Academic literature on the topic 'Lithium quantification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium quantification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lithium quantification"

1

Paul, Partha P., Vivek Thampy, Chuntian Cao, et al. "Correction: Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries." Energy & Environmental Science 14, no. 9 (2021): 5097. http://dx.doi.org/10.1039/d1ee90049h.

Full text
Abstract:
Correction for ‘Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries’ by Partha P. Paul et al., Energy Environ. Sci., 2021, DOI: 10.1039/d1ee01216a.
APA, Harvard, Vancouver, ISO, and other styles
2

Vikrant, K. S. N., Eric McShane, Andrew M. Colclasure, Bryan D. McCloskey, and Srikanth Allu. "Quantification of Dead Lithium on Graphite Anode under Fast Charging Conditions." Journal of The Electrochemical Society 169, no. 4 (2022): 040520. http://dx.doi.org/10.1149/1945-7111/ac61d3.

Full text
Abstract:
A series of computational and experimental studies were conducted to understand the onset of lithium plating and subsequent quantification of dead lithium on graphite electrodes in the design of fast charging batteries. The experiments include titration and relaxation studies for detecting initiation of lithium metal plating for various SOC and C-rates, which are compared against the thermodynamically consistent phase field computational results. The collaborative study on “model graphite electrode” with 2.18 mAh cm−2 nominal capacity at 25 °C demonstrates: (1) the macroscopic voltage response
APA, Harvard, Vancouver, ISO, and other styles
3

Kraft, Vadim, Waldemar Weber, Benjamin Streipert, et al. "Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate-based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method." RSC Advances 6, no. 1 (2016): 8–17. http://dx.doi.org/10.1039/c5ra23624j.

Full text
Abstract:
The work focused on the development of a new liquid chromatography-tandem quadrupole mass spectrometry method for the identification and quantification of organophosphates in lithium hexafluorophosphate-based lithium ion battery electrolytes.
APA, Harvard, Vancouver, ISO, and other styles
4

Dagger, Tim, Jonas Henschel, Babak Rad, et al. "Investigating the lithium ion battery electrolyte additive tris (2,2,2-trifluoroethyl) phosphite by gas chromatography with a flame ionization detector (GC-FID)." RSC Advances 7, no. 84 (2017): 53048–55. http://dx.doi.org/10.1039/c7ra09476k.

Full text
Abstract:
The quantification of lithium ion battery electrolyte additives like flame retardants is both important and challenging. Here, different analytical methods were applied to investigate detection phenomena when applying GC-FID for the quantification.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Hanwei, Conner Fear, Tapesh Joshi, Judith Jeevarajan, and Partha P. Mukherjee. "Interplay of Lithium Plating Quantification on Thermal Safety Characteristics of Lithium-Ion Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 349. http://dx.doi.org/10.1149/ma2022-023349mtgabs.

Full text
Abstract:
Adverse lithium plating is a significant side reaction during the fast charging of lithium-ion (Li-ion) batteries when the Li-ion flux exceeds the intercalation or diffusion limits of graphite electrodes. Accurate quantification of lithium plating has always been a tough challenge given the severe defects of online detection methods such as coulombic efficiency and voltage relaxation plateau, making the mathematical correlation between cell-level thermal safety hazards and quantitative lithium plating events still a bottleneck problem. In this study, we apply a three-electrode (3E) Li-ion cell
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Austin, Zhuo Li, and Kelsey Hatzell. "Operando Quantification of Dynamic Lithium Active Area Growth in Zero-Excess-Lithium Solid-State Batteries." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 418. https://doi.org/10.1149/ma2024-024418mtgabs.

Full text
Abstract:
Growing demands for electric vehicles motivate the need for energy-dense battery technologies that can enable enhanced driving ranges on a single charge [1]. Zero-excess-lithium solid-state batteries operate with no excess lithium at the anode, instead fully cycling all the lithium within the cell during each cycle. Removing excess lithium significantly increases the specific and volumetric energy density, improves battery safety, and reduces manufacturing costs [2]. However, zero-excess-lithium solid-state batteries suffer from poor coulombic efficiency and lithium dendrite formation [3] resu
APA, Harvard, Vancouver, ISO, and other styles
7

Rangarajan, Sobana P., Yevgen Barsukov, and Partha P. Mukherjee. "In operando signature and quantification of lithium plating." Journal of Materials Chemistry A 7, no. 36 (2019): 20683–95. http://dx.doi.org/10.1039/c9ta07314k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Portillo, F. E., J. A. Liendo, A. C. González, et al. "Light element quantification by lithium elastic scattering." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 305 (June 2013): 16–21. http://dx.doi.org/10.1016/j.nimb.2013.04.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bao, Wurigumula, and Ying Shirley Meng. "(Invited) Development and Application of Titration Gas Chromatography in Elucidating the Behavior of Anode in Lithium Batteries." ECS Meeting Abstracts MA2023-01, no. 2 (2023): 633. http://dx.doi.org/10.1149/ma2023-012633mtgabs.

Full text
Abstract:
The accelerated transition to renewable energy systems worldwide has triggered increasing interest in energy storage technologies, especially in lithium batteries. Accurate diagnosis and understanding of the batteries degradation mechanism are essential. Titration Gas Chromatography (TGC) has been developed to quantitively understand the anode. The inactive Li in the cycled anode can be categorized into two kinds: 1) trapped Li0 (such as trapped lithiated graphite (LixC6), Li0, and lithium silicon alloy (LixSi)) and 2) solid electrolyte interphase (SEI) Li+. Noted that only trapped Li0 can rea
APA, Harvard, Vancouver, ISO, and other styles
10

Kpetemey, Amen, Sanonka Tchegueni, Magnoudéwa Bassaï Bodjona, et al. "Quantification of Recoverable Components of Spent Lithium-Ion Batteries." Oriental Journal Of Chemistry 39, no. 4 (2023): 925–32. http://dx.doi.org/10.13005/ojc/390414.

Full text
Abstract:
Recovering spent lithium-ion batteries can help protect the environment and generate added value. The aim of this work is to characterize the various parts of these spent lithium-ion batteries for subsequent recovery of the precious metal elements. The batteries were collected, electrically discharged and dismantled, and the various components quantified. The cathode powder obtained after basic leaching was characterized by ICP and XRD. The batteries consist of steel (21.10%) and plastic shells, the anode (24.40%), the electrolyte-soaked separator and the cathode (35.86%). The anode consists o
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lithium quantification"

1

Larvaron, Benjamin. "Modeling battery health degradation with uncertainty quantification." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0028.

Full text
Abstract:
Face au changement climatique, des mesures importantes doivent être prise pour décarboner l’économie. Cela inclus une transformation des secteurs du transport et de la production d’énergie. Ces transformations augmentent l’utilisation d’énergie électrique et posent la question du stockage notamment grâce aux batteries Lithium-ion. Dans cette thèse nous nous intéressons à la modélisation de la dégradation de la santé des batteries. Afin de quantifier les risques associés aux garantis de performance, les incertitudes doivent être prise en compte. La dégradation est un phénomène complexe mettant
APA, Harvard, Vancouver, ISO, and other styles
2

Schweizer, Pia. "Analyse et quantification du lithium par le développement d'un dispositif innovant de spectrométrie et microanalyse X." Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS207.pdf.

Full text
Abstract:
L'analyse quantitative du lithium est aujourd'hui possible, mais repose sur l'usage de techniques destructives. Une analyse quantitative locale non-destructive est encore difficile à mettre en œuvre par les méthodes spectroscopiques classiques de laboratoire. Cette thèse vise à développer un dispositif innovant de quantification du lithium par microsonde électronique. L'implémentation d'une multicouche périodique et de fenêtres de séparation ultra fines dans un spectromètre de la microsonde de Castaing a permis la spectrométrie dans la gamme des très faibles énergies de photons X et ainsi la m
APA, Harvard, Vancouver, ISO, and other styles
3

Xiong, Bao Kou. "Quantification des gaz générés lors du fonctionnement d'une batterie Li-ion : effet des conditions opératoires et rôle de l'électrolyte." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4003/document.

Full text
Abstract:
Le fonctionnement des batteries lithium-ion, qu’il soit normal ou dans des conditions abusives, est accompagné d’une génération de gaz en particulier lors des premiers cycles. Celle-ci est intrinsèque au dispositif et est soumise à de nombreux paramètres tels que les matériaux d’électrodes utilisés, l’électrolyte ou encore les conditions opératoires. Cette génération de gaz est délétère : elle conduit à l’augmentation de la pression interne des batteries et pose donc des problèmes de sécurité. Cette étude vise à quantifier les volumes de gaz générés et à comprendre les mécanismes liés à la sur
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yuanci. "Performance and ageing quantification of electrochemical energy storage elements for aeronautical usage." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0029/document.

Full text
Abstract:
Dans un contexte de progression du stockage d’énergie sous forme électrochimique dans les transports, notamment dans l’aéronautique, les problématiques de performance, de fiabilité, de sureté de fonctionnement et de durée de vie du stockeur sont essentielles pour utilisateurs. Cette thèse se focalise ces voltes pour l’avion plus électrique. Les technologies étudiées correspondent à des éléments commerciaux de dernière génération de type Lithium-ion (NMC/graphite+SiO, NCA/graphite, LFP/graphite, NMC/LTO), Lithium-Soufre (Li-S), supercondensateur et hybride (LiC). Une première partie de ce manus
APA, Harvard, Vancouver, ISO, and other styles
5

Stout, Jacques. "Spectroscopie et Imagerie RMN multi-noyaux à très haut champ magnétique." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS312/document.

Full text
Abstract:
Le trouble bipolaire est un trouble de l'humeur récurrent affectant de 1 à 3% de la population adulte à travers le monde et ayant une comorbidité importante avec une hausse du taux de suicides, l'abus de drogues et d'autres troubles médicaux. Ce trouble semble avoir plusieurs liens avec la schizophrénie et une vulnérabilité au trouble est souvent héréditaire dans une famille. Même si les causes biologiques n'ont pas encore été établies, de nombreuses anomalies dans le système limbique sous-cortical et la zone préfrontal ont été observés.Depuis sa découverte il y a plus d'un demi-siècle, une pr
APA, Harvard, Vancouver, ISO, and other styles
6

Wetjen, Morten [Verfasser], Hubert A. [Akademischer Betreuer] Gasteiger, Bastian [Gutachter] Märkisch, Andreas [Gutachter] Hintennach, and Hubert A. [Gutachter] Gasteiger. "Studies on the Differentiation and Quantification of Degradation Phenomena in Silicon-Graphite Anodes for Lithium-Ion Batteries / Morten Wetjen ; Gutachter: Bastian Märkisch, Andreas Hintennach, Hubert A. Gasteiger ; Betreuer: Hubert A. Gasteiger." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1191897168/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mertens, Andreas, Shicheng Yu, Deniz C. Gunduz, et al. "Impedance-Spectroscopic Quantification of High Bulk Ionic Conductivity in Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte." 2017. https://ul.qucosa.de/id/qucosa%3A31608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Evans, Adrian A. "On the importance of blind testing in archaeological science: the example from lithic functional studies." 2014. http://hdl.handle.net/10454/9838.

Full text
Abstract:
Yes<br>Blind-testing is an important tool that should be used by all analytical fields as an approach for validating method. Several fields do this well outside of archaeological science. It is unfortunate that many applied methods do not have a strong underpinning built on, what should be considered necessary, blind-testing. Historically lithic microwear analysis has been subjected to such testing, the results of which stirred considerable debate. However, putting this aside, it is argued here that the tests have not been adequately exploited. Too much attention has been focused on basic resu
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lithium quantification"

1

St-Onge, Véronique A. Quantification of hippocampal damage in the lithium-pilocarpine model of epilepsy using different post-seizure drugs and behavioral correlates. Laurentian University, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lithium quantification"

1

Stemp, W. James, and Danielle A. Macdonald. "Chapter 5. Diversity and Lithic Microwear: Quantification, Classification, and Standardization." In Defining and Measuring Diversity in Archaeology. Berghahn Books, 2022. http://dx.doi.org/10.1515/9781800734302-008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lithium quantification"

1

Kharal, Ali Yousaf, Muhammad Khalid, Waleed M. Hamanah, Ijaz Haider Naqvi, and Naveed Arshad. "Degradation Mode Quantification and Analysis of Lithium-ion Battery Cell Over Dynamic Load Profile and Different State of Charge Conditions." In 2024 IEEE 34th Australasian Universities Power Engineering Conference (AUPEC). IEEE, 2024. https://doi.org/10.1109/aupec62273.2024.10807609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guibert, Alexandre, Álvaro Díaz-Flores, Anirban Chaudhuri, and H. Alicia Kim. "Multifidelity Uncertainty Quantification in Battery Performance for eVTOL Flights Under Material and Loading Uncertainties." In Vertical Flight Society 80th Annual Forum & Technology Display. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1167.

Full text
Abstract:
This study addresses safety concerns within the rapidly evolving Electric Vertical Takeoff and Landing (eVTOL) aircraft domain, focusing on efficient tools to quantify uncertainties in lithium-ion battery behavior - a critical aspect of eVTOL. One major issue with quantifying uncertainty is the prohibitive computational cost associated with many queries of an expensive-to-evaluate computational model. This work employs three physics-based battery models models of varying fidelity and cost to estimate the mean and the variance of the selected quantities of interest through a multifidelity metho
APA, Harvard, Vancouver, ISO, and other styles
3

Orcioni, Simone, and Massimo Conti. "Uncertainty Quantification of Lithium-Ion Batteries with Polynomial Chaos." In 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020. http://dx.doi.org/10.1109/iscas45731.2020.9180515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Datong, Yue Luo, Limeng Guo, and Yu Peng. "Uncertainty quantification of fusion prognostics for lithium-ion battery remaining useful life estimation." In 2013 IEEE Conference on Prognostics and Health Management (PHM). IEEE, 2013. http://dx.doi.org/10.1109/icphm.2013.6621441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Weiqi, Yuhang Du, Yuchen Song, Datong Liu, and Yu Peng. "Uncertainty Quantification Based Health Diagnosis for Lithium-Ion Batteries Under Different Operating Conditions." In 2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI). IEEE, 2023. http://dx.doi.org/10.1109/icemi59194.2023.10270214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ChiuHuang, Cheng-Kai, Chuanzhen Zhou, and Hsiao-Ying Shadow Huang. "Exploring Lithium-Ion Intensity and Distribution via a Time-of-Flight Secondary Ion Mass Spectroscopy." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63013.

Full text
Abstract:
For high rate-capability and low cost lithium-ion batteries, the prevention of capacity loss is one of major challenges facing by lithium-ion batteries today. During electrochemical processes, lithium ions diffuse from and insert into battery electrodes accompanied with the phase transformation, where ionic diffusivity and concentration are keys to the resultant battery capacity. In the current study, we first compare voltage vs. capacity curves at different C-rates (1C, 2C, 6C, 10C). Second, lithium-ion distributions and intensity are quantified via the Time-of-Flight Secondary Ion Mass Spect
APA, Harvard, Vancouver, ISO, and other styles
7

Pastor-Fernandez, Carlos, W. Dhammika Widanage, James Marco, Miguel-Angel Gama-Valdez, and Gael H. Chouchelamane. "Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique." In 2016 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, 2016. http://dx.doi.org/10.1109/itec.2016.7520198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weber, Ross M., Robert Spragg, Kenneth Hoffmann, and Simona Onori. "Process noise quantification in Kalman filters with application to electrochemical Lithium-ion battery state estimation." In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE, 2019. http://dx.doi.org/10.1109/isie.2019.8781525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ke, Yuqi, Ruomei Zhou, Rong Zhu, and Weiwen Peng. "State of Health Estimation of Lithium Ion Battery with Uncertainty Quantification Based on Bayesian Deep Learning." In 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE). IEEE, 2021. http://dx.doi.org/10.1109/srse54209.2021.00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mendoza, Sergio, Ji Liu, Partha Mishra, and Hosam K. Fathy. "Statistical Quantification of Least-Squares Battery State of Charge Estimation Errors." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9750.

Full text
Abstract:
This paper derives analytic expressions for both the mean and variance of battery state of charge (SOC) estimation error, assuming a least squares estimation law. The paper examines three sources of estimation error, namely: (i) voltage measurement errors (both bias and noise), (ii) current measurement bias, and (iii) mismatch between the order of the battery model used for estimation and the true order of the battery’s dynamics. There is already a rich literature on quantifying battery SOC estimation errors for different estimator designs. The novelty of this paper stems from its extensive ex
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lithium quantification"

1

Orendorff, Christopher J., Joshua Lamb, Leigh Anna Marie Steele, Scott Wilmer Spangler, and Jill Louise Langendorf. Quantification of Lithium-ion Cell Thermal Runaway Energetics. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1236109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!