Academic literature on the topic 'Lithium, Ion, battery systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium, Ion, battery systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lithium, Ion, battery systems"
Horiba, Tatsuo. "Lithium-Ion Battery Systems." Proceedings of the IEEE 102, no. 6 (June 2014): 939–50. http://dx.doi.org/10.1109/jproc.2014.2319832.
Full textRaeber, M., A. Heinzelmann, and A. Taeschler. "Beneficial Effects of Active Charge Balancing in Lithium-Ion Battery Systems." Journal of Clean Energy Technologies 4, no. 3 (2015): 225–28. http://dx.doi.org/10.7763/jocet.2016.v4.285.
Full textRajanna, B. V., and Malligunta Kiran Kumar. "Comparison of one and two time constant models for lithium ion battery." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 1 (February 1, 2020): 670. http://dx.doi.org/10.11591/ijece.v10i1.pp670-680.
Full textZhang, Chaolong, Yigang He, Lifeng Yuan, Sheng Xiang, and Jinping Wang. "Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM." Computational Intelligence and Neuroscience 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/918305.
Full textKurfer, Jakob. "Design of Assembly Systems for Large-Scale Battery Cells." Advanced Materials Research 769 (September 2013): 11–18. http://dx.doi.org/10.4028/www.scientific.net/amr.769.11.
Full textWu, Yi, Youren Wang, Winco K. C. Yung, and Michael Pecht. "Ultrasonic Health Monitoring of Lithium-Ion Batteries." Electronics 8, no. 7 (July 3, 2019): 751. http://dx.doi.org/10.3390/electronics8070751.
Full textHerrmann, Christoph, Annika Raatz, Stefan Andrew, and Jan Schmitt. "Scenario-Based Development of Disassembly Systems for Automotive Lithium Ion Battery Systems." Advanced Materials Research 907 (April 2014): 391–401. http://dx.doi.org/10.4028/www.scientific.net/amr.907.391.
Full textPoyner, Mark A., Indumini Jayasekara, and Dale Teeters. "Fabrication of a Novel Nanostructured SnO2/LiCoO2 Lithium-Ion Cell." MRS Advances 1, no. 45 (2016): 3075–81. http://dx.doi.org/10.1557/adv.2016.537.
Full textMeng, Yunfan. "Economic analysis for centralized battery energy storage system with reused battery from EV in Australia." E3S Web of Conferences 300 (2021): 01003. http://dx.doi.org/10.1051/e3sconf/202130001003.
Full textLiu, Yiqun, Y. Gene Liao, and Ming-Chia Lai. "Transient Temperature Distributions on Lithium-Ion Polymer SLI Battery." Vehicles 1, no. 1 (July 25, 2019): 127–37. http://dx.doi.org/10.3390/vehicles1010008.
Full textDissertations / Theses on the topic "Lithium, Ion, battery systems"
Zhang, Yizhou. "Modularized Battery Management Systems for Lithium-Ion Battery Packs in EVs." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194316.
Full textBMS (eng. battery management system) har till uppgift att se till att viktiga parametrar såsom tillspännings- och temperaturintervall upprätthålls för varje individuell battericell. Då en battericells beteende är ickelinjärt är det svårt att bestämma cellens interna karakteristika direkt. Att kunna förutsäga dessa karakteristika för ett komplett batteripack kommer att en mycket viktig funktion hos framtida BMS. I detta examensarbete har en modellbaserad tillståndsestimeringsmetod med användande av adaptiv filtrering undersökts. Olika batterimodeller har studerats med avseende på komplexitet och noggrannhet. Efter introduktionen av olika metoder för adaptiv filtrering har dessa metoder implementerats i en BMS modell. Utvärdering av de olika metoderna för att åstadkomma tillståndsestimering har sedan utförts med avseende på dynamisk prestanda, krav på beräkningskraft och noggrannhet hos de resulterande estimaten. Data från uppmätta kördata från ett fordon har använts som referens för att jämföra de olika estimaten. Slutligen presenteras en jämförelse mellan de olika tillståndsestimeringsmetodernas prestanda när de appliceras på de olika batterimodellerna.
Adelhelm, Philipp. "From Lithium-Ion to Sodium-Ion Batteries." Diffusion fundamentals 21 (2014) 5, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32397.
Full textHosseini, Moghaddam Seyed Mazyar. "Designing battery thermal management systems (BTMS) for cylindrical Lithium-ion battery modules using CFD." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244459.
Full textIntegrering av förnybara energier i globala energisystem kräver enorma energilagrings teknologier. Litium jon batterier spelar en viktig roll inom denna sektor på grund av både hög vikt- och volymmässig energidensitet. Korrekt värmestyrning (Thermal management) är nödvändigt för litium jon batteriernas livslängd och operation. Dessa batterier fungerar bäst när de ligger inom intervallet 15–35 grader. dessutom har olika värmestyrsystem utvecklats för att säkerställa att batterierna arbetar optimalt i olika applikationer. I den här studien fem värmestyrningslösningar för batterier har väljas och analyseras med hjälp av beräkningsvätskedynamik (CFD) simulering. Resultaten av simuleringarna jämförs med olika parametrar som temperaturfördelning i battericeller, batterimoduler och strömförbrukning. Alla metoder visar sig vara användbara lämplig för viss tillämpning och kan vidare optimeras för detta ändamål.
Bergman, Emma. "Designing Thermal Management Systems For Lithium-Ion Battery Modules Using COMSOL." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241899.
Full textRelefors, Axel. "Investigation and Application of Safety Parameters for Lithium-ion Battery Systems." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281226.
Full textFörsvarsmakten undersöker högriskapplikationer där litiumjonbatterier kan ersätta traditionella blysyrabatterier. Att förstå säkerhetsrisker och utvärdera ett batteris instabilitet är särskilt viktigt för militära tillämpningar. Denna rapport syftar till att identifiera kritiska säkerhetsparametrar (temperatur, spänning och impedans) för kommersiella batterier med NMC- och LFP-elektrodkemier samt undersöka hur omkringliggande celler påverkas när ett batteri termiskt rusar (TR) i en batterimodul utvecklad av FOI. ARC-experiment genomfördes på NMC-baserad Samsung SDI INR21700-40T och INR21700-50E och A123 Systems ANR26650m1-B batterier för att karakterisera förloppet av termisk rusning (TR). ARC-experiment utfördes med kontinuerliga elektrokemisk impedansspektroskopi (EIS) för att korrelera termiskt beteende med elektrokemiska förändringar i cellimpedansen och spänningen. Det NMC-baserade batterierna uppvisade en tydlig endotermisk reaktion mellan 116 °C och 121 °C, exotermiska reaktioner påbörjades vid 120 °C och ledde till explosiv termisk rusning vid cirka 170 °C, vilket gav upphov till en adiabatisk temperaturökning på 250 °C till 290 °C. En signifikant ökning av cellens impedans vid cirka 100 °C indikerade att den inre säkerhetsventilen utlöstes på grund av gasbildning och kritisk tryckuppbyggnad i cellen. Det LFP-baserade batteriet visade förbättrad termisk stabilitet under ARC-mätningar och drabbades inte av TR vid uppvärmning till 300 °C. Termiska rusningsförsök genomfördes på en batterimodul utvecklad av FOI. De identifierade starttemperaturerna och elektrokemiska markörerna användes för att utvärdera modulcellernas stabilitet. Celltemperaturökningar mellan 16 °C och 48 °C observerades i celler direkt intill triggcellen. Celler längre från triggcellen upplevde likformiga temperaturökningar mellan 8 °C och 30 °C. EIS-mätningar av modulcellerna avslöjade inga signifikanta förändringar i deras impedansspektra. Det isolerande polymeromslaget runt varje cell var avgörande för att förhindra propagering av termisk rusning i modulen. Termisk rusning propagerade från cell till cell i modulen när de isolerande omslagen togs bort och cellerna var i direkt kontakt med den värmeledande kylflänsen.
Seger, Tim [Verfasser]. "Elliptic-Parabolic Systems with Applications to Lithium-Ion Battery Models / Tim Seger." Konstanz : Bibliothek der Universität Konstanz, 2013. http://d-nb.info/1037917715/34.
Full textDonato, Thiago Henrique Rizzi. "Machine learning systems applied in satellite lithium-ion battery set impedance estimation." Instituto Nacional de Pesquisas Espaciais (INPE), 2018. http://urlib.net/sid.inpe.br/mtc-m21c/2018/04.27.23.39.
Full textNeste trabalho, a impedância interna de um conjunto de baterias lítio-íon (uma importante medida do nível de degradação) é estimada por meio de conjuntos de modelos de aprendizado supervisionado tais como: rede neural tipo MLP (Multi- Layer Perceptron) e Gradient Tree Boosting. Para isto, características do sistema de alimentação elétrica, em que o conjunto de baterias está inserido, são extraídas e utilizadas na construção de conjuntos de modelos supervisionados (MLP e xgBoost). Ao longo deste processo, a arquitetura de tais conjuntos de modelos e suas respectivas configurações são ajustados por meio de validações. Finalmente, com a aplicação de técnicas de teste e verificação estatística, as acurácias dos modelos são calculadas e testes comparativos são conduzidos. Os resultados obtidos mostram que a abordagem proposta é adequada para o problema de estimativa da impendância de baterias.
Gibbs, George. "The Application of Systems Engineering Principles to Model Lithium Ion Battery Voltage." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/907.
Full textMubenga, Ngalula Sandrine. "A Lithium-Ion Battery Management System with Bilevel Equalization." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513207337549147.
Full textBhatia, Padampat Chander. "Thermal Analysis of Lithium-Ion Battery Packs and Thermal Management Solutions." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1371144911.
Full textBooks on the topic "Lithium, Ion, battery systems"
Battery management systems for large lithium-ion battery packs. Boston: Artech House, 2010.
Find full textauthor, Smith Kandler, Neubauer Jeremy author, Kim Gi-Heon author, Keyser Matthew author, Pesaran Ahmad A. author, and National Renewable Energy Laboratory (U.S.), eds. Design and analysis of large lithium-ion battery systems. Boston: Artech House, 2015.
Find full textBlum, Andrew F., and R. Thomas Long. Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6556-4.
Full textGulbinska, Malgorzata K., ed. Lithium-ion Battery Materials and Engineering. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6548-4.
Full textLi li zi dian chi yong lin suan tie li zheng ji cai liao: LiFePO4 Cathode Material Used for Li-ion Battery. Beijing Shi: Ke xue chu ban she, 2013.
Find full textJisedai jidōshayō richiumu ion denchi no zairyō kaihatsu: Development and research on next generation-materials for lithium-ion rechargeable battery for automotive application. Tōkyō-to Chiyoda-ku: Shīemushī Shuppan, 2014.
Find full textJidōshayō dai yōryō niji denchi no kaihatsu: Development of large scale rechargeable batteries for vehicles. Tōkyō-to Chiyoda-ku: Shīemushī Shuppan, 2008.
Find full textBlum, Andrew F., and R. Thomas Long Jr. Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems. Springer, 2016.
Find full textLithium-Ion Battery Chemistries. Elsevier, 2019. http://dx.doi.org/10.1016/c2017-0-02140-7.
Full textBook chapters on the topic "Lithium, Ion, battery systems"
Zhang, Zhengming, and Premanand Ramadass. "Lithium-Ion Battery lithium-ion battery Systems and Technology lithium-ion battery technology." In Encyclopedia of Sustainability Science and Technology, 6122–49. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_663.
Full textGulbinska, Malgorzata K., Arthur Dobley, Joseph S. Gnanaraj, and Frank J. Puglia. "Lithium-ion Cells in Hybrid Systems." In Lithium-ion Battery Materials and Engineering, 151–73. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6548-4_6.
Full textZhang, Zhengming John, and Premanand Ramadass. "Lithium-Ion Battery Systems and Technology." In Batteries for Sustainability, 319–57. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5791-6_10.
Full textKoehler, Uwe. "Lithium-ion battery system design." In Lithium-Ion Batteries: Basics and Applications, 89–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53071-9_8.
Full textMoeller, Kai-Christian. "Overview of battery systems." In Lithium-Ion Batteries: Basics and Applications, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53071-9_1.
Full textDorn, Roland, Reiner Schwartz, and Bjoern Steurich. "Battery management system." In Lithium-Ion Batteries: Basics and Applications, 165–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53071-9_14.
Full textBaginska, M., B. J. Blaiszik, S. A. Odom, A. E. Esser-Kahn, M. M. Caruso, J. S. Moore, N. R. Sottos, and S. R. White. "Thermoresponsive Microcapsules for Autonomic Lithium-ion Battery Shutdown." In Experimental Mechanics on Emerging Energy Systems and Materials, Volume 5, 17–23. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9798-2_3.
Full textKritzer, Peter, and Olaf Nahrwold. "Sealing and elastomer components for lithium battery systems." In Lithium-Ion Batteries: Basics and Applications, 113–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53071-9_10.
Full textCai, Wayne. "LITHIUM-ION BATTERY MANUFACTURING FOR ELECTRIC VEHICLES: A CONTEMPORARY OVERVIEW." In Advances in Battery Manufacturing, Service, and Management Systems, 1–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119060741.ch1.
Full textFink, Holger, Stephan Rees, and Joachim Fetzer. "Generation 2 Lithium-Ion battery systems – Technology trends and KPIs." In Proceedings, 571–79. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-08844-6_37.
Full textConference papers on the topic "Lithium, Ion, battery systems"
Johnson, Za, Stephen Cordova, and G. G. Amatucci. "Advanced Bipolar Lithium Ion Battery." In Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-3023.
Full textRaman, N. S. "SAFT Lithium-Ion Polymer Battery Technology." In Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-3611.
Full textDey, Satadru, Beshah Ayalew, and Pierluigi Pisu. "Estimation of Lithium-Ion Concentrations in Both Electrodes of a Lithium-Ion Battery Cell." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9693.
Full textEhrlich, G. M., R. Gitzendanner, F. Puglia, C. Marsh, and B. J. Bragg. "A Lithium Ion Cell for the EMU Battery." In Aerospace Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1389.
Full textHe, Liang, Eugene Kim, and Kang G. Shin. "✲-Aware Charging of Lithium-Ion Battery Cells." In 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS). IEEE, 2016. http://dx.doi.org/10.1109/iccps.2016.7479067.
Full textRaghavendra, Naik K., and K. Padmavathi. "Solar Charge Controller for Lithium-Ion Battery." In 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2018. http://dx.doi.org/10.1109/pedes.2018.8707743.
Full textBen Amira, Imen, Abdessattar Guermazi, and Amine Lahyani. "Lithium-ion Battery/Supercapacitors Combination in Backup Systems." In 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2018. http://dx.doi.org/10.1109/ssd.2018.8570567.
Full textVitols, Kristaps. "Lithium ion battery parameter evaluation for battery management system." In 2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). IEEE, 2015. http://dx.doi.org/10.1109/rtucon.2015.7343128.
Full textLi Siguang and Zhang Chengning. "Study on Battery Management System and Lithium-ion Battery." In 2009 International Conference on Computer and Automation Engineering. ICCAE 2009. IEEE, 2009. http://dx.doi.org/10.1109/iccae.2009.11.
Full textSinkaram, Chelladurai, Kausillyaa Rajakumar, and Vijanth Asirvadam. "Modeling battery management system using the lithium-ion battery." In 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, 2012. http://dx.doi.org/10.1109/iccsce.2012.6487114.
Full textReports on the topic "Lithium, Ion, battery systems"
Dillon, Shen J. Final Report: In-Situ TEM Observations of Degradation Mechanisms in Next-Generation High-Energy Density Lithium-Ion Battery Systems. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1406527.
Full textSarkar, Abhishek. Multiphysics analysis of electrochemical and electromagnetic system addressing lithium-ion battery and permanent magnet motor. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1593376.
Full textFellner, Joseph P. Lithium-Ion Battery Pulse/High Rate Demonstration. Fort Belvoir, VA: Defense Technical Information Center, March 2003. http://dx.doi.org/10.21236/ada415407.
Full textBecker, Collin R. Microscale Alloy Type Lithium Ion Battery Anodes. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada623566.
Full textTravis, Jonathan, and Christopher J. Orendorff. Coating Strategies to Improve Lithium-ion Battery Safety. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1222984.
Full textJanvrin, Madison, and Anne Grillet. Strain and Conductivity in Lithium Ion Battery Binders. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1561807.
Full textTrembacki, Bradley L., Jayathi Y. Murthy, and Scott Alan Roberts. Fully Coupled Simulation of Lithium Ion Battery Cell Performance. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1221525.
Full textJacobs, J. K. Development of an Ultra-Safe Rechargeable Lithium-Ion Battery. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada298847.
Full textJacobs, J. K. Development of an Ultra-Safe Rechargeable Lithium-Ion Battery. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada298850.
Full textJacobs, J. K. Development of an Ultra-Safe Rechargeable Lithium-Ion Battery. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada299018.
Full text