Journal articles on the topic 'LL37'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LL37.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lande, Roberto, Immacolata Pietraforte, Anna Mennella, Raffaella Palazzo, Francesca Romana Spinelli, Konstantinos Giannakakis, Francesca Spadaro, et al. "Complementary Effects of Carbamylated and Citrullinated LL37 in Autoimmunity and Inflammation in Systemic Lupus Erythematosus." International Journal of Molecular Sciences 22, no. 4 (February 6, 2021): 1650. http://dx.doi.org/10.3390/ijms22041650.
Full textPalazzo, Raffaella, Immacolata Pietraforte, Carlo Chizzolini, Roberto Lande, and Loredana Frasca. "RB139, RB140, RB141 and RB142 antibodies recognize human citrullinated LL37 by ELISA." Antibody Reports 3, no. 3 (May 26, 2020): e189. http://dx.doi.org/10.24450/journals/abrep.2020.e189.
Full textLande, Roberto, Stefano Alivernini, Barbara Tolusso, Francesca Spadaro, Mario Falchi, Raffaella Palazzo, Immacolata Pietraforte, et al. "Monoclonal antibodies RB139 and RB142 recognize citrullinated LL37 by immunofluorescence in histological sections in Systemic lupus erythematosus (SLE) and Rheumatoid arthritis (RA)." Antibody Reports 3, no. 4 (July 27, 2020): e236. http://dx.doi.org/10.24450/journals/abrep.2020.e236.
Full textLande, Roberto, Stefano Alivernini, Barbara Tolusso, Francesca Spadaro, Mario Falchi, Raffaella Palazzo, Immacolata Pietraforte, et al. "RB137 recognizes LL37 in neutrophil-extracellular trap-like (NET) structures in systemic lupus erythematosus and rheumatoid arthritis inflamed tissues by immunofluorescence in histological sections." Antibody Reports 3, no. 4 (July 27, 2020): e235. http://dx.doi.org/10.24450/journals/abrep.2020.e235.
Full textPalazzo, Raffaella, Immacolata Pietraforte, Carlo Chizzolini, Roberto Lande, and Loredana Frasca. "RB137 and RB138 antibodies recognize human cathelicidin LL37 by ELISA." Antibody Reports 3, no. 3 (May 26, 2020): e188. http://dx.doi.org/10.24450/journals/abrep.2020.e188.
Full textLande, Roberto, Raffaella Palazzo, Philippe Hammel, Immacolata Pietraforte, Isabelle Surbeck, Michel Gilliet, Carlo Chizzolini, and Loredana Frasca. "Generation of Monoclonal Antibodies Specific for Native LL37 and Citrullinated LL37 That Discriminate the Two LL37 Forms in the Skin and Circulation of Cutaneous/Systemic Lupus Erythematosus and Rheumatoid Arthritis Patients." Antibodies 9, no. 2 (May 11, 2020): 14. http://dx.doi.org/10.3390/antib9020014.
Full textGanguly, Dipyaman, Georgios Chamilos, Roberto Lande, Josh Gregorio, Stephan Meller, Valeria Facchinetti, Bernhard Homey, Franck J. Barrat, Tomasz Zal, and Michel Gilliet. "Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8." Journal of Experimental Medicine 206, no. 9 (August 24, 2009): 1983–94. http://dx.doi.org/10.1084/jem.20090480.
Full textWu, Fan, and Cheemeng Tan. "Dead bacterial absorption of antimicrobial peptides underlies collective tolerance." Journal of The Royal Society Interface 16, no. 151 (February 2019): 20180701. http://dx.doi.org/10.1098/rsif.2018.0701.
Full textSalamah, Maryam F., Divyashree Ravishankar, Xenia Kodji, Leonardo A. Moraes, Harry F. Williams, Thomas M. Vallance, Dina A. Albadawi, et al. "The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation." Blood Advances 2, no. 21 (November 9, 2018): 2973–85. http://dx.doi.org/10.1182/bloodadvances.2018021758.
Full textChang, Hao-Teng, Pei-Wen Tsai, Hsin-Hui Huang, Yu-Shu Liu, Tzu-Shan Chien, and Chung-Yu Lan. "LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic." Biochemical Journal 441, no. 3 (January 16, 2012): 963–70. http://dx.doi.org/10.1042/bj20111454.
Full textBucki, Robert, and Paul A. Janmey. "Interaction of the Gelsolin-Derived Antibacterial PBP 10 Peptide with Lipid Bilayers and Cell Membranes." Antimicrobial Agents and Chemotherapy 50, no. 9 (September 2006): 2932–40. http://dx.doi.org/10.1128/aac.00134-06.
Full textLiang, Huiyi, Yanzi Yan, Jingjiao Wu, Xiaofei Ge, Lai Wei, Lixin Liu, and Yongming Chen. "Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys." Science Advances 6, no. 31 (July 2020): eabb5274. http://dx.doi.org/10.1126/sciadv.abb5274.
Full textDeLong, Robert K., Jeffrey Comer, Elza Neelima Mathew, and Majid Jaberi-Douraki. "Comparative Molecular Immunological Activity of Physiological Metal Oxide Nanoparticle and its Anticancer Peptide and RNA Complexes." Nanomaterials 9, no. 12 (November 22, 2019): 1670. http://dx.doi.org/10.3390/nano9121670.
Full textChamilos, Georgios, Josh Gregorio, Stephan Meller, Roberto Lande, Dimitrios P. Kontoyiannis, Robert L. Modlin, and Michel Gilliet. "Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37." Blood 120, no. 18 (November 1, 2012): 3699–707. http://dx.doi.org/10.1182/blood-2012-01-401364.
Full textDeslouches, Berthony, Kazi Islam, Jodi K. Craigo, Shruti M. Paranjape, Ronald C. Montelaro, and Timothy A. Mietzner. "Activity of the De Novo Engineered Antimicrobial Peptide WLBU2 against Pseudomonas aeruginosa in Human Serum and Whole Blood: Implications for Systemic Applications." Antimicrobial Agents and Chemotherapy 49, no. 8 (August 2005): 3208–16. http://dx.doi.org/10.1128/aac.49.8.3208-3216.2005.
Full textVignoni, Mariana, Hasitha de Alwis Weerasekera, Madeline J. Simpson, Jaywant Phopase, Thien-Fah Mah, May Griffith, Emilio I. Alarcon, and Juan C. Scaiano. "LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control." Nanoscale 6, no. 11 (2014): 5725–28. http://dx.doi.org/10.1039/c4nr01284d.
Full textMandic Havelka, A., E. Yektaei-Karin, K. Hultenby, OE Sørensen, J. Lundahl, V. Berggren, and G. Marchini. "Maternal plasma level of antimicrobial peptide LL37 is a major determinant factor of neonatal plasma LL37 level." Acta Paediatrica 99, no. 6 (February 22, 2010): 836–41. http://dx.doi.org/10.1111/j.1651-2227.2010.01726.x.
Full textJana, Jagannath, Rajiv Kumar Kar, Anirban Ghosh, Atanu Biswas, Surajit Ghosh, Anirban Bhunia, and Subhrangsu Chatterjee. "Human cathelicidin peptide LL37 binds telomeric G-quadruplex." Molecular BioSystems 9, no. 7 (2013): 1833. http://dx.doi.org/10.1039/c3mb70030e.
Full textSmith, Jordan R., Katie E. Barber, Animesh Raut, and Michael J. Rybak. "β-Lactams Enhance Daptomycin Activity against Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium inIn VitroPharmacokinetic/Pharmacodynamic Models." Antimicrobial Agents and Chemotherapy 59, no. 5 (March 9, 2015): 2842–48. http://dx.doi.org/10.1128/aac.00053-15.
Full textTao, Renchuan, Richard J. Jurevic, Kimberly K. Coulton, Marjorie T. Tsutsui, Marilyn C. Roberts, Janet R. Kimball, Norma Wells, Jeffery Berndt, and Beverly A. Dale. "Salivary Antimicrobial Peptide Expression and Dental Caries Experience in Children." Antimicrobial Agents and Chemotherapy 49, no. 9 (September 2005): 3883–88. http://dx.doi.org/10.1128/aac.49.9.3883-3888.2005.
Full textRamos, Reinaldo, João Pedro Silva, Ana Cristina Rodrigues, Raquel Costa, Luísa Guardão, Fernando Schmitt, Raquel Soares, Manuel Vilanova, Lucília Domingues, and Miguel Gama. "Wound healing activity of the human antimicrobial peptide LL37." Peptides 32, no. 7 (July 2011): 1469–76. http://dx.doi.org/10.1016/j.peptides.2011.06.005.
Full textGirnita, A., H. Zheng, C. Worrall, M. Ståhle, and L. Girnita. "P52 IGF-1R and LL37 – a promoting growth interaction." Growth Hormone & IGF Research 20 (January 2010): S58. http://dx.doi.org/10.1016/s1096-6374(10)70152-0.
Full textBuznyk, O. "The sustained delivery system of the antiinfection peptide LL37 system — a potentially new treatment method of ocular infections. Report 1. Testing of different nano- and microparticles as carriers of LL37." Oftalmologicheskii Zhurnal 48, no. 2 (April 8, 2014): 17–21. http://dx.doi.org/10.31288/oftalmolzh201421721.
Full textLin, Xiaoxuan, Ruoxun Wang, and Sui Mai. "Advances in delivery systems for the therapeutic application of LL37." Journal of Drug Delivery Science and Technology 60 (December 2020): 102016. http://dx.doi.org/10.1016/j.jddst.2020.102016.
Full textPasyechnikova, N., S. Yakymenko, O. Buznyk, M. Islam, and M. Griffith. "Collagen-Based Corneal Substitutes with Incorporated Anti-infective Peptide LL37 Sustalined Deivery System." Oftalmologicheskii Zhurnal 53, no. 1 (February 17, 2015): 110–14. http://dx.doi.org/10.31288/oftalmolzh20151110114.
Full textIslam, M. M., M. Griffith, and O. Buznyk. "Anti-infective peptide LL37 sustained delivery system — a potential novel treatment method of ocular infections. Report 2. Antiviral properties of silica nanoparticle encapsulated LL37." Oftalmologicheskii Zhurnal 49, no. 3 (May 27, 2014): 53–57. http://dx.doi.org/10.31288/oftalmolzh201435357.
Full textHitchon, Carol A., Xiaobo Meng, Hani S. El Gabalawy, and Linda Larcombe. "Human host defence peptide LL37 and anti-cyclic citrullinated peptide antibody in early inflammatory arthritis." RMD Open 5, no. 1 (April 2019): e000874. http://dx.doi.org/10.1136/rmdopen-2018-000874.
Full textDeslouches, Berthony, Jonathan D. Steckbeck, Jodi K. Craigo, Yohei Doi, Jane L. Burns, and Ronald C. Montelaro. "Engineered Cationic Antimicrobial Peptides To Overcome Multidrug Resistance by ESKAPE Pathogens." Antimicrobial Agents and Chemotherapy 59, no. 2 (November 24, 2014): 1329–33. http://dx.doi.org/10.1128/aac.03937-14.
Full textKhung, R., H. Shiba, M. Kajiya, M. Kittaka, K. Ouhara, K. Takeda, N. Mizuno, T. Fujita, H. Komatsuzawa, and H. Kurihara. "LL37 induces VEGF expression in dental pulp cells through ERK signalling." International Endodontic Journal 48, no. 7 (September 12, 2014): 673–79. http://dx.doi.org/10.1111/iej.12365.
Full textChereddy, Kiran Kumar, Charles-Henry Her, Michela Comune, Claudia Moia, Alessandra Lopes, Paolo E. Porporato, Julie Vanacker, et al. "PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing." Journal of Controlled Release 194 (November 2014): 138–47. http://dx.doi.org/10.1016/j.jconrel.2014.08.016.
Full textCassin, Margaret E., Andrew J. Ford, Sophia M. Orbach, Scott E. Saverot, and Padmavathy Rajagopalan. "The design of antimicrobial LL37-modified collagen-hyaluronic acid detachable multilayers." Acta Biomaterialia 40 (August 2016): 119–29. http://dx.doi.org/10.1016/j.actbio.2016.04.027.
Full textKim, Soon-ja, Renshu Quan, Sung-Jin Lee, Hak-Kyo Lee, and Joong-Kook Choi. "Antibacterial activity of recombinant hCAP18/LL37 protein secreted from Pichia pastoris." Journal of Microbiology 47, no. 3 (June 2009): 358–62. http://dx.doi.org/10.1007/s12275-009-0131-9.
Full textDutta, Jyotibon, Suhas Ramesh, Siduduzo M. Radebe, Anou M. Somboro, Beatriz G. de la Torre, Hendrik G. Kruger, Sabiha Y. Essack, Fernando Albericio, and Thavendran Govender. "Optimized Microwave Assisted Synthesis of LL37, a Cathelicidin Human Antimicrobial Peptide." International Journal of Peptide Research and Therapeutics 21, no. 1 (November 7, 2014): 13–20. http://dx.doi.org/10.1007/s10989-014-9439-3.
Full textStephan, Alexander, Marina Batinica, Julia Steiger, Pia Hartmann, Frank Zaucke, Wilhelm Bloch, and Mario Fabri. "LL37:DNA complexes provide antimicrobial activity against intracellular bacteria in human macrophages." Immunology 148, no. 4 (July 18, 2016): 420–32. http://dx.doi.org/10.1111/imm.12620.
Full textLu, Yingying, Hong Jiang, Bingjue Li, Luxi Cao, Qixia Shen, Weiwei Yi, Zhenyu Ju, et al. "Telomere dysfunction promotes small vessel vasculitis via the LL37-NETs-dependent mechanism." Annals of Translational Medicine 8, no. 6 (March 2020): 357. http://dx.doi.org/10.21037/atm.2020.02.130.
Full textLin, Qiao, Berthony Deslouches, Ronald C. Montelaro, and Y. Peter Di. "Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37." International Journal of Antimicrobial Agents 52, no. 5 (November 2018): 667–72. http://dx.doi.org/10.1016/j.ijantimicag.2018.04.019.
Full textMerkle, Monika, Joachim Pircher, Hanna Mannell, Florian Krötz, Philipp Blüm, Thomas Czermak, Erik Gaitzsch, et al. "LL37 inhibits the inflammatory endothelial response induced by viral or endogenous DNA." Journal of Autoimmunity 65 (December 2015): 19–29. http://dx.doi.org/10.1016/j.jaut.2015.07.015.
Full textLai, Yvonne, Sreedevi Adhikarakunnathu, Kanchan Bhardwaj, C. T. Ranjith-Kumar, Yahong Wen, Jarrat L. Jordan, Linda H. Wu, Bogdan Dragnea, Lani San Mateo, and C. Cheng Kao. "LL37 and Cationic Peptides Enhance TLR3 Signaling by Viral Double-stranded RNAs." PLoS ONE 6, no. 10 (October 21, 2011): e26632. http://dx.doi.org/10.1371/journal.pone.0026632.
Full textBuznyk, A., N. Pasyechnikova, S. Yakymenko, A. Moloda, M. M. Islam, and M. Griffith. "The sustained delivery system of the antiinfection peptide LL37 — a potential new method of treatment of ocular infections. Report 3. Antimicrobial activity of LL37 encapsulated in silica nanoparticle." Oftalmologicheskii Zhurnal 51, no. 5 (April 12, 2014): 4–8. http://dx.doi.org/10.31288/oftalmolzh2014548.
Full textBuznyk, O., C. J. Lee, M. M. Islam, N. Pasyechnikova, and M. Griffith. "Antiviral properties of collagen-based corneal substitute incorporating sustained delivery system for anti-infective peptide LL37." Oftalmologicheskii Zhurnal 57, no. 5 (September 30, 2015): 42–45. http://dx.doi.org/10.31288/oftalmolzh201554245.
Full textSakoulas, George, Warren Rose, Poochit Nonejuie, Joshua Olson, Joseph Pogliano, Romney Humphries, and Victor Nizet. "Ceftaroline Restores Daptomycin Activity against Daptomycin-Nonsusceptible Vancomycin-Resistant Enterococcus faecium." Antimicrobial Agents and Chemotherapy 58, no. 3 (December 23, 2013): 1494–500. http://dx.doi.org/10.1128/aac.02274-13.
Full textBrogden, K. A., V. C. Kalfa, M. R. Ackermann, D. E. Palmquist, P. B. McCray, and B. F. Tack. "The Ovine Cathelicidin SMAP29 Kills Ovine Respiratory Pathogens In Vitro and in an Ovine Model of Pulmonary Infection." Antimicrobial Agents and Chemotherapy 45, no. 1 (January 1, 2001): 331–34. http://dx.doi.org/10.1128/aac.45.1.331-334.2001.
Full textFrasca, Loredana, and Roberto Lande. "Role of Defensins and Cathelicidin LL37 in Auto-Immune and Auto- Inflammatory Diseases." Current Pharmaceutical Biotechnology 13, no. 10 (July 1, 2012): 1882–97. http://dx.doi.org/10.2174/138920112802273155.
Full textZürcher, Christoph, Kay-Sara Sauter, and Matthias Schweizer. "Pestiviral E rns blocks TLR-3-dependent IFN synthesis by LL37 complexed RNA." Veterinary Microbiology 174, no. 3-4 (December 2014): 399–408. http://dx.doi.org/10.1016/j.vetmic.2014.09.028.
Full textKittaka, Mizuho, Hideki Shiba, Mikihito Kajiya, Takako Fujita, Tomoyuki Iwata, Khung Rathvisal, Kazuhisa Ouhara, et al. "The antimicrobial peptide LL37 promotes bone regeneration in a rat calvarial bone defect." Peptides 46 (August 2013): 136–42. http://dx.doi.org/10.1016/j.peptides.2013.06.001.
Full textSteinstraesser, Lars, Andre Ring, Robert Bals, Hans-Ulrich Steinau, and Stefan Langer. "The Human Host Defense Peptide LL37/hCAP Accelerates Angiogenesis in PEGT/PBT Biopolymers." Annals of Plastic Surgery 56, no. 1 (January 2006): 93–98. http://dx.doi.org/10.1097/01.sap.0000190883.30005.91.
Full textPouwels, Simon D., Martijn C. Nawijn, Erik Bathoorn, Annelies Riezebos-Brilman, Antoon J. M. van Oosterhout, Huib A. M. Kerstjens, and Irene H. Heijink. "Increased serum levels of LL37, HMGB1 and S100A9 during exacerbation in COPD patients." European Respiratory Journal 45, no. 5 (April 30, 2015): 1482–85. http://dx.doi.org/10.1183/09031936.00158414.
Full textFerreira, André F., Michela Comune, Akhilesh Rai, Lino Ferreira, and Pedro N. Simões. "Atomistic-Level Investigation of a LL37-Conjugated Gold Nanoparticle By Well-Tempered Metadynamics." Journal of Physical Chemistry B 122, no. 35 (August 14, 2018): 8359–66. http://dx.doi.org/10.1021/acs.jpcb.8b05717.
Full textAmagai, R., T. Takahashi, T. Fujimura, K. Yamasaki, and S. Aiba. "517 Human cathelicidin LL37 binds to scavenger receptors in inflammatory human skin diseases." Journal of Investigative Dermatology 139, no. 5 (May 2019): S89. http://dx.doi.org/10.1016/j.jid.2019.03.593.
Full textHell, Ã, C. G. Giske, A. Nelson, U. Römling, and G. Marchini. "Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation ofStaphylococcus epidermidis." Letters in Applied Microbiology 50, no. 2 (February 2010): 211–15. http://dx.doi.org/10.1111/j.1472-765x.2009.02778.x.
Full text