To see the other types of publications on this topic, follow the link: Lithium lanthanum zirconium oxide.

Journal articles on the topic 'Lithium lanthanum zirconium oxide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lithium lanthanum zirconium oxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mishra, Mrinalini, Che-Wei Hsu, Purna Chandra Rath, et al. "Ga-doped lithium lanthanum zirconium oxide electrolyte for solid-state Li batteries." Electrochimica Acta 353 (September 2020): 136536. http://dx.doi.org/10.1016/j.electacta.2020.136536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Min Young, Seung-Woo Choi, Da-Hye Kim, Seung-Hoon Yang, Jong Hun Han, and Ho-Sung Kim. "Electrochemical Characteristics of All-Solid Lithium Ion Battery with Lithium Titanate/Lithium Lanthanum Zirconium Oxide Composite Electrode." Journal of Nanoscience and Nanotechnology 19, no. 10 (2019): 6565–70. http://dx.doi.org/10.1166/jnn.2019.17086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gupta, Arushi, Eric Kazyak, Neil P. Dasgupta, and Jeff Sakamoto. "Electrochemical and Surface Chemistry Analysis of Lithium Lanthanum Zirconium Tantalum Oxide (LLZTO)/Liquid Electrolyte (LE) Interfaces." Journal of Power Sources 474 (October 2020): 228598. http://dx.doi.org/10.1016/j.jpowsour.2020.228598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Li, Fang, et al. "MOF-Derived Co3O4 Polyhedrons as Efficient Polysulfides Barrier on Polyimide Separators for High Temperature Lithium–sulfur Batteries." Nanomaterials 9, no. 11 (2019): 1574. http://dx.doi.org/10.3390/nano9111574.

Full text
Abstract:
The incorporation of highly polarized inorganic compounds in functional separators is expected to alleviate the high temperature safety- and performance-related issues for promising lithium–sulfur batteries. In this work, a unique Co3O4 polyhedral coating on thermal-stable polyimide (PI) separators was developed by a simple one-step low-temperature calcination method utilizing metal-organic framework (MOF) of Co-based zeolitic-imidazolate frameworks (ZIF-Co) precursors. The unique Co3O4 polyhedral structures possess several structural merits including small primary particle size, large pore si
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, C. Z., S. Taylor, M. Werner, et al. "Dielectric relaxation of lanthanum doped zirconium oxide." Journal of Applied Physics 105, no. 4 (2009): 044102. http://dx.doi.org/10.1063/1.3078038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nagaeva, N. Yu, A. A. Surin, L. A. Blaginina, and V. P. Obrosov. "Conductivity of zirconium oxide alloyed with lithium oxide." Glass and Ceramics 65, no. 5-6 (2008): 199–202. http://dx.doi.org/10.1007/s10717-008-9038-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Da Ming, Wei Wei Jiang, Lin Lin, et al. "Study on the Catalyst Performance on Cornus wisoniana Oil Catalytic Cracking Prepared Biological Fuel Oil." Applied Mechanics and Materials 477-478 (December 2013): 1457–63. http://dx.doi.org/10.4028/www.scientific.net/amm.477-478.1457.

Full text
Abstract:
In our Research, we Used Cornus Wisoniana oil as Feedstock and the High Temperature Pyrolysis Kettle as the Reactor. Examine the Performance of Lanthanum Oxide, Zirconium Sulfate, Calcium Oxide and KF Loaded Catalyst on Cornus Wisoniana oil Catalytic Cracking Reaction. and through the SEM, XRD and FT-IR, Optimal Catalysts were Used to Characterize the Structure. the Results Showed that among KF Modified Catalyst KF Supported on Cao Produced Highest Yield of Bio-Fuel Oil from Cornus Wisoniana oil. when the Dosage of Catalyst Reached 1%, KF Impregnation Ratio of 40%, and Catalyst Calcination for
APA, Harvard, Vancouver, ISO, and other styles
8

Deeba, Michel, Robert J. Farrauto, and Yiu K. Lui. "Stabilization of platinum on silica promoted with lanthanum oxide and zirconium oxide." Applied Catalysis A: General 124, no. 2 (1995): 339–44. http://dx.doi.org/10.1016/0926-860x(94)00276-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, C. "Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system." Solid State Ionics 167, no. 3-4 (2004): 263–72. http://dx.doi.org/10.1016/j.ssi.2004.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jin, Hongyun, Dan Huang, Qiang Gao, et al. "Synthesis of lanthanum zirconium oxide nanomaterials through composite-hydroxide-mediated approach." Materials Research Bulletin 47, no. 1 (2012): 51–53. http://dx.doi.org/10.1016/j.materresbull.2011.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chen, H. S., R. V. Kumar, and B. A. Glowacki. "Chemical solution deposited lanthanum zirconium oxide thin films: Synthesis and chemistry." Materials Chemistry and Physics 122, no. 1 (2010): 305–10. http://dx.doi.org/10.1016/j.matchemphys.2010.02.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mizuno, Noritaka, Hiroaki Fujii, Hiroshi Igarashi, and Makoto Misono. "Formation of lanthanum cobalt oxide (LaCoO3) highly dispersed on zirconium dioxide." Journal of the American Chemical Society 114, no. 18 (1992): 7151–58. http://dx.doi.org/10.1021/ja00044a030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

DEEBA, M., R. J. FARRAUTO, and Y. K. LUI. "ChemInform Abstract: Stabilization of Platinum on Silica Promoted with Lanthanum Oxide and Zirconium Oxide." ChemInform 26, no. 36 (2010): no. http://dx.doi.org/10.1002/chin.199536014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Brosha, Eric L., Rangachary Mukundan, David R. Brown, and Fernando H. Garzon. "Mixed potential sensors using lanthanum manganate and terbium yttrium zirconium oxide electrodes." Sensors and Actuators B: Chemical 87, no. 1 (2002): 47–57. http://dx.doi.org/10.1016/s0925-4005(02)00216-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Woods, Keenan N., Tsung-Han Chiang, Paul N. Plassmeyer та ін. "High-κ Lanthanum Zirconium Oxide Thin Film Dielectrics from Aqueous Solution Precursors". ACS Applied Materials & Interfaces 9, № 12 (2017): 10897–903. http://dx.doi.org/10.1021/acsami.7b00915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Jinwang, Hirokazu Tsukada, Takaaki Miyasako, et al. "High-transconductance indium oxide transistors with a lanthanum-zirconium gate oxide characteristic of an electrolyte." Journal of Applied Physics 127, no. 6 (2020): 064504. http://dx.doi.org/10.1063/1.5119210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lee, Sang Myoung, Si Hyoung Oh, Won Il Cho, and Ho Jang. "The effect of zirconium oxide coating on the lithium nickel cobalt oxide for lithium secondary batteries." Electrochimica Acta 52, no. 4 (2006): 1507–13. http://dx.doi.org/10.1016/j.electacta.2006.01.079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mangla, Onkar, та Savita Roy. "Bilayer of zirconium oxide/lanthanum oxide high-κ dielectric fabricated for metal-oxide-semiconductor nano-electronic device applications". Materials Letters 301 (жовтень 2021): 130242. http://dx.doi.org/10.1016/j.matlet.2021.130242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kaur, Gurpurneet, Sandeep Singh Gill, and Munish Rattan. "Impact of lanthanum doped zirconium oxide (LaZrO2) gate dielectric material on FinFET inverter." International Journal on Smart Sensing and Intelligent Systems 13, no. 1 (2020): 1–10. http://dx.doi.org/10.21307/ijssis-2020-032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Yao, Chengshan Li, Jianqing Feng, Zeming Yu, Lihua Jin, and Pingxiang Zhang. "Epitaxial growth of CSD modified lanthanum zirconium oxide buffer layer for coated conductors." Journal of Alloys and Compounds 682 (October 2016): 424–31. http://dx.doi.org/10.1016/j.jallcom.2016.04.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kong, Yongfa, Shiguo Liu, Yanjun Zhao, Hongde Liu, Shaolin Chen, and Jingjun Xu. "Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate." Applied Physics Letters 91, no. 8 (2007): 081908. http://dx.doi.org/10.1063/1.2773742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zou, Yun, and Anthony Petric. "Structure and conductivity of zirconium-doped polycrystalline lithium yttrium oxide." Materials Research Bulletin 28, no. 11 (1993): 1169–75. http://dx.doi.org/10.1016/0025-5408(93)90097-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mei, Ao, Qing-Hui Jiang, Yuan-Hua Lin, and Ce-Wen Nan. "Lithium lanthanum titanium oxide solid-state electrolyte by spark plasma sintering." Journal of Alloys and Compounds 486, no. 1-2 (2009): 871–75. http://dx.doi.org/10.1016/j.jallcom.2009.07.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhang, Geng, Hideshi Hattori, and Kozo Tanabe. "Aldol Addition of Acetone, Catalyzed by Solid Base Catalysts: Magnesium Oxide, Calcium Oxide, Strontium Oxide, Barium Oxide, Lanthanum (III) Oxide and Zirconium Oxide." Applied Catalysis 36 (January 1988): 189–97. http://dx.doi.org/10.1016/s0166-9834(00)80114-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bahari, Ali, R. Gholipur, and Z. Khorshidi. "Electrical Properties of Zr-Doped La2O3 Nanocrystallites as a Good Gate Dielectric." Defect and Diffusion Forum 329 (July 2012): 129–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.329.129.

Full text
Abstract:
Issues such as Tunneling, Leakage Currents and Light-Atom Penetration through the Film Are Threatening the Viability of Ultra-Thin Sio2as a Good Dielectric for Industrial and Electronic Devices and in Ceramic Technologies. in this Paper, the Effect of Zirconium-Doped Lanthanum Oxide Is Investigated in the Hope that this Material Can Be Used as a Good Gate Dielectric for the next Generation of CMOS (Complementary-Metal-Oxide-Semiconductor). Zirconium Lanthanum Oxide Nanocrystallites with General Formula of Zrxla1-xOyWere Prepared by Using the Sol-Gel Method, such that the Zr Atomic Fractions in
APA, Harvard, Vancouver, ISO, and other styles
26

Parans Paranthaman, M., S. Sathyamurthy, Xiaoping Li, et al. "Modified Lanthanum Zirconium Oxide buffer layers for low-cost, high performance YBCO coated conductors." Physica C: Superconductivity 470, no. 5-6 (2010): 352–56. http://dx.doi.org/10.1016/j.physc.2010.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sathyamurthy, S., K. Kim, T. Aytug, and M. Paranthaman. "Effect of Relative Humidity on the Crystallization of Sol−Gel Lanthanum Zirconium Oxide Films." Chemistry of Materials 18, no. 25 (2006): 5829–31. http://dx.doi.org/10.1021/cm0619353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gaskell, J. M., A. C. Jones, H. C. Aspinall та ін. "Deposition of lanthanum zirconium oxide high-κ films by liquid injection atomic layer deposition". Applied Physics Letters 91, № 11 (2007): 112912. http://dx.doi.org/10.1063/1.2784956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sathyamurthy, Srivatsan, Mariappan Paranthaman, Lee Heatherly, et al. "Solution-processed lanthanum zirconium oxide as a barrier layer for high Ic-coated conductors." Journal of Materials Research 21, no. 4 (2006): 910–14. http://dx.doi.org/10.1557/jmr.2006.0112.

Full text
Abstract:
High-quality lanthanum zirconium oxide (La2Zr2O7 or LZO) films have been deposited and processed on Ni–W substrates using a sol-gel processing approach. It has been demonstrated that crack-free coatings with thicknesses up to 100 nm can be processed in a single step, while thicker coatings (200–225 nm) were processed using a multiple coating and annealing process. Using simulated metalorganic deposition (MOD)-YBa2Cu3O7−δ (YBCO) processing conditions, the barrier properties of the sol-gel LZO coating with a thickness of 120 nm were found to be comparable to that of the standard 3-layer buffer s
APA, Harvard, Vancouver, ISO, and other styles
30

Gaskell, J. M., A. C. Jones, P. R. Chalker, et al. "Deposition of Lanthanum Zirconium Oxide High-k Films by Liquid Injection ALD and MOCVD." Chemical Vapor Deposition 13, no. 12 (2007): 684–90. http://dx.doi.org/10.1002/cvde.200706637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, Hsueh Shih, Ramachandran Vasant Kumar, and Bartlomiej Andrzej Glowacki. "Study on chemical-solution-deposited lanthanum zirconium oxide film based on the Taguchi method." Journal of Sol-Gel Science and Technology 51, no. 1 (2009): 102–11. http://dx.doi.org/10.1007/s10971-009-1936-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Každailis, Paulius, Ramute Girīunienė, Romualdas Rimeika, et al. "Surface Acoustic Wave Propagation in Lanthanum Strontium Manganese Oxide - Lithium Niobate Structures." Acta Acustica united with Acustica 99, no. 3 (2013): 493–97. http://dx.doi.org/10.3813/aaa.918629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Barger, Gregory S. "A Fusion Method for the X-Ray Fluorescence Analysis of Portland Cements, Clinker and Raw Materials Utilizing Cerium (IV) Oxide in Lithium Borate Fluxes." Advances in X-ray Analysis 29 (1985): 581–85. http://dx.doi.org/10.1154/s0376030800010740.

Full text
Abstract:
AbstractThis method describes the addition of cerium (IV) oxide to a lithium borate flux. CeO2 provides a non-analytic glass former to the melt production. CeO2 also acts as an interelemental buffer replacing the use of lanthanum oxide for long wavelength absorption. With cerium oxide addition, excellent results are produced, resulting in part from the elimination of recrystallization problems encountered with lanthanum oxide use. Analytical results easily meet the ASTM C-114 qualification requirements for rapid method analysis of hydraulic cements.
APA, Harvard, Vancouver, ISO, and other styles
34

Sousa, W. S. C. de, D. M. A. Melo, J. E. C. da Silva, R. S. Nasar, M. C. Nasar, and J. A. Varela. "Photoluminescence in ZrO2 doped with Y and La." Cerâmica 53, no. 325 (2007): 99–103. http://dx.doi.org/10.1590/s0366-69132007000100015.

Full text
Abstract:
This study aims to describe the synthesis and optical characterization of a nanometric zirconium oxide solid solution containing yttrium and lanthanum. Zirconium citrate, yttrium nitrate and lanthanum nitrate were mixed in the ratios: 94 mol% of ZrO2 - 6 mol% of Y2O3 and 92 mol% of ZrO2 - 6 mol % of Y2O3 - 2 mol % of La2O3. FTIR analysis shows organic material in decomposition and thermal analysis shows the transformation from the tetragonal to the monoclinic phase of zirconia, the loss of water molecule and zirconium dehydroxylation. The X-ray diffraction analysis shows a homogeneous phase fo
APA, Harvard, Vancouver, ISO, and other styles
35

Tang, Haoqing, Lingxing Zan, Jiangtao Zhu, Yiheng Ma, Naiqin Zhao, and Zhiyuan Tang. "High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery." Journal of Alloys and Compounds 667 (May 2016): 82–90. http://dx.doi.org/10.1016/j.jallcom.2016.01.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jiménez-López, A., E. Rodrı́guez-Castellón, P. Maireles-Torres, L. Dı́az, and J. Mérida-Robles. "Chromium oxide supported on zirconium- and lanthanum-doped mesoporous silica for oxidative dehydrogenation of propane." Applied Catalysis A: General 218, no. 1-2 (2001): 295–306. http://dx.doi.org/10.1016/s0926-860x(01)00656-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Liu, Qi, Xin Su, Dan Lei, et al. "Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping." Nature Energy 3, no. 11 (2018): 936–43. http://dx.doi.org/10.1038/s41560-018-0180-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lin, Feng, Manuel Montano, Chixia Tian, et al. "Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium." Solar Energy Materials and Solar Cells 126 (July 2014): 206–12. http://dx.doi.org/10.1016/j.solmat.2013.11.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Miura, Sota, Kazuki Nakamura, Erika Akahoshi, et al. "Lithium-lead corrosion behavior of zirconium oxide coating after heavy-ion irradiation." Fusion Engineering and Design 170 (September 2021): 112536. http://dx.doi.org/10.1016/j.fusengdes.2021.112536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Qian, Xinye, Di Zhao, Lina Jin, et al. "Hollow spherical Lanthanum oxide coated separator for high electrochemical performance lithium-sulfur batteries." Materials Research Bulletin 94 (October 2017): 104–12. http://dx.doi.org/10.1016/j.materresbull.2017.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Matsunaga, Moeki, Seira Horikoshi, Jumpei Mochizuki, et al. "Lithium-lead corrosion behavior of erbium oxide, yttrium oxide and zirconium oxide coatings fabricated by metal organic decomposition." Journal of Nuclear Materials 511 (December 2018): 537–43. http://dx.doi.org/10.1016/j.jnucmat.2018.06.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Suriyakumar, Shruti, M. Raja, N. Angulakshmi, Kee Suk Nahm, and A. Manuel Stephan. "A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries." RSC Advances 6, no. 94 (2016): 92020–27. http://dx.doi.org/10.1039/c6ra19168a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pujar, Pavan, Kishor Kumar Madaravalli Jagadeeshkumar, Muhammad Naqi, et al. "High-Intensity Ultrasound-Assisted Low-Temperature Formulation of Lanthanum Zirconium Oxide Nanodispersion for Thin-Film Transistors." ACS Applied Materials & Interfaces 12, no. 40 (2020): 44926–33. http://dx.doi.org/10.1021/acsami.0c11193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Xu, Zhenhua, Limin He, Xinghua Zhong, Rende Mu, Shimei He, and Xueqiang Cao. "Thermal barrier coating of lanthanum–zirconium–cerium composite oxide made by electron beam-physical vapor deposition." Journal of Alloys and Compounds 478, no. 1-2 (2009): 168–72. http://dx.doi.org/10.1016/j.jallcom.2008.11.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kimura, Keisuke, Kota Wagatsuma, Tomohiro Tojo, Ryoji Inada, and Yoji Sakurai. "Effect of composition on lithium-ion conductivity for perovskite-type lithium–strontium–tantalum–zirconium-oxide solid electrolytes." Ceramics International 42, no. 4 (2016): 5546–52. http://dx.doi.org/10.1016/j.ceramint.2015.12.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Brunot-Gohin, Céline, Jean-Luc Duval, Sandra Verbeke, et al. "Biocompatibility study of lithium disilicate and zirconium oxide ceramics for esthetic dental abutments." Journal of Periodontal & Implant Science 46, no. 6 (2016): 362. http://dx.doi.org/10.5051/jpis.2016.46.6.362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

MEI, A., X. WANG, Y. FENG, et al. "Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica." Solid State Ionics 179, no. 39 (2008): 2255–59. http://dx.doi.org/10.1016/j.ssi.2008.08.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tambe, Pooja R., and Ganapati D. Yadav. "Heterogeneous cycloaddition of styrene oxide with carbon dioxide for synthesis of styrene carbonate using reusable lanthanum–zirconium mixed oxide as catalyst." Clean Technologies and Environmental Policy 20, no. 2 (2017): 345–56. http://dx.doi.org/10.1007/s10098-017-1475-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Han, Hui Seong, Ho Seung Jeon, Gwang Geun Lee, Kwi Jung Kim, and Byung Eun Park. "? Electric Properties of PVDF-TrFE (75/25) thin film with Lanthanum Zirconium Oxide Buffer Layer for FeRAM." Journal of the Korean Physical Society 55, no. 2(1) (2009): 898–901. http://dx.doi.org/10.3938/jkps.55.898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cox, B. "Is zirconium oxide morphology on fuel cladding largely determined by lithium hydroxide concentration effects?" Journal of Nuclear Materials 249, no. 1 (1997): 87–90. http://dx.doi.org/10.1016/s0022-3115(97)00192-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!