Academic literature on the topic 'Lithium Transference Number'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium Transference Number.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lithium Transference Number"

1

Popovic, J., D. Höfler, J. P. Melchior, A. Münchinger, B. List, and J. Maier. "High Lithium Transference Number Electrolytes Containing Tetratriflylpropene’s Lithium Salt." Journal of Physical Chemistry Letters 9, no. 17 (2018): 5116–20. http://dx.doi.org/10.1021/acs.jpclett.8b01846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Woo, Sang-Gil, Eun-Kyoung Hwang, Hee-Kook Kang, et al. "High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes." Energy & Environmental Science 14, no. 3 (2021): 1420–28. http://dx.doi.org/10.1039/d0ee03967e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Popovic, Jelena, George Hasegawa, Igor Moudrakovski, and Joachim Maier. "Infiltrated porous oxide monoliths as high lithium transference number electrolytes." Journal of Materials Chemistry A 4, no. 19 (2016): 7135–40. http://dx.doi.org/10.1039/c6ta01826b.

Full text
Abstract:
We show for the first time that liquid–solid lithium electrolytes can exhibit both a very high lithium transference number (up to 0.89) and high overall ionic conductivity (up to 0.48 mS cm<sup>−1</sup>) when the solid contains a large number of mesopores covered by a high density of –OH groups enabling anionic adsorption.
APA, Harvard, Vancouver, ISO, and other styles
4

Popovic, Jelena, George Hasegawa, Igor Moudrakovski, and Joachim Maier. "Correction: Infiltrated porous oxide monoliths as high lithium transference number electrolytes." Journal of Materials Chemistry A 6, no. 1 (2018): 275. http://dx.doi.org/10.1039/c7ta90254a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doyle, Marc, Thomas F. Fuller, and John Newman. "The importance of the lithium ion transference number in lithium/polymer cells." Electrochimica Acta 39, no. 13 (1994): 2073–81. http://dx.doi.org/10.1016/0013-4686(94)85091-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boz, Buket, Hunter O. Ford, Alberto Salvadori, and Jennifer L. Schaefer. "Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries." Electronic Materials 2, no. 2 (2021): 154–73. http://dx.doi.org/10.3390/electronicmat2020013.

Full text
Abstract:
To improve the energy density of lithium-ion batteries, the development of advanced electrolytes with enhanced transport properties is highly important. Here, we show that by confining the conventional electrolyte (1 M LiPF6 in EC-DEC) in a microporous polymer network, the cation transference number increases to 0.79 while maintaining an ionic conductivity on the order of 10−3 S cm−1. By comparison, a non-porous, condensed polymer electrolyte of the same chemistry has a lower transference number and conductivity, of 0.65 and 7.6 × 10−4 S cm−1, respectively. Within Li-metal/LiFePO4 cells, the i
APA, Harvard, Vancouver, ISO, and other styles
7

Niedzicki, Leszek, Ewelina Karpierz, Maciej Zawadzki, et al. "Lithium cation conducting TDI anion-based ionic liquids." Phys. Chem. Chem. Phys. 16, no. 23 (2014): 11417–25. http://dx.doi.org/10.1039/c3cp55354j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zahn, Raphael, Marie Francine Lagadec, Michael Hess, and Vanessa Wood. "Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators." ACS Applied Materials & Interfaces 8, no. 48 (2016): 32637–42. http://dx.doi.org/10.1021/acsami.6b12085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nag, Aniruddha, Mohammad Asif Ali, Ankit Singh, Raman Vedarajan, Noriyoshi Matsumi, and Tatsuo Kaneko. "N-Boronated polybenzimidazole for composite electrolyte design of highly ion conducting pseudo solid-state ion gel electrolytes with a high Li-transference number." Journal of Materials Chemistry A 7, no. 9 (2019): 4459–68. http://dx.doi.org/10.1039/c8ta10476j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Heng, Chunmei Li, Michal Piszcz, et al. "Single lithium-ion conducting solid polymer electrolytes: advances and perspectives." Chemical Society Reviews 46, no. 3 (2017): 797–815. http://dx.doi.org/10.1039/c6cs00491a.

Full text
Abstract:
Single lithium-ion conducting solid polymer electrolytes (SLIC-SPEs), with a high lithium-ion transference number, the absence of the detrimental effect of anion polarization, and low dendrite growth rate, could be an excellent choice of safe electrolyte materials for lithium batteries in the future.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lithium Transference Number"

1

Chamaani, Amir. "Hybrid Polymer Electrolyte for Lithium-Oxygen Battery Application." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3562.

Full text
Abstract:
The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains a
APA, Harvard, Vancouver, ISO, and other styles
2

Eiamlamai, Priew. "Electrolytes polymères à base de liquides ioniques pour batteries au lithium." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENI016/document.

Full text
Abstract:
De nouvelles familles de liquides ioniques conducteurs par ion lithium; à anions aromatiques et aliphatiques de type perfluorosulfonate perfluorosulfonylimidure attachés à des oligoéthers (méthoxy polyéthylène glycol mPEG) de longueurs différentes ont été synthétisées et caractérisées dans le but d'améliorer l'interaction entre les chaînes de POE et les sels de lithium en améliorant la mobilité segmentaire. Ainsi différentes membranes amorphes ou peu cristallines améliorent le transport cationique par rapport aux électrolytes polymères usuels. . Leurs propriétés ont été évaluées dans deux type
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lithium Transference Number"

1

Abe, Takeshi, and Zempachi Ogumi. "Lithium-ion-conductive polymer electrolytes exhibit a high lithium-ion transference number with the incorporation of fluorine atoms." In Fluorinated Materials for Energy Conversion. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044472-7/50043-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lithium Transference Number"

1

Dai, H., S. Sanderson, J. Davey, F. Uribe, and T. A. Jr Zawodzinski. Electrophoretic NMR measurements of lithium transference numbers in polymer gel electrolytes. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/474865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!