Dissertations / Theses on the topic 'Liveness detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 dissertations / theses for your research on the topic 'Liveness detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sandström, Marie. "Liveness Detection in Fingerprint Recognition Systems." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2397.
Full textBiometrics deals with identifying individuals with help of their biological data. Fingerprint scanning is the most common method of the biometric methods available today. The security of fingerprint scanners has however been questioned and previous studies have shown that fingerprint scanners can be fooled with artificial fingerprints, i.e. copies of real fingerprints. The fingerprint recognition systems are evolving and this study will discuss the situation of today.
Two approaches have been used to find out how good fingerprint recognition systems are in distinguishing between live fingers and artificial clones. The first approach is a literature study, while the second consists of experiments.
A literature study of liveness detection in fingerprint recognition systems has been performed. A description of different liveness detection methods is presented and discussed. Methods requiring extra hardware use temperature, pulse, blood pressure, electric resistance, etc., and methods using already existent information in the system use skin deformation, pores, perspiration, etc.
The experiments focus on making artificial fingerprints in gelatin from a latent fingerprint. Nine different systems were tested at the CeBIT trade fair in Germany and all were deceived. Three other different systems were put up against more extensive tests with three different subjects. All systems werecircumvented with all subjects'artificial fingerprints, but with varying results. The results are analyzed and discussed, partly with help of the A/R value defined in this report.
Ali, Asad. "Biometric liveness detection using gaze information." Thesis, University of Kent, 2015. https://kar.kent.ac.uk/50524/.
Full textGHIANI, LUCA. "Textural features for fingerprint liveness detection." Doctoral thesis, Università degli Studi di Cagliari, 2015. http://hdl.handle.net/11584/266594.
Full textOmar, Luma Qassam Abedalqader. "Face liveness detection under processed image attacks." Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12812/.
Full textDohnálek, Tomáš. "Liveness Detection on Fingers Using Vein Pattern." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234901.
Full textCrihalmeanu, Musat C. "Adding liveness detection to the hand geometry scanner." Morgantown, W. Va. : [West Virginia University Libraries], 2003. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3220.
Full textTitle from document title page. Document formatted into pages; contains viii, 96 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 72-74).
Memon, Shahzad Ahmed. "Novel active sweat pores based liveness detection techniques for fingerprint biometrics." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7060.
Full textLin, B. (Bofan). "Face liveness detection by rPPG features and contextual patch-based CNN." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906052450.
Full textDas, Abhijit. "Towards Multi-modal Sclera and Iris Biometric Recognition with Adaptive Liveness Detection." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/370828.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Info & Comm Tech
Science, Environment, Engineering and Technology
Full Text
Matthew, Peter. "Novel approaches to biometric security with an emphasis on liveness and coercion detection." Thesis, Edge Hill University, 2016. http://repository.edgehill.ac.uk/7129/.
Full textNogueira, Rodrigo Frassetto 1986. "Software based fingerprint liveness detection = Detecção de vivacidade de impressões digitais baseada em software." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259824.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-26T03:01:45Z (GMT). No. of bitstreams: 1 Nogueira_RodrigoFrassetto_M.pdf: 3122263 bytes, checksum: e6333eb55b8b4830e318721882159cd1 (MD5) Previous issue date: 2014
Resumo: Com o uso crescente de sistemas de autenticação por biometria nos últimos anos, a detecção de impressões digitais falsas tem se tornado cada vez mais importante. Neste trabalho, nós implementamos e comparamos várias técnicas baseadas em software para detecção de vivacidade de impressões digitais. Utilizamos como extratores de características as redes convolucionais, que foram usadas pela primeira vez nesta área, e Local Binary Patterns (LBP). As técnicas foram usadas em conjunto com redução de dimensionalidade através da Análise de Componentes Principais (PCA) e um classificador Support Vector Machine (SVM). O aumento artificial de dados foi usado de forma bem sucedida para melhorar o desempenho do classificador. Testamos uma variedade de operações de pré-processamento, tais como filtragem em frequência, equalização de contraste e filtragem da região de interesse. Graças aos computadores de alto desempenho disponíveis como serviços em nuvem, foi possível realizar uma busca extensa e automática para encontrar a melhor combinação de operações de pré-processamento, arquiteturas e hiper-parâmetros. Os experimentos foram realizados nos conjuntos de dados usados nas competições Liveness Detection nos anos de 2009, 2011 e 2013, que juntos somam quase 50.000 imagens de impressões digitais falsas e verdadeiras. Nosso melhor método atinge uma taxa média de amostras classificadas corretamente de 95,2%, o que representa uma melhora de 59% na taxa de erro quando comparado com os melhores resultados publicados anteriormente
Abstract: With the growing use of biometric authentication systems in the past years, spoof fingerprint detection has become increasingly important. In this work, we implemented and compared various techniques for software-based fingerprint liveness detection. We use as feature extractors Convolutional Networks with random weights, which are applied for the first time for this task, and Local Binary Patterns. The techniques were used in conjunction with dimensionality reduction through Principal Component Analysis (PCA) and a Support Vector Machine (SVM) classifier. Dataset Augmentation was successfully used to increase classifier¿s performance. We tested a variety of preprocessing operations such as frequency filtering, contrast equalization, and region of interest filtering. An automatic and extensive search for the best combination of preprocessing operations, architectures and hyper-parameters was made, thanks to the fast computers available as cloud services. The experiments were made on the datasets used in The Liveness Detection Competition of years 2009, 2011 and 2013 that comprise almost 50,000 real and fake fingerprints¿ images. Our best method achieves an overall rate of 95.2% of correctly classified samples - an improvement of 59% in test error when compared with the best previously published results
Mestrado
Energia Eletrica
Mestre em Engenharia Elétrica
Brabec, Lukáš. "Biometrická detekce živosti pro technologii rozpoznávání otisků prstů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234955.
Full textMalý, Tomáš. "Detekce živosti prstu pomocí osvětlení různé vlnové délky." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236383.
Full textKomulainen, J. (Jukka). "Software-based countermeasures to 2D facial spoofing attacks." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208732.
Full textTiivistelmä Kasvokuvaan perustuvan henkilöllisyyden tunnistamisen etuja ovat luonnollinen vuorovaikutus ja etätunnistus, minkä takia aihe on ollut erittäin aktiivinen tutkimusalue konenäön tutkimuksessa. Valitettavasti tavanomaiset kasvontunnistustekniikat ovat osoittautuneet haavoittuvaisiksi hyökkäyksille, joissa kameralle esitetään jäljennös kohdehenkilön kasvoista positiivisen tunnistuksen toivossa. Tässä väitöskirjassa tutkitaan erilaisia ohjelmistopohjaisia ratkaisuja keinotekoisten kasvojen ilmaisuun petkuttamisen estämiseksi. Työn ensimmäisessä osassa käytetään erilaisia matalan tason piirteitä kuvaamaan aitojen ja keinotekoisten kasvojen luontaisia staattisia ja dynaamisia eroavaisuuksia. Työn toisessa osassa esitetään toisiaan täydentäviä hyökkäystyyppikohtaisia vastakeinoja, jotta yleispätevien menetelmien puutteet voitaisiin ratkaista ongelmaa rajaamalla. Kasvojen staattisten ominaisuuksien esitys perustuu yleisesti tunnettuihin matalan tason piirteisiin, kuten paikallisiin binäärikuvioihin, Gabor-tekstuureihin ja suunnattujen gradienttien histogrammeihin. Pääajatuksena on kuvata aitojen ja keinotekoisten kasvojen laadun, heijastumisen ja varjostumisen eroavaisuuksia tekstuuria ja gradienttirakenteita analysoimalla. Lähestymistapaa laajennetaan myös tila-aika-avaruuteen, jolloin hyödynnetään samanaikaisesti sekä kasvojen ulkonäköä ja dynamiikkaa irroittamalla paikallisia binäärikuvioita tila-aika-avaruuden kolmelta ortogonaaliselta tasolta. Voidaan olettaa, ettei ole olemassa yksittäistä yleispätevää vastakeinoa, joka kykenee ilmaisemaan jokaisen tunnetun hyökkäystyypin, saati tuntemattoman. Näin ollen työssä keskitytään tarkemmin kahteen hyökkäystilanteeseen. Ensimmäisessä tapauksessa huijausapuvälineen reunoja ilmaistaan analysoimalla gradienttirakenteiden epäjatkuvuuksia havaittujen kasvojen ympäristössä. Jos apuvälineen reunat on piilotettu kameran näkymän ulkopuolelle, petkuttamisen ilmaisu toteutetaan yhdistämällä kasvojen ja taustan liikkeen korrelaation mittausta ja kasvojen tekstuurianalyysiä. Lisäksi työssä esitellään vastakeinojen yhdistämiseen avoimen lähdekoodin ohjelmisto, jonka avulla tutkitaan lähemmin menetelmien fuusion vaikutuksia. Tutkimuksessa esitetyt menetelmät on kokeellisesti vahvistettu alan viimeisimmillä julkisesti saatavilla olevilla tietokannoilla. Tässä väitöskirjassa käydään läpi kokeiden päähavainnot
Jurek, Jakub. "Biometrické rozpoznání živosti prstu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242191.
Full textHomola, Antonín. "Detekce šířky papilární linie u otisku prstu." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2011. http://www.nusl.cz/ntk/nusl-236952.
Full textVáňa, Tomáš. "Biometrické rozpoznání živosti prstu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221380.
Full textLodrová, Dana. "Bezpečnost biometrických systémů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-261226.
Full textLichvár, Michal. "Detekce živosti prstu na základě změn papilárních linií." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2008. http://www.nusl.cz/ntk/nusl-236005.
Full textLouro, Ana Rute Caetano. "Liveness detection in biometrics." Master's thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/73623.
Full textLouro, Ana Rute Caetano. "Liveness detection in biometrics." Dissertação, 2014. https://repositorio-aberto.up.pt/handle/10216/73623.
Full textGraça, André Pereira. "Liveness Detection and Facial Recognition with Multi-Modal Features." Master's thesis, 2021. http://hdl.handle.net/10316/98190.
Full textO interesse pelo tema detecção de vivacidade tem vindo a aumentar nos últimos anos devido ao desenvolvimento de novas ferramentas e conhecimentos na área de biometria. A detecção de vivacidade é essencial em sistemas de autenticação de identidade para impedir que alguém tenham acesso a informações confidenciais ilegalmente. Os sistemas de autenticação facial existentes podem ser enganados através de uma simples fotografia de um usuário legítimo, que pode ser facilmente obtida por meio de redes sociais, vídeo ou máscaras 3D. Vários algoritmos com o objetivo de deteção de vivacidade têm sido propostos para lidar com este problema, usando diferentes abordagens e numerosas bases de dados.A precisão do reconhecimento de rosto é significativamente melhorada usando redes de neuronais profundas devido à sua capacidade de extrair características profundas de rostos humanos. A combinação de recursos de vivacidade das imagens fornece uma generalização melhor para um classificador de liveness detection facial, aproveitando a fusão de recursos ou abordagens de fusão de modalidades, usada por todos os métodos anti-spoofing facial de última geração.Esta dissertação teve como objetivo a criação de um sistema de Detecção de Vivacidade e Reconhecimento Facial baseado em redes neurais convolucionais (RNC) e utilizando informações obtidas de 3 modalidades diferentes (RGB, Infra-vermelhos e Imagens de profundidade). O uso de múltiplas modalidades neste contexto ainda está a ser explorado, e ainda há muito desenvolvimento necessário para alcançar um sistema de autenticação biométrica perfeito.Para avaliar a precisão do nosso sistema, testamos a nossa rede na base de dados CASIA-SURF, que é uma base de dados com imagens faciais provenientes de diferentes modalidades bastante conhecido, e também criamos uma base de dados especificamente para esta tarefa. Testamos a nossa rede com diferentes arquiteturas e vários módulos e implementamos um sistema biométrico que pode funcionar no mundo real em tempo real. Os resultados foram promissores, mostrando a possibilidade de utilização desse sistema para autenticação de usuários no mundo real.
The interest in the topic of Liveness Detection has been increasing in the past few years due to the development of new tools and knowledge in the area of biometry. Liveness Detection is essential in user authentication systems to stop intruders from gaining access to confidential information illegally. The face authentication systems we have today can be victims to a simple photograph of a legitimate user, which can be easily obtained through social media networks, video replay, or 3D masks.Various face anti-spoofing algorithms have been proposed to tackle this problem, using different approaches, and numerous public face anti-spoofing databases and competitions.Face recognition accuracy is significantly improved using deep learning networks due to their ability to extract human faces’ deep features.The combination of liveness features from the image visual cues provides a better generalization for a face anti-spoofing classifier, taking advantage of the feature fusion or score fusion approach, used by all the state-of-the-art face anti-spoofing measures. This dissertation aimed to create a Liveness Detection and Facial Recognition system based on convolutional neural networks (CNN) and using information collected from 3 different modalities (RGB, Infra-Red, and Depth images). The use of multiple modalities in this context is still being explored, and there is still much development needed to achieve the perfect biometric authentication system.To evaluate the accuracy of our system, we tested with the network on the CASIA-SURF Dataset, which is a well-known multi-modality dataset, and we also created a dataset precisely for this task. We tested our network with different network architectures and modules and implemented a biometric system that can work in the real world in real-time. The results were promising, showing the possibility of using this system for user authentication in the real world
Sequeira, Ana Filipa Pinheiro. "Liveness Detection and Robust Recognition in Iris and Fingerprint Biometric Systems." Doctoral thesis, 2015. https://repositorio-aberto.up.pt/handle/10216/81992.
Full textSequeira, Ana Filipa Pinheiro. "Liveness Detection and Robust Recognition in Iris and Fingerprint Biometric Systems." Tese, 2015. https://repositorio-aberto.up.pt/handle/10216/81992.
Full textTing-ChiaLee and 李定家. "Design of Liveness Detection and Identity Recognition System for Mobile Phone." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/n84v5s.
Full textWu, Tzu-Yuan, and 吳紫源. "A Deep-Learning-Based Face Liveness Detection System Against Spoofing Attack Using 2D Image Distortion Analysis." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/52dj7s.
Full text國立臺灣科技大學
資訊工程系
107
With the development of science and technology, face recognition is now an important technology for authentication in various access control applications, especially used in mobile devices. Unlocking by face has gradually replaced fingerprint identification in some scenarios, which becomes one of the major biometric authentication technology of mobile phones. In a common camera, due to the lack of depth information, it is easy to make fake face images to crack the identification system (e.g., paper printing and screen display) compared with other biological features such as fingerprints and palm prints. Therefore, face liveness detection against spoofing attack using 2D image distortion analysis will be a very important issue in the field of information security. By virtue of the different features between real faces and fake faces, this thesis adopts local binary pattern and 2D image distortion analysis to extract texture information of images, which are used for developing our face liveness detection system against spoofing attack to distinguish fake faces from real faces by a deep neural network. The system employs only a single image captured from a common camera to discriminant real faces and fake faces. In the experiments, three kinds of face spoofing databases are used as subjects of cross-validation. The methods and dataset made by ourselves presented in this thesis can effectively classify the authenticity of human faces. The accuracy of the inside test reaches 99.55%, while that of the outside test attains 95.13%. The experimental results show that our face liveness detection system has high accuracy and generality.