Academic literature on the topic 'LOAD DEFORMATION'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LOAD DEFORMATION.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "LOAD DEFORMATION"

1

Karsu, Burak. "The load deformation response of single bolt connections." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-01242009-063304/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Molloy, Patrick Donal. "The load-deformation characteristics of steel-concrete sandwich construction." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MOROTE, CARLOS HUGO SOTO. "STABILITY AND DEFORMATION OF SOIL SLOPES UNDER SEISMIC LOAD." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9532@1.

Full text
Abstract:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO<br>O comportamento sísmico de taludes tem sido um tópico de grande interesse da engenharia geotécnica nos últimos 40 anos. Durante este período, a prática da engenharia nesta área evoluiu do emprego de técnicas elementares para procedimentos numéricos bastante complexos. A abordagem mais simples é a análise pseudo-estática na qual o carregamento do terremoto é simulado por uma aceleração horizontal estática equivalente atuando na massa de solo deslizante, utilizando-se um procedimento de equilíbrio limite (método das fatias), geralmente conservativo. O parâmetro que descreve o comportamento dinâmico do solo é referido como coeficiente sísmico k, e sua seleção depende fortemente da experiência e normas técnicas locais, porque não há maneira simples e segura de se escolher um valor adequado. O segundo procedimento é conhecido como método de Newmark, que envolve o cálculo de uma aceleração de escoamento, definida como a força inercial necessária para o fator de segurança atingir 1 em uma análise pseudo-estática pelo método de equilíbrio limite. O procedimento então usa os registros de aceleração do terremoto de projeto e o integra duplamente no tempo para calcular os deslocamentos permanentes acumulados. O terceiro método é referido como análise de Makdisi- Seed, que procura definir a estabilidade sísmica do talude em termos de deslocamentos aceitáveis em vez de um fator de segurança tradicional através de uma versão modificada do método de Newmark. Esta técnica apresenta uma maneira racional de calcular uma aceleração de escoamento média, necessária para produzir um valor do coeficiente de segurança do talude igual a 1. Gráficos específicos foram também desenvolvidos para estimativa dos deslocamentos permanentes, tendo sido bastante aplicados em aterros rodoviários, barragens e aterros sanitários. Finalmente, o mais sofisticado método para análise de estabilidade sísmica de taludes é conhecido como análise dinâmica, que normalmente incorpora modelos de elementos finitos e relações tensão x deformação complexas numa tentativa de obter melhores representações para o comportamento mecânico de taludes sob cargas cíclicas Os resultados destas análises podem incluir a história no tempo dos deslocamentos e tensões, bem como das freqüências naturais, efeitos de amortecimento, etc. Este trabalho apresenta uma comparação entre os métodos mencionados anteriormente, analisando o comportamento sísmico dos taludes da estrutura de contenção dos resíduos de lixiviação de minério de urânio, na Bahia, e dos taludes do bota-fora sul da mina de cobre Toquepala, situada no Peru.<br>The seismic stability of slopes has been a topic of considerable interest in geotechnical engineering for the past 40 years. During that period, the state of practice has moved from simples techniques to more complicated numerical procedures. The simplest approach is the pseudo-static analysis in which the earthquake load is simulated by an equivalent static horizontal acceleration acting on the mass of the landslide, according to a generally conservative limit equilibrium analysis. The ground motion parameter used in a pseudo-static analysis is referred to as the seismic coefficient k, and its selection has relied heavily on engineering judgment and local code requirements because there is no simple method for determining an appropriate value. The second main procedure is known as the Newmark displacement analysis which involves the calculation of the yield acceleration, defined as the inertial force required to cause the static factor of safety to reach 1 from the traditional limit equilibrium slope stability analysis. The procedure then uses a design earthquake strong-motion record which is numerically integrated twice for the amplitude of the acceleration above the yield acceleration to calculate the cumulative displacements. These displacements are then evaluated in light of the slope material properties and the requirements of the proposed development. The third method is referred to as the Makdisi-Seed analysis sought to define seismic embankment stability in terms of acceptable deformation instead of conventional factors of safety, using a modified Newmark analysis. Their method presents a rational means to determine yield acceleration, or the average acceleration required to produce a factor of safety of unity. Design curves were developed to estimate the permanent earthquake- induced deformations of embankments, which have since been applied to sanitary landfill and highway embankments. Finally, the most sophisticated method for seismic slope stability calculations is known as the dynamic analysis, which normally incorporates a finite element model and a rather complex stress-strain behavior for geological materials in an attempt to obtain a better representation of the behavior of soils under cyclic loading. The results of the analysis can include a time history of displacements and stresses, as well as natural frequencies, effects of damping, etc. This work presents a comparison of the results obtained by the aforementioned approaches, considering the seismic behavior of the slopes of an uranium lixiviation pad situated in Bahia, Brazil, and the South embankment of the waste landfill of the Toquepala Mine, Peru.
APA, Harvard, Vancouver, ISO, and other styles
4

Jakobsen, Bo. "In-situ studies of bulk deformation structures : static properties under load and dynamics during deformation /." Roskilde : Roskilde University, Department of Science, Systems and Models & Center for Fundamental Research, Metal Structures in Four Dimensions Materials Research Department, Risø National Laboratory, 2006. http://hdl.handle.net/1800/3059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McLaughlin, Kirsten Kathleen. "TEM diffraction analysis of the deformation underneath low load indentations." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goudie, K. "Experimental study of the gross deformation of tubular beams." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McMahon, Brendan. "Deformation mechanisms beneath shallow foundations." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244367.

Full text
Abstract:
Shallow foundations can provide the most economical solution for supporting small-scale structures. The design approach is quite simple considering the ultimate bearing capacity and working-load settlement. Research has shown that settlement calculations, determined using a linear-elastic approach, usually govern the design but this approach is inappropriate because soil is highly non-linear, even at small strains. The result is that signifi cant discrepancies are observed between predicted and actual settlements. This uncertainty has seen the development of settlement-based approaches such as Mobilisable Strength Design (MSD). MSD uses an assumed undrained mechanism and accounts for soil non-linearity by scaling a triaxial stress-strain curve to make direct predictions of footing load-settlement behaviour. Centrifuge experiments were conducted to investigate the mechanisms governing the settlement of shallow circular foundations on clay and saturated sand models. Clay model tests were performed on soft or rm kaolin beds, depending on its pre-consolidation. Sand model tests were performed on relatively loose Hostun sand saturated with methyl-cellulose to slow consolidation. One-dimensional actuators were developed to apply footing loads through dead-weight or pneumatic loading. A Perspex window in the centrifuge package allowed digital images to be captured of a central cross-section, during and after footing loading. These were used to deduce soil displacements by Particle Image Velocimetry which were consistent with footing settlements measured directly. Deformation mechanisms are presented for undrained penetration, consolidation due to transient flow, as measured by pore pressure transducers, and creep. A technique was developed for discriminating consolidation settlements from the varying rates of short and long-term creep of clay models. Using MSD, a method for predicting the undrained penetration of a spread foundation on clay was proposed, using database results alone, which then provided estimates of creep and consolidation settlements that follow. The importance of the undrained penetration necessitated further investigation by using the observed undrained mechanism as the basis of an ellipsoidal cavity expansion model. An upper-bound energy approach was used to determine the load-settlement behaviour of circular shallow foundations on linear-elastic and non-linear clays, with yield defined using the von Mises' yield criterion. Linear-elastic soil results were consistent with those obtained from nite element analyses. The non-linear model, as described by a power-law, showed good agreement with both centrifuge experiment results and some real case histories. The single design curve developed through this model for normalised footing pressure and settlement could be used by practising engineers based on existing soil correlations or site investigations.
APA, Harvard, Vancouver, ISO, and other styles
8

Friedman, Ross Aaron. "The dehydration of pharmaceutical hydrates under mechanical load." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/3224.

Full text
Abstract:
Nearly one-third of all pharmaceutical substances on the market are able to sorb water into their crystal lattices to form hydrates, which can often compromise stability during processing and/or storage[1]. The tendency of a hydrate to lose its water of crystallization during the manufacturing process of tablet compression is of particular concern to formulation scientists. The amount of water freed as a function of increasing compaction pressure can be explained by the mobility of water within the compact. The mobility of water is determined by the size and shape of the crystal lattice, the numbers and strengths of the hydrogen bonds, and the presence of high-energy sites of disorder[2]. Due to their differing crystal structures, theophylline monohydrate (THM), citric acid monohydrate (CAM), theophylline-water-citric acid cocrystal hydrate (CATHP hydrate), and dicalcium phosphate dihydrate (DCPD) make for interesting model systems to examine the dehydration under mechanical load. The thermal dehydration of both powders and tablets was carried out via thermal gravimetric analysis (TGA). By comparing the temperatures required to start removal of water loss from the powder to that of the tablet, the average amount of water of crystallization that is freed by the compaction process may be quantified. The average amount of water freed by the compaction process results from a competition between the mechanically-induced disorder of the crystal structure that increases the molecular mobility of water within the tablets, and the trapping of water within the interparticulate void spaces at high compaction pressures. The compressibilities, compactabilities, and tabletabilities of the materials were calculated as a function of increasing compaction pressure. The consolidation of the powder bed under pressure was modeled by out-of-die Heckel Analysis which demonstrated the ease of deformation of the model compounds. XRD was utilized to show the decrease in overall order of the crystal lattice as a result of compression as well as anisotropy within the tablets. Crystallographic approaches were utilized to demonstrate the compactness of the crystal structure, and how it affects water mobility. Relaxation pulse experiments (T1, T2) utilizing solid-state NMR were used to directly probe the mobilities of the water molecules within the crystal lattice of THM. The results from T1 and T2 relaxation experiments directly measure the change in molecular mobility of water within the tablets as a function of compaction pressure. This provided independent verification of the trends in molecular mobility and average water freed as a function of compaction pressure observed during TGA dehydration. Raman spectroscopy was used to indirectly measure the polarizability and vibrational motions of THM, and these results corroborate those obtained from ssNMR and TGA dehydration experiments. Overall, this work highlights the potential impact that tablet compression can have on API hydrate stability. 1. Hilfiker R (editor). 2006. Polymorphism in the Pharmaceutical Industry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co, KGaA. 2. Byrn SR, Pfeiffer RR, Stowell JG. 1999. Solid-state chemistry of drugs. SSCI, Inc.
APA, Harvard, Vancouver, ISO, and other styles
9

O'Brien, Patrick Emmet. "Characterizing the Load-Deformation Behavior of Steel Deck Diaphragms using Past Test Data." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78679.

Full text
Abstract:
Recent research has identified that current code level seismic demands used for diaphragm design are considerably lower than demands in real structures during a seismic event. However, historical data has shown that steel deck diaphragms, common to steel framed buildings, perform exceptionally well during earthquake events. A new alternative diaphragm design procedure in ASCE 7-16 increases diaphragm seismic demand to better represent expected demands. The resulting elastic design forces from this method are reduced by a diaphragm design force reduction factor, Rs, to account for the ductility of the diaphragm system. Currently, there exist no provisions for Rs factors for steel deck diaphragms. This research was therefore initiated to understand inelastic steel deck diaphragm behavior and calculate Rs factors. A review of the literature showed that a large number of experimental programs have been performed to obtain the in-plane load-deformation behavior of steel deck diaphragms. To unify review of these diaphragm tests and their relevant results, a database of over 750 tested specimens was created. A subset of 108 specimens with post-peak, inelastic behavior was identified for the characterization of diaphragm behavior and ductility. A new recommended method for predicting shear strength and stiffness for steel deck diaphragms with structural concrete fill is proposed along with an appropriate resistance factor. Diaphragm system level ductility and overstrength are estimated based on subassemblage test results and Rs factors are then calculated based on these parameters. The effects of certain variables such as deck thickness and fastener spacing on diaphragm ductility are explored.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
10

Colin, Julie Anne. "Deformation History and Load Sequence Effects on Cumulative Fatigue Damage and Life Predictions." University of Toledo / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1260390033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!