Oxygen Batteries." Angewandte Chemie 127, no. 2 (October 3, 2014): 446–50. http://dx.doi.org/10.1002/ange.201408008.
Full textWinterkorn, Martin M., and Tim Holme. "(Invited) Li-Free Anode Development at Quantumscape." ECS Meeting Abstracts MA2022-02, no. 47 (October 9, 2022): 1733. http://dx.doi.org/10.1149/ma2022-02471733mtgabs.
Full textGervillie, Charlotte, Louis Ah, Alex Ruili Liu, Chen-Jui Huang, and Shirley Meng. "Deciphering the Impact of the Active Lithium Reservoir in Anode-Free Pouch Cells." ECS Meeting Abstracts MA2024-02, no. 7 (November 22, 2024): 889. https://doi.org/10.1149/ma2024-027889mtgabs.
Full textKalinina, A. A., I. A. Konopkina, O. V. Vakhnina, I. V. Koroleva, K. B. Zhogova, and S. A. Annikova. "The choice of methods for lithium and boron determination in lithium-boron alloys." Industrial laboratory. Diagnostics of materials 89, no. 1 (January 21, 2023): 20–27. http://dx.doi.org/10.26896/1028-6861-2023-89-1-20-27.
Full textChen, Xiang, Zhuqing Zhao, Jiakang Qu, Beilei Zhang, Xueyong Ding, Yunfeng Geng, Hongwei Xie, Dihua Wang, and Huayi Yin. "Electrolysis of Lithium-Free Molten Carbonates." ACS Sustainable Chemistry & Engineering 9, no. 11 (March 11, 2021): 4167–74. http://dx.doi.org/10.1021/acssuschemeng.1c00028.
Full textKutbee, Arwa T., Mohamed T. Ghoneim, Sally M. Ahmad, and Muhammad M. Hussain. "Free-Form Flexible Lithium-Ion Microbattery." IEEE Transactions on Nanotechnology 15, no. 3 (May 2016): 402–8. http://dx.doi.org/10.1109/tnano.2016.2537338.
Full textSchollhammer, Jean, Mohammad Amin Baghban, and Katia Gallo. "Modal birefringence-free lithium niobate waveguides." Optics Letters 42, no. 18 (September 11, 2017): 3578. http://dx.doi.org/10.1364/ol.42.003578.
Full textScheers, Johan, Du-Hyun Lim, Jae-Kwang Kim, Elie Paillard, Wesley A. Henderson, Patrik Johansson, Jou-Hyeon Ahn, and Per Jacobsson. "All fluorine-free lithium battery electrolytes." Journal of Power Sources 251 (April 2014): 451–58. http://dx.doi.org/10.1016/j.jpowsour.2013.11.042.
Full textPrachi Patel, special to C&EN. "Lithium-ion batteries go cobalt-free." C&EN Global Enterprise 98, no. 29 (July 27, 2020): 9. http://dx.doi.org/10.1021/cen-09829-scicon5.
Full textDissertations / Theses on the topic "Lithium-free"
Hirata, Kazuhisa. "Studies on Carbonate-Free Electrolytes Based on Lithium Bis (fluorosulfonyl) imide for Lithium-Ion Batteries." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263358.
Full textMangham, Rebecca Ruth. "Electrophoretic deposition of binder free electrodes for lithium ion batteries." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/419057/.
Full textLundin, Simon, and Linus Lundin. "Fire properties of fluorine-free electrolytes for lithium-ion batteries." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72499.
Full textMånga länder inklusive Sverige planerar att byta ut fordon som använder fossila bränslen mot elfordon. Detta är en av huvudanledningarna till att företag runt om i världen satsar mer och mer pengar på att utveckla litiumjonbatterier för elfordon. Litiumjonbatterier medför en del risker såsom hög värmeutveckling, brandfarliga vätskor, risk för explosion och toxiska gaser samt produceringen av vätefluorid. Redan vid låga koncentrationer är vätefluoriden dödlig. Riskerna baseras på strukturen av elektrolyten som finns i litiumjonbatteriet. På grund av dessa risker så är det intressant att utveckla en elektrolyt som har liknande batteriegenskaper men bättre brandegenskaper än de elektrolyter som finns och används idag. I detta arbete har brandegenskaper för olika halogenfria elektrolyter testats. De två nyutvecklade salterna Li[MEA] & Li[MEEA] har tillsammans med det existerande saltet Li[BOB] jämförts med det kommersiella saltet litium hexafluorfosfat (LiPF6) som används till många elektrolyter i dagens litiumjonbatterier. De fysiska och elektrokemiska egenskaperna såsom löslighet i organiska lösningsmedel, densitet, viskositet, jonkonduktiviet och elektrokemiskt fönster har testats för elektrolyterna i den första delen av arbetet. Elektrolyterna som uppvisade de mest lovande elektrokemiska egenskaper har även testats med avseende på brandegenskaperna, så som värmeutveckling, flampunkt och toxicitet. Elektrolyterna jämfördes mot den vanligt förekommande elektrolyten som innehåller litium hexafluorfosfat. Saltet Li[BOB] löstes inte i lösningsmedel med bra lösningsegenskaper, vilket var anledningen till att det inte genomfördes ytterligare tester på den. Elektrolyterna som det genomfördes tester på avseende på brandegenskaper innehöll Li[MEA] och Li[MEEA] tillsammans med de organiska lösningsmedlen etylenekarbonat och dimetylkarbonat. För Li[MEEA] tillsattes det även jonvätska för att undersöka hur jonvätskan påverkar brandegenskaperna för elektrolyten. När värmeutveckling för det nyutvecklade salterna och LiPF6 undersöktes, så uppvisade de liknande värden. Anmärkningsvärt var dock att förbränningstiden för LiPF6 varade under en kortare period i jämförelse med de tre andra elektrolyterna. En trolig orsak till detta är att LiPF6 innehåller fluor. Elektrolyterna som provades i konkalorimeter i detta arbete var ej laddade, vilket kan medföra att värmeutvecklingen kan se annorlunda ut vid ett laddat tillstånd. För framtida studier kan det vara intressant att konstruera ett komplett litiumjonbatteri, för att se hur elektrolyterna fungerar och påverkas, beroende på laddningsnivå. Antändningstiden för Li[MEEA] blandat med de organiska lösningsmedlen tillsammans med jonvätska varierade mycket. Detta är ett intressant resultat, som förmodligen kan förklaras av homogeniteten på elektrolyten. Homogeniteten verifierades enbart okulärt, vilket inte säkerställer att jonvätskan har löst sig fullständigt i elektrolyten. Resultat för flampunkten för det olika elektrolyterna var intressant, då elektrolyten som innehöll jonvätska visade på lägst flampunkt. Detta var oväntat då tillsatser som jonvätska brukar förbättra brandmotståndet. Resultatet för FTIR-spektroskopin analyserades för att se hur Li[MEA], Li[MEEA] och LiPF6 skiljde sig åt. De elektrolyter som inte innehöll fluor, producerade bara koldioxid. Medans elektrolyten som innehöll fluor producerade, som väntat, vätefluorid och koldioxid, men även andra gaser som var svåranalyserade. De framtagna elektrolyterna i detta arbete behöver studeras vidare och fler tester bör genomföras för att se om det finns en möjlighet att använda dem i faktiska litiumjonbatterier. Förutom att testa elektrolyterna i just detta arbete är det viktigt att forskningen kring brandegenskaper och toxiska egenskaper för elektrolyter fortsätter i framtiden.
Balasubramanian, Prasanth [Verfasser]. "Cobalt free nanomaterials as positive electrodes for Lithium ion battery / Prasanth Balasubramanian." Ulm : Universität Ulm, 2019. http://d-nb.info/1180496973/34.
Full textRowan, Michael E. "Doppler-Free Saturated Fluorescence Spectroscopy of Lithium Using a Stabilized Frequency Comb." Oberlin College Honors Theses / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1368804208.
Full textHua, Weibo [Verfasser], and H. [Akademischer Betreuer] Ehrenberg. "Lithium- and oxygen-driven structural evolution in Co-free Li-Mn-rich oxides as cathodes for lithium ion batteries / Weibo Hua ; Betreuer: H. Ehrenberg." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/118613996X/34.
Full textNeto, Décio Batista de Freitas. "Desenvolvimento e estudo eletroquímico de eletrodos híbridos do tipo nonwoven de nanotubos de carbono e MnO2 para bateria de íons lítio e supercapacitor." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/59/59138/tde-09052018-092407/.
Full textThe present work is correlated with the development and electrochemical analisys of a nonwoven kind of electrode, also called as free-standing binder/metal-free electrodes, into lithium-ion liquid organic electrolyte, whereas the constituents are the substrate made of carbon fiber derived from carbonization of polyacrylonitrile, and the electroactive material which are defective multi-walled carbon nanotubes (MWCNT) and MnO2 nanotubes. Two types of nonwoven substrates (here denominated felt and cloth) with different electronic conductivity and three-dimensional geometry were employed. MWCNT coating of the nonwoven carbon fibers was achieved with chemical vapor decomposition (CVD) of methanol at same growth conditions, which resulted in electrodes with same type of MWCNT and a good control of the deposited mass. MnO2 was incorporaded by electrodeposition in aqueous electrolyte and this methodology was found appropriate to provide electrodes with same MnO2 NT loading, although the structural phase of MnO2 was affect by nonwoven substrate type. The robusts electrodes able to support several miligrams of electroactive material per cm3 obtained were structurally characterized using scanning electron microscopy (SEM, TEM), X-ray diffraction and Raman microscopy. It was employed cyclic voltammetry at different scan rate and chronopotentiometry (discharge/charge curves at galvanostatic conditions) aiming the understanding of the electrochemical performance and mechanism of energy storage/conversion of MnO2/MWCNT coated nonwoven electrodes. The results show that the composite electrode is hybrid, can act like capacitor or lithium ion battery electrode. It can provide very high specific capacity associated with storage/extraction of Li same in elevated gravimetric current density of A/g in the potential window of 0.005-3.5V vs Li/Li+ (e.g 800 mAh/g at 1 A/g, rate = 1,25C, 400 mAh/g at 2,66A/g, rate = 5C). The Faradic efficiency measure during the first charge/discharge cycle was between 83% to 54% depending on amount of MnO2 constituent and applied current. It was also observed a gain in the electrochemical performance of MnO2/MWCNT coated nonwoven electrode with Ag nanoparticles addition (about 1% wt). With presence of Ag constituent into the composites nonwovens it was found for instance 83% of Faradic efficiency at 1st discharge/charge cycle, 1,100 mAh/g at 1,7A/g rate = 1,66C and 550 mAh/g at 2,8A/g rate = 5C. In terms of capacitance the nonwoven were able to provide values like 180 F/g during 58s in high voltage window (1.4-3.8V vs LI/Li+) which correspond to energy and power density of 63 Wh/kg e 3.6 kW/kg, respectively. The electrodes developed in the present study could therefore act both as an electrode for Li intercalation and for capacitors devices, which means that it can be useful for the development of hybrid energy storage/conversion systems, particularly, bipolar battery-supercapacitor hybrid single.
AL-Shroofy, Mohanad N. "UNDERSTANDING AND IMPROVING MANUFACTURING PROCESSES FOR MAKING LITHIUM-ION BATTERY ELECTRODES." UKnowledge, 2017. http://uknowledge.uky.edu/cme_etds/76.
Full textLa, Porta Thomas. "Systèmes d’amorçage à base de calcium pour la polymérisation anionique du butadiène : vers une chimie sans lithium." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0469.
Full textThe microstructure and macrostructure of polybutadienes play an essential role in the thermomechanical properties of the material, which is widely used in tires manufacture. Thanks to its control over the polymerization process and its living character, anionic polymerization enables to obtain with precision a wide variety of polymer architectures, thus offering the possibility of modulating the material's properties. However, the anionic polymerization of butadiene is largely dominated by the use of lithium-based initiators. With the growing demand for lithium, particularly in the energy storage sector, it is important to offer lithium-free anionic systems as a more sustainable and economically favorable alternative. It's worth mentioning that the synthesis of polybutadiene with a high content of 1,4-trans units is poorly studied in anionic polymerization. This thesis proposes calcium-based multi-metallic systems for a lithium-free chemistry on the one hand, and the controlled andliving synthesis of stereospecific 1,4-trans polybutadienes on the other. Different syntheses of calcium complexes followed by a number of novel initiating systems are proposed. In particular, calcium-lithium, calcium-magnesium, calcium-aluminium and calcium-sodium systems are studied
Sun, Xida. "Structured Silicon Macropore as Anode in Lithium Ion Batteries." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1316470033.
Full textBook chapters on the topic "Lithium-free"
Gupta, Preeti. "Lithium Doped Lead-Free Piezoelectric Materials." In Piezoelectric Materials, 469–91. New York: Jenny Stanford Publishing, 2024. https://doi.org/10.1201/9781003598978-16.
Full textBalkanski, M., R. F. Wallis, and I. Darianian. "Free Lithium Ion Conduction in Lithium Borate Glasses Doped with Li2SO4." In NATO ASI Series, 317–18. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0509-5_16.
Full textStrauss, Mark L., Luis Diaz Aldana, Mary Case, and Tedd Lister. "A Strategy for Acid-Free Waste Lithium Battery Processing." In The Minerals, Metals & Materials Series, 121–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65647-8_9.
Full textZhao, Tianyu, and Yeonuk Choi. "A Separation-Free and Purification-Free Method for Direct Production of Lithium-Rich Solution from Industrial-Grade Lithium-Ion Battery Waste." In The Minerals, Metals & Materials Series, 91–98. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-80892-0_9.
Full textPardasani, R. T., and P. Pardasani. "Magnetic properties of lithium salt of nitroxyl free-radical carboxylic acid (4-carboxy-TEMPO)." In Magnetic Properties of Paramagnetic Compounds, 1365. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53974-3_697.
Full textLeonard Joseph, Prettencia, Soundarrajan Elumalai, Kalaivani Raman, and Raghu Subashchandrabose. "Ecofriendly Cobalt-Free, Li- and Mn-Rich Layered Materials for High-Performance Lithium-Ion Batteries." In Layered Materials, 173–207. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003508311-5.
Full textTrutnev, J. A., B. A. Nadykto, N. S. Prudova, and J. M. Khirny. "On the Long-Term Storage of Weapons Plutonium in Form of Criticality-Free Ceramics Containing Lithium." In Disposal of Weapon Plutonium, 91–92. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0161-2_9.
Full textMees, E. J. Dorhout, W. H. Boer, and H. A. Koomans. "Estimation of Free Water Back Diffusion during Water Diuresis in Man Using Lithium Clearance and Furosemide Effect: Some Unresolved Questions." In Diuretics: Basic, Pharmacological, and Clinical Aspects, 79–81. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-2067-8_16.
Full textRiexinger, Günther, David J. Regina, Christoph Haar, Tobias Schmid-Schirling, Inga Landwehr, Michael Seib, Jonas Lips, et al. "Traceability in Battery Production: Cell-Specific Marker-Free Identification of Electrode Segments." In Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains, 344–53. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27933-1_32.
Full textOlivares Bahamondes, Ignacio Enrique, and Patrick Carrazana. "Lithium Doppler-free absorption spectroscopy." In Techniques for Lithium Isotope Separation, Laser Cooling, and Scattering, 6–1. IOP Publishing, 2022. http://dx.doi.org/10.1088/978-0-7503-3839-4ch6.
Full textConference papers on the topic "Lithium-free"
Kang, Shuting, Di jia, Xuanyi Yu, Feng Gao, Fang Bo, Guoquan Zhang, and Jingjun Xu. "High quality lithium niobate Euler racetrack resonators." In CLEO: Science and Innovations, STh3F.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth3f.7.
Full textDagli, Sahil, Halleh Balch, Hamish Carr Delgado, Sajjad Abdollahramezani, Jefferson Dixon, Varun Dolia, Jung-Hwan Song, et al. "Free-space electro-optic modulators using high quality factor silicon on lithium niobate metasurfaces." In CLEO: Fundamental Science, FM4O.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm4o.5.
Full textWang, Yanqun, Xiaoyue Liu, Chunfan Zhu, Lin Liu, Fujing Huang, Yuntao Zhu, Mengwen Chen, et al. "Free-phase-matching and tunable-gain phase-sensitive amplification based on thin-film lithium niobate." In CLEO: Applications and Technology, JW2A.215. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.215.
Full textLi, Shijia, Shuxian Wu, Zonglin Wu, Hangyu Qian, Feihong Bao, and Guo-Min Yang. "Spurious-Free SAW Resonators Using Lithium Tantalate on Silicon Carbide Substrate with Rhomboidal Apodization IDT." In 2024 IEEE 10th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), 1–4. IEEE, 2024. https://doi.org/10.1109/mape62875.2024.10813674.
Full textBillault, V., G. Feugnet, J. Bourerionnet, Karol Obara, Homa Zarebidaki, Hamed Sattari, and A. Brignon. "Coherent combiner for multimode free space optical communication receiver with a thin film lithium niobate integrated circuit." In 2024 IEEE Photonics Conference (IPC), 1–2. IEEE, 2024. https://doi.org/10.1109/ipc60965.2024.10799757.
Full textDidier, Pierre, Prakhar Jain, Gaoyuan Li, Oliver Pitz, Olivier Spitz, Angela Vasanelli, Carlo Sirtori, and Rachel Grange. "Mid-infrared free-space communication: state of the art and future pathways using lithium niobate on sapphire." In Quantum Sensing and Nano Electronics and Photonics XXI, edited by Manijeh Razeghi, Giti A. Khodaparast, and Miriam S. Vitiello, 15. SPIE, 2025. https://doi.org/10.1117/12.3052507.
Full textHuang, Ziyue, Lujuan Dang, and Lei Xing. "E2F2: End-to-End Feature-Free Network for Lithium-Ion Battery State of Health Prediction." In 2024 6th International Conference on Electronic Engineering and Informatics (EEI), 362–66. IEEE, 2024. http://dx.doi.org/10.1109/eei63073.2024.10696695.
Full textSchollhammer, Jean, Mohammad Amin Baghban, and Katia Gallo. "Birefringence-free lithium niobate waveguides." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087171.
Full textRajabzadeh, Taha, Christopher J. Sarabalis, Okan Atalar, and Amir H. Safavi-Naeini. "Photonics-to-Free-Space Interface in Lithium Niobate-on-Sapphire." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.stu4j.6.
Full textGeiss, R., S. Diziain, R. Iliew, C. Etrich, F. Schrempel, F. Lederer, T. Pertsch, and E. B. Kley. "Transmission Properties of a Free-standing Lithium Niobate Photonic Crystal Waveguide." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cfi4.
Full textReports on the topic "Lithium-free"
Kumta, Prashant, Moni Datta, and Oleg Velikokhatnyi. Engineering Approaches to Dendrite free Lithium Anodes. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1772243.
Full textWang, Chunsheng, Yijie Liu, and Zeyi Wang. Lithium Dendrite-Free Li7N2I-LiOH Solid Electrolytes for High Energy Lithium Batteries. Office of Scientific and Technical Information (OSTI), May 2024. https://doi.org/10.2172/2479519.
Full textSteven Wallace. Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/913098.
Full textR.A. Stubbers, G.H. Miley, M. Nieto, W. Olczak, D.N. Ruzic, and A. Hassanein. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/835088.
Full textRobert Filler, Zhong Shi and Braja Mandal. Highly Conductive Solvent-Free Polymer Electrolytes for Lithium Rechargeable Batteries. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/833727.
Full textVarying the Pre-discharge Lithium Wall Coatings to Alter the Characteristics of the ELM-free H-mode Pedestal in NSTX. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1057482.
Full text