Academic literature on the topic 'Lithium rich cathode'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium rich cathode.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lithium rich cathode"

1

Bi, Yujing, Jinhui Tao, Yuqin Wu, et al. "Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode." Science 370, no. 6522 (2020): 1313–17. http://dx.doi.org/10.1126/science.abc3167.

Full text
Abstract:
High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Jianjian, Xiaoxing Chen, Chunyu Wang, and Zhiguo Wang. "Defects in Li-rich manganese-based layered oxide: A first-principles study." Modern Physics Letters B 33, no. 08 (2019): 1950098. http://dx.doi.org/10.1142/s021798491950098x.

Full text
Abstract:
Lithium-rich manganese-based layered oxides are of great interest as cathode materials for lithium ion batteries due to their high energy density. The voltage decay and capacity fading during prolonged charge/discharge cycling are the key obstacles for their practical usage. In this work, using density functional theory, we investigated the origin of the Ni surface segregation by calculating the defect formation energies of antisite defects, including Ni cation substituting a Li cation [Formula: see text] and pairs of Ni cation swapping with Li cation ([Formula: see text]–[Formula: see text])
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Di, Meihong Liu, Xianyou Wang, et al. "Facile synthesis and performance of Na-doped porous lithium-rich cathodes for lithium ion batteries." RSC Advances 6, no. 62 (2016): 57310–19. http://dx.doi.org/10.1039/c6ra09042g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lengyel, Miklos, Kuan-Yu Shen, Deanna M. Lanigan, Jonathan M. Martin, Xiaofeng Zhang, and Richard L. Axelbaum. "Trace level doping of lithium-rich cathode materials." Journal of Materials Chemistry A 4, no. 9 (2016): 3538–45. http://dx.doi.org/10.1039/c5ta07764h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yuan, Bing, Shi-Xuan Liao, Yan Xin, et al. "Cobalt-doped lithium-rich cathode with superior electrochemical performance for lithium-ion batteries." RSC Advances 5, no. 4 (2015): 2947–51. http://dx.doi.org/10.1039/c4ra11894d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yanying, Zhe Yang, Jianling Li, Bangbang Niu, Kai Yang та Feiyu Kang. "A novel surface-heterostructured Li1.2Mn0.54Ni0.13Co0.13O2@Ce0.8Sn0.2O2−σ cathode material for Li-ion batteries with improved initial irreversible capacity loss". Journal of Materials Chemistry A 6, № 28 (2018): 13883–93. http://dx.doi.org/10.1039/c8ta04568b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kalimuldina, Gulnur, and Izumi Taniguchi. "Sulfur-rich CuS1+x cathode for lithium batteries." Materials Letters 282 (January 2021): 128705. http://dx.doi.org/10.1016/j.matlet.2020.128705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Geder, Jan, Jay Hyok Song, Sun Ho Kang, and Denis Y. W. Yu. "Thermal stability of lithium-rich manganese-based cathode." Solid State Ionics 268 (December 2014): 242–46. http://dx.doi.org/10.1016/j.ssi.2014.05.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baur, Christian, Ida Källquist, Johann Chable, et al. "Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes." Journal of Materials Chemistry A 7, no. 37 (2019): 21244–53. http://dx.doi.org/10.1039/c9ta06291b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prakasha, K. R., and A. S. Prakash. "A time and energy conserving solution combustion synthesis of nano Li1.2Ni0.13Mn0.54Co0.13O2 cathode material and its performance in Li-ion batteries." RSC Advances 5, no. 114 (2015): 94411–17. http://dx.doi.org/10.1039/c5ra19096g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lithium rich cathode"

1

Watanabe, Aruto. "Analysis of Crystal and Electronic Structures of Next Generation Cathode Materials." Kyoto University, 2020. http://hdl.handle.net/2433/253385.

Full text
Abstract:
Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(人間・環境学)<br>甲第22549号<br>人博第952号<br>新制||人||226(附属図書館)<br>2019||人博||952(吉田南総合図書館)<br>京都大学大学院人間・環境学研究科相関環境学専攻<br>(主査)教授 内本 喜晴, 教授 吉田 寿雄, 准教授 戸﨑 充男<br>学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
2

Steiner, James David. "Understanding and Controlling the Degradation of Nickel-rich Lithium-ion Layered Cathodes." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/85281.

Full text
Abstract:
Consumers across the world use lithium-ion batteries in some fashion in their everyday life. The growing demand for energy has led to batteries dying quicker than consumers want. Thus, there are calls for researchers to develop batteries that are longer lasting. However, the initial increase in battery life over the years has been from better engineering and not necessarily from making a better material for a battery. This thesis focuses on the understanding of the chemistry of the materials of a battery. Throughout the chapters, the research delves into the how and why materials with e
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Taehoon. "Fading phenomena in li-rich layered oxide material for lithium-ion batteries." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:749fb26b-b226-487c-9f6b-4408967c9db6.

Full text
Abstract:
Lithium-rich layered transition metal oxide cathode, represented as the chemical formula of xLi<sub>2</sub>MnO<sub>3</sub> &middot; (1 - x)LiMO<sub>2</sub>(M = Mn, Ni, Co) , retains immense interest as one of the most promising candidates for energy storage system ranging from mobile devices to electric vehicle applications (EV/HEV/PHEV). This battery type benefits from superior theoretical capacity (&gt;250 mAhg<sup>-1</sup>), high chemical potential (&gt;4.6 V vs Li<sup>0</sup>), good thermal stability, high discharge capacity and lower cost compared with conventional cathodes (e.g. LiCoO<su
APA, Harvard, Vancouver, ISO, and other styles
4

Baur, Christian [Verfasser]. "Li-rich disordered rock salt transition metal oxyfluorides as novel cathode materials in lithium-ion batteries / Christian Baur." Ulm : Universität Ulm, 2020. http://d-nb.info/1219577693/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sigel, Florian [Verfasser], and H. [Akademischer Betreuer] Ehrenberg. "Thermally induced structural reordering in Li- and Mn-rich layered oxide lithium ion cathode materials / Florian Sigel ; Betreuer: H. Ehrenberg." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1195049013/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacquet, Quentin. "Li-rich Li3MO4 model compounds for deciphering capacity and voltage aspects in anionic redox materials." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS332.

Full text
Abstract:
Le réchauffement climatique, provoqué par l’augmentation de la concentration de CO2 dans l’atmosphère, est un problème majeur du 21ème siècle. C’est pourquoi, il est d’une importance capitale de valoriser l’utilisation des énergies renouvelables et des technologies de stockage d’énergie telles que les batteries Li-ion. Suivant ce but, les chercheurs ont mis au point un nouveau matériau d’électrode, le Li-rich NMC, dont l’utilisation permet d’augmenter significativement la capacité des batteries Li-ion grâce à la participation des oxygènes de l’oxyde dans la réaction électrochimique. Cependant,
APA, Harvard, Vancouver, ISO, and other styles
7

聖, 橋上, and Satoshi Hashigami. "Studies on degradation factors and their mitigation methods of cathode materials for advanced lithium-ion batteries." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13106330/?lang=0, 2019. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13106330/?lang=0.

Full text
Abstract:
再生可能エネルギーの大量導入に向けて、電力需給の安定化を目的として蓄電池を用いる電力貯蔵技術に注目が集まっている。現状のリチウムイオン電池(LIB)がベースの先進LIBは250Wh/kgの高エネルギー密度を有し、自動車のみならず電力貯蔵用途としても普及が期待されている。本研究では先進LIB正極材料として期待されるリチウム過剰系正極と高ニッケル三元系正極について容量低下などの劣化要因を明確にして、それら課題に対して正極粒子への酸化物修飾による解決を検討した。<br>The development of energy storage technologies using batteries has attracted much attention to introduce the renewable energy. If we can achieve 250 Wh kg-1 with the advanced LIBs based on the principle of LIB, we can lower the cost of the total energy storage systems while ensuring the safety, and hence the advanced LIBs will accelerate the world-wide spread of l
APA, Harvard, Vancouver, ISO, and other styles
8

Hua, Weibo [Verfasser], and H. [Akademischer Betreuer] Ehrenberg. "Lithium- and oxygen-driven structural evolution in Co-free Li-Mn-rich oxides as cathodes for lithium ion batteries / Weibo Hua ; Betreuer: H. Ehrenberg." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/118613996X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Teufl, Tobias Maximilian [Verfasser], Hubert A. [Akademischer Betreuer] Gasteiger, Tom [Gutachter] Nilges, and Hubert A. [Gutachter] Gasteiger. "Understanding Degradation Mechanisms of Lithium- and Manganese-Rich Layered Oxide Cathodes for Lithium-Ion Batteries / Tobias Maximilian Teufl ; Gutachter: Tom Nilges, Hubert A. Gasteiger ; Betreuer: Hubert A. Gasteiger." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1213025966/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

hy, sunny, and sunny hy. "The Investigation on Instability of Lithium-rich Layered-oxide Cathode Material." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/02559425511534324005.

Full text
Abstract:
博士<br>國立臺灣科技大學<br>化學工程系<br>102<br>The recent changes across transportation, communication, health, and now wearable technology represent a significant paradigm shift in which electronic devices are ubiquitous to all facets of daily human life. Although considerable progress have been made towards the different technologies, the power sources of these devices, mainly rechargeable lithium ion batteries, have seen a slower progression in advancement due to several factors that include a lack of commercially available high energy-dense materials. This limitation, among others, proves to be the bot
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Lithium rich cathode"

1

Myung, Seung-Taek, Chang-Heum Jo, and Aishuak Konarov. "CHAPTER 2. Layered Ni-rich Cathode Materials." In Future Lithium-ion Batteries. Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016124-00026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Biao, Huijun Yan, Yuxuan Zuo, and Dingguo Xia. "Tuning the Reversibility of Oxygen Redox in Lithium-Rich Layered Oxides." In Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2847-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prosini, Pier Paolo. "Versatile Synthesis of Carbon-Rich LiFePO4." In Iron Phosphate Materials as Cathodes for Lithium Batteries. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-745-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lithium rich cathode"

1

Baazizi, Mariam, Mouad Dahbi, Mohamed Aqil, Fouad Ghamouss, and Ismael Saadoune. "A Ni-rich Cathode Material for Lithium-ion Batteries with Improved Safety and Cost." In 2019 7th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2019. http://dx.doi.org/10.1109/irsec48032.2019.9078158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

VOLKOV, Vyacheslav, Lidia PECHEN, Elena MAKHONINA, et al. "ELECTROCHEMICAL, STRUCTURAL AND MAGNETIC STUDY OF Li-RICH CATHODE MATERIALS FOR LITHIUM-ION BATTERY." In NANOCON 2019. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2019.8621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abraham, Jeffin James, Umair Nisar, Haya Monawwar, et al. "SiO2 Coated Li-rich Layered Oxides-Li1.2Ni0.13Mn0.54Co0.13O2 for efficient energy storage applications." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0005.

Full text
Abstract:
Lithium ion batteries (LIBs) are attractive for energy storage application. In this regard, lithium rich layered oxides (LLOs), are considered viable cathodes due to their tempting properties such as lower production cost, faster manufacturing process, excellent reversible capacity, and better electrochemical performance at high voltages. Despite these properties, LLOs lack in cyclic stability and inferior capacity retention. This study proposes a surface modification technique to overcome the above-mentioned limitations in which a layer of silica (SiO2) has been coated on the particles of Li1
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!