Journal articles on the topic 'Lithium rich cathode'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lithium rich cathode.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bi, Yujing, Jinhui Tao, Yuqin Wu, et al. "Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode." Science 370, no. 6522 (2020): 1313–17. http://dx.doi.org/10.1126/science.abc3167.
Full textShi, Jianjian, Xiaoxing Chen, Chunyu Wang, and Zhiguo Wang. "Defects in Li-rich manganese-based layered oxide: A first-principles study." Modern Physics Letters B 33, no. 08 (2019): 1950098. http://dx.doi.org/10.1142/s021798491950098x.
Full textWang, Di, Meihong Liu, Xianyou Wang, et al. "Facile synthesis and performance of Na-doped porous lithium-rich cathodes for lithium ion batteries." RSC Advances 6, no. 62 (2016): 57310–19. http://dx.doi.org/10.1039/c6ra09042g.
Full textLengyel, Miklos, Kuan-Yu Shen, Deanna M. Lanigan, Jonathan M. Martin, Xiaofeng Zhang, and Richard L. Axelbaum. "Trace level doping of lithium-rich cathode materials." Journal of Materials Chemistry A 4, no. 9 (2016): 3538–45. http://dx.doi.org/10.1039/c5ta07764h.
Full textYuan, Bing, Shi-Xuan Liao, Yan Xin, et al. "Cobalt-doped lithium-rich cathode with superior electrochemical performance for lithium-ion batteries." RSC Advances 5, no. 4 (2015): 2947–51. http://dx.doi.org/10.1039/c4ra11894d.
Full textLiu, Yanying, Zhe Yang, Jianling Li, Bangbang Niu, Kai Yang та Feiyu Kang. "A novel surface-heterostructured Li1.2Mn0.54Ni0.13Co0.13O2@Ce0.8Sn0.2O2−σ cathode material for Li-ion batteries with improved initial irreversible capacity loss". Journal of Materials Chemistry A 6, № 28 (2018): 13883–93. http://dx.doi.org/10.1039/c8ta04568b.
Full textKalimuldina, Gulnur, and Izumi Taniguchi. "Sulfur-rich CuS1+x cathode for lithium batteries." Materials Letters 282 (January 2021): 128705. http://dx.doi.org/10.1016/j.matlet.2020.128705.
Full textGeder, Jan, Jay Hyok Song, Sun Ho Kang, and Denis Y. W. Yu. "Thermal stability of lithium-rich manganese-based cathode." Solid State Ionics 268 (December 2014): 242–46. http://dx.doi.org/10.1016/j.ssi.2014.05.020.
Full textBaur, Christian, Ida Källquist, Johann Chable, et al. "Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes." Journal of Materials Chemistry A 7, no. 37 (2019): 21244–53. http://dx.doi.org/10.1039/c9ta06291b.
Full textPrakasha, K. R., and A. S. Prakash. "A time and energy conserving solution combustion synthesis of nano Li1.2Ni0.13Mn0.54Co0.13O2 cathode material and its performance in Li-ion batteries." RSC Advances 5, no. 114 (2015): 94411–17. http://dx.doi.org/10.1039/c5ra19096g.
Full textPratama, Affiano Akbar Nur, Ahmad Jihad, Salsabila Ainun Nisa, Ike Puji Lestari, Cornelius Satria Yudha, and Agus Purwanto. "Manganese Sulphate Fertilizer Potential as Raw Material of LMR-NMC Lithium-Ion Batteries: A Review." Materials Science Forum 1044 (August 27, 2021): 59–72. http://dx.doi.org/10.4028/www.scientific.net/msf.1044.59.
Full textAn, Juan, Liyi Shi, Guorong Chen, et al. "Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries." Journal of Materials Chemistry A 5, no. 37 (2017): 19738–44. http://dx.doi.org/10.1039/c7ta05971j.
Full textYang, Shan, Binggong Yan, Tao Li, Jing Zhu, Li Lu, and Kaiyang Zeng. "In situ studies of lithium-ion diffusion in a lithium-rich thin film cathode by scanning probe microscopy techniques." Physical Chemistry Chemical Physics 17, no. 34 (2015): 22235–42. http://dx.doi.org/10.1039/c5cp01999k.
Full textSi, Zheng, Baozhao Shi, Jin Huang, et al. "Titanium and fluorine synergetic modification improves the electrochemical performance of Li(Ni0.8Co0.1Mn0.1)O2." Journal of Materials Chemistry A 9, no. 14 (2021): 9354–63. http://dx.doi.org/10.1039/d1ta00124h.
Full textLiu, Di, Fengying Wang, Gang Wang, et al. "Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries." Molecules 24, no. 9 (2019): 1680. http://dx.doi.org/10.3390/molecules24091680.
Full textLi, Fangkun, Zhengbo Liu, Jiadong Shen, et al. "Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries." Nanomaterials 10, no. 12 (2020): 2495. http://dx.doi.org/10.3390/nano10122495.
Full textZhang, Jie, Qingwen Lu, Jianhua Fang, Jiulin Wang, Jun Yang, and Yanna NuLi. "Polyimide Encapsulated Lithium-Rich Cathode Material for High Voltage Lithium-Ion Battery." ACS Applied Materials & Interfaces 6, no. 20 (2014): 17965–73. http://dx.doi.org/10.1021/am504796n.
Full textYu-Fang, CHEN, LI Yu-Jie, ZHENG Chun-Man, XIE Kai, and CHEN Zhong-Xue. "Research Development on Lithium Rich Layered Oxide Cathode Materials." Journal of Inorganic Materials 32, no. 8 (2017): 792. http://dx.doi.org/10.15541/jim20160563.
Full textQiu, Tian A., Valeria Guidolin, Khoi Nguyen L. Hoang, et al. "Nanoscale battery cathode materials induce DNA damage in bacteria." Chemical Science 11, no. 41 (2020): 11244–58. http://dx.doi.org/10.1039/d0sc02987d.
Full textSong, Yu Feng, Ying Ying Liu, Lei Lei Cui, Xiao Wei Miao, Hong Bin Zhao, and Jian Hui Fang. "Optimized Synthetic Conditions of 0.6Li2MnO3·0.4LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium Batteries via Sol-Gel Method." Materials Science Forum 852 (April 2016): 908–15. http://dx.doi.org/10.4028/www.scientific.net/msf.852.908.
Full textDuraisamy, Shanmughasundaram, Tirupathi Rao Penki, and Munichandraiah Nookala. "Hierarchically porous Li1.2Mn0.6Ni0.2O2as a high capacity and high rate capability positive electrode material." New Journal of Chemistry 40, no. 2 (2016): 1312–22. http://dx.doi.org/10.1039/c5nj02423d.
Full textZeng, Hua, Yue Gu, Gaofeng Teng, Yimeng Liu, Jiaxin Zheng, and Feng Pan. "Ab initio identification of the Li-rich phase in LiFePO4." Physical Chemistry Chemical Physics 20, no. 25 (2018): 17497–503. http://dx.doi.org/10.1039/c8cp01949e.
Full textLi, Qi, Guangshe Li, Chaochao Fu, et al. "Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide." Journal of Materials Chemistry A 3, no. 19 (2015): 10592–602. http://dx.doi.org/10.1039/c5ta00929d.
Full textLi, Xiangjun, Hongxing Xin, Xiaoying Qin, et al. "Graphene modified Li-rich cathode material Li[Li0.26Ni0.07Co0.07Mn0.56]O2 for lithium ion battery." Functional Materials Letters 07, no. 06 (2014): 1440013. http://dx.doi.org/10.1142/s179360471440013x.
Full textZhang, Tao, Jun-tao Li, Jie Liu, et al. "Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries." Chemical Communications 52, no. 25 (2016): 4683–86. http://dx.doi.org/10.1039/c5cc10534j.
Full textYe, Delai, Bei Wang, Yu Chen, et al. "Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries." J. Mater. Chem. A 2, no. 44 (2014): 18767–74. http://dx.doi.org/10.1039/c4ta03692a.
Full textLi, Tianyu, Xiao-Zi Yuan, Lei Zhang, Datong Song, Kaiyuan Shi, and Christina Bock. "Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries." Electrochemical Energy Reviews 3, no. 1 (2019): 43–80. http://dx.doi.org/10.1007/s41918-019-00053-3.
Full textShin, Ji-Woong, Seon-Jin Lee, Sang-Yong Oh, Yun-Chae Nam, and Jong-Tae Son. "An Effective Method to Reduce Residual Lithium on LiNi0.8Co0.1Mn0.1O2 Cathode Material Using a Reducing Agent." Journal of Nanoscience and Nanotechnology 21, no. 3 (2021): 2019–23. http://dx.doi.org/10.1166/jnn.2021.18899.
Full textZhang, Tao, Min Hong, Jun Yang, et al. "A high performance lithium-ion–sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode." Chemical Science 9, no. 47 (2018): 8829–35. http://dx.doi.org/10.1039/c8sc02897d.
Full textZhang, Yi-di, Yi Li, Xiao-qing Niu, et al. "A peanut-like hierarchical micro/nano-Li1.2Mn0.54Ni0.18Co0.08O2 cathode material for lithium-ion batteries with enhanced electrochemical performance." Journal of Materials Chemistry A 3, no. 27 (2015): 14291–97. http://dx.doi.org/10.1039/c5ta02915e.
Full textLi, Yu, Chunlei Tan, Shaomei Wei, et al. "Stable surface construction of the Ni-rich LiNi0.8Mn0.1Co0.1O2 cathode material for high performance lithium-ion batteries." Journal of Materials Chemistry A 8, no. 41 (2020): 21649–60. http://dx.doi.org/10.1039/d0ta08879j.
Full textWang, Yongqing, Haoshen Zhou, and Hongbing Ji. "A promising Mo-based lithium-rich phase for Li-ion batteries." RSC Advances 9, no. 31 (2019): 17852–55. http://dx.doi.org/10.1039/c9ra03449h.
Full textLi, Xiangjun, Hongxing Xin, Yongfei Liu, Di Li, Xueqin Yuan, and Xiaoying Qin. "Effect of niobium doping on the microstructure and electrochemical properties of lithium-rich layered Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium ion batteries." RSC Advances 5, no. 56 (2015): 45351–58. http://dx.doi.org/10.1039/c5ra01798j.
Full textWu, Zhi-Liang, Hanjie Xie, Yingzhi Li, et al. "Insights into the chemical and structural evolution of Li-rich layered oxide cathode materials." Inorganic Chemistry Frontiers 8, no. 1 (2021): 127–40. http://dx.doi.org/10.1039/d0qi01021a.
Full textNichelson, A., S. Thanikaikarasan, Pratap Kollu, P. J. Sebastian, T. Mahalingam, and X. Sahaya Shajan. "Structural, Morphological and Impedance Spectroscopic Analyses of Nano Li(Li0.05Ni0.4Co0.3Mn0.25)O2 Cathode Material Prepared by Sol-Gel Method." Journal of New Materials for Electrochemical Systems 17, no. 3 (2014): 153–58. http://dx.doi.org/10.14447/jnmes.v17i3.415.
Full textWang, Bo, Fei-long Zhang, Xin-an Zhou, et al. "Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries?" Journal of Materials Chemistry A 9, no. 23 (2021): 13540–51. http://dx.doi.org/10.1039/d1ta01128f.
Full textMa, Quanxin, Deying Mu, Yuanlong Liu, Shibo Yin, and Changsong Dai. "Enhancing coulombic efficiency and rate capability of high capacity lithium excess layered oxide cathode material by electrocatalysis of nanogold." RSC Advances 6, no. 24 (2016): 20374–80. http://dx.doi.org/10.1039/c5ra26667j.
Full textDeivamani, D., and P. Perumal. "Improved Capacity of LiNi0.8Mn0.1Co0.1O2 Cathode upon Sn(IV) Doping by Facile Co-Precipitation Method." Asian Journal of Chemistry 32, no. 6 (2020): 1303–8. http://dx.doi.org/10.14233/ajchem.2020.22543.
Full textBesli, Münir M., Alpesh Khushalchand Shukla, Chenxi Wei, et al. "Thermally-driven mesopore formation and oxygen release in delithiated NCA cathode particles." Journal of Materials Chemistry A 7, no. 20 (2019): 12593–603. http://dx.doi.org/10.1039/c9ta01720h.
Full textLu, W., Q. Wu, C. S. Johnson, et al. "Lithium Manganese Rich Transition Metal Oxide as Cathode Material for Lithium Ion Batteries." ECS Transactions 59, no. 1 (2014): 127–34. http://dx.doi.org/10.1149/05901.0127ecst.
Full textZhang, Linsen, Huan Wang, Lizhen Wang, et al. "High electrochemical performance of lithium-rich Li1.2Mn0.54NixCoyO2 cathode materials for lithium-ion batteries." Materials Letters 185 (December 2016): 100–103. http://dx.doi.org/10.1016/j.matlet.2016.08.118.
Full textWang, Jun, Xin He, Elie Paillard, Nina Laszczynski, Jie Li, and Stefano Passerini. "Lithium- and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries." Advanced Energy Materials 6, no. 21 (2016): 1600906. http://dx.doi.org/10.1002/aenm.201600906.
Full textLee, S. B., S. H. Cho, J. B. Heo, V. Aravindan, H. S. Kim, and Y. S. Lee. "Copper-substituted, lithium rich iron phosphate as cathode material for lithium secondary batteries." Journal of Alloys and Compounds 488, no. 1 (2009): 380–85. http://dx.doi.org/10.1016/j.jallcom.2009.08.144.
Full textZhang, Bin, Shuanjin Wang, Min Xiao, et al. "A novel lithium–sulfur battery cathode from butadiene rubber-caged sulfur-rich polymeric composites." RSC Advances 5, no. 48 (2015): 38792–800. http://dx.doi.org/10.1039/c5ra06825h.
Full textHamad, Khaleel I., and Yangchuan Xing. "Stabilizing Li-rich NMC Materials by Using Precursor Salts with Acetate and Nitrate Anions for Li-ion Batteries." Batteries 5, no. 4 (2019): 69. http://dx.doi.org/10.3390/batteries5040069.
Full textQiao, Qi-Qi, Guo-Ran Li, Yong-Long Wang, and Xue-Ping Gao. "To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries." Journal of Materials Chemistry A 4, no. 12 (2016): 4440–47. http://dx.doi.org/10.1039/c6ta00882h.
Full textChen, Zhuo, Fangya Guo, and Youxiang Zhang. "Micron-Sized Monodisperse Particle LiNi0.6Co0.2Mn0.2O2 Derived by Oxalate Solvothermal Process Combined with Calcination as Cathode Material for Lithium-Ion Batteries." Materials 14, no. 10 (2021): 2576. http://dx.doi.org/10.3390/ma14102576.
Full textLiu, Jin-Bei, Ling-Bin Kong, Man Xing, Ming Shi, Yong-Chun Luo, and Long Kang. "Hybrid annealing method synthesis of Li[Li0.2Ni0.2Mn0.6]O2 composites with enhanced electrochemical performance for lithium-ion batteries." RSC Advances 5, no. 5 (2015): 3352–57. http://dx.doi.org/10.1039/c4ra13961e.
Full textWang, Zhong, Yanping Yin, Yang Ren, et al. "High performance lithium-manganese-rich cathode material with reduced impurities." Nano Energy 31 (January 2017): 247–57. http://dx.doi.org/10.1016/j.nanoen.2016.10.014.
Full textYe, Delai, Kiyoshi Ozawa, Bei Wang, et al. "Capacity-controllable Li-rich cathode materials for lithium-ion batteries." Nano Energy 6 (May 2014): 92–102. http://dx.doi.org/10.1016/j.nanoen.2014.03.013.
Full text