Academic literature on the topic 'Load-flow calculations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Load-flow calculations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Load-flow calculations"

1

Hartmann, M. J., and G. P. McCarthy. "Computerized DC (battery) load flow calculations." IEEE Industry Applications Magazine 2, no. 4 (1996): 53–56. http://dx.doi.org/10.1109/2943.503529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mombauer, W., and K. H. Week. "Load modelling for harmonic flow calculations." European Transactions on Electrical Power 3, no. 6 (September 6, 2007): 453–60. http://dx.doi.org/10.1002/etep.4450030610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shu, Tian, and Wang Li. "Power Flow Calculation in Distribution System Considering Different Load Model." Advanced Materials Research 722 (July 2013): 103–6. http://dx.doi.org/10.4028/www.scientific.net/amr.722.103.

Full text
Abstract:
In traditional power flow calculation used constant power load model, it was completely unreasonable to assume that all load nodes in power system can be classified as PQ nodes.In that the result of constant power load model does not accurately reflect the distribution characteristics of network power flow. To put forward power flow calculation considering load models ,such as constant power load ,constant current load and constant resistance load, derives error equations of the node power, calculates element of Jacobian matrix. So, by using MATLAB simulation software ,the program for power flow are presented, which based on the method of different load models, taking 21-node system for example and makes comparative calculations. The research shows that power flow calculation considering different load models can get more reasonable solution.
APA, Harvard, Vancouver, ISO, and other styles
4

Seng, Chieng Kai, Tay Lea Tien, and Syafrudin Masri. "Load Flow Analysis Using Second-Order Load Flow Methods and its Variations." Applied Mechanics and Materials 785 (August 2015): 73–77. http://dx.doi.org/10.4028/www.scientific.net/amm.785.73.

Full text
Abstract:
The load flow or power flow computer program is the basic tool for investigating the steady-state conditions of power system. This paper introduces improved algorithms based on the basic Second-order Load Flow method for a wide range of electrical bus system sizes. It is attractive for accurate or approximate off- and on-line calculations for routine and contingency purposes. Tests of 4 different variations based on the basic Second-order Load Flow method are run on 6 different standard bus systems and the results are discussed in this paper.
APA, Harvard, Vancouver, ISO, and other styles
5

Harifin, Hayatul, Novalio Daratha, and M. Khairul Amri Rosa. "Pengembangan Perangkat Lunak Untuk Analisis Aliran Beban Tiga Fasa Pada Jaringan Tegangan Rendah Dengan Metode Newton Berbasis Calculus Wirtinger." JURNAL AMPLIFIER : JURNAL ILMIAH BIDANG TEKNIK ELEKTRO DAN KOMPUTER 10, no. 2 (November 30, 2020): 20–27. http://dx.doi.org/10.33369/jamplifier.v10i2.15318.

Full text
Abstract:
AbstractLoad flow analysis is a study to plan and determine the amount of power in an electric power system. During its development, industry requires a large amount of electric power and uses electrical equipment as a means of production. The benefits of an electric load flow analysis are to find out the amount of power in the electric power system whether it still meets predetermined limits, and to find out the amount of voltage at each point, and to obtain initial conditions for the new system planning. Load flow analysis begins calculating the active power and reactive power at each node (bus) installed, loading on the channel or conductor, the load flow calculation will be assisted using the Julia program. From the results of calculations using the Julia program, the voltage at each point with the smallest stress is obtained, namely the 10th point of 209.89 - j10.34V for phase A, -107.39 - j186.87V for phase B, -108.12 + j178,51V for phase CKey Words: Drop Voltage, Julia, Load Flow
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, Wei, Fang Yang, and Zheng Dao Liu. "Research on Fast Decoupled Load Flow Method of Power System." Applied Mechanics and Materials 740 (March 2015): 438–41. http://dx.doi.org/10.4028/www.scientific.net/amm.740.438.

Full text
Abstract:
The power flow calculation is study the steady-state operation of the power system as basic electrical calculations. It is given the power system network topology, device parameters and determines system health boundary conditions, draw a detailed operating status of the power system through numerical simulation methods, such as voltage amplitude and phase angle on the bus system the power distribution and the power loss. Flow calculation is the power system operation, planning and safety, reliability analysis, is fundamental to the system voltage regulation, network reconfiguration and reactive power optimization must call the function, so the trend has very important significance to calculate the power system.
APA, Harvard, Vancouver, ISO, and other styles
7

Seng, Chieng Kai, Tay Lea Tien, Janardan Nanda, and Syafrudin Masri. "Load Flow Analysis Using Improved Newton-Raphson Method." Applied Mechanics and Materials 793 (September 2015): 494–99. http://dx.doi.org/10.4028/www.scientific.net/amm.793.494.

Full text
Abstract:
This paper describes a simple, reliable and swift load-flow solution method with a wide range of practical application. It is attractive for accurate or approximate off-and on-line calculations for routine and contingency purposes. It is applicable for networks of any size and can be executed effectively on computers. The method is a development on conventional load flow principle and its precise algorithm form has been determined to bring improvement to the conventional techniques. This paper presents a comparative study of the new constant Jacobian matrix load flow method built based on several conventional NR load flow methods. Assumptions are made so as to make the matrix constant, thus eliminating the need of calculating the matrix in every iteration. The proposed method exhibits better computation speed.
APA, Harvard, Vancouver, ISO, and other styles
8

Xiao, P., D. C. Yu, and W. Yan. "A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations." IEEE Transactions on Power Systems 21, no. 1 (February 2006): 153–59. http://dx.doi.org/10.1109/tpwrs.2005.857847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meisel, J. "System incremental cost calculations using the participation factor load-flow formulation." IEEE Transactions on Power Systems 8, no. 1 (1993): 357–63. http://dx.doi.org/10.1109/59.221220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Böckl, Benjamin, Matthias Greiml, Lukas Leitner, Patrick Pichler, Lukas Kriechbaum, and Thomas Kienberger. "HyFlow—A Hybrid Load Flow-Modelling Framework to Evaluate the Effects of Energy Storage and Sector Coupling on the Electrical Load Flows." Energies 12, no. 5 (March 12, 2019): 956. http://dx.doi.org/10.3390/en12050956.

Full text
Abstract:
HyFlow is a grid-based multi-energy system (MES) modelling framework. It aims tomodel the status quo of current energy systems, future scenarios with a high share of fluctuatingenergy sources or additional consumers like electric vehicles, and to compare solution strategies ifcertain parts of the infrastructure are congested. In order to evaluate the congestion limits and thefeasibility and suitability of solution strategies (e.g., energy storage, sector coupling technologies,demand response (DR)), load flow calculations of all three main grid-bound energy carriers areimplemented in one single modelling framework. In addition to the implemented load flow models,it allows the interaction of these grids with the use of hybrid elements. This measure enables aproper assessment of future scenarios, not only for the infrastructure of one energy carrier, but forthe overall energy system. The calculation workflow of HyFlow, including the implemented loadflow calculations, as well as the implementation of the flexibility options, is described in detail inthe methodology section. To demonstrate the wide range of applicability of HyFlow with differentspatial ranges, two case studies referring to current research problems are presented: a city and aregion surrounding the mentioned city. The calculations for the mentioned case studies areperformed for three levels. A “status quo” level, a “high-stress” level with added fluctuatingenergy sources and consumers, and an “improvement” level, where flexibility options areintroduced to the system. The effect of the flexibility options on future energy grids is, therefore,analyzed and evaluated. A wide variety of evaluation criteria can be selected. For example, themaximum load of certain power lines, the self-sufficiency of the overall system, the total transportlosses or the total energy consumption.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Load-flow calculations"

1

Lidström, Erica. "Voltage Stability at Hydropower Stations Influenced by close-located Wind Farms." Thesis, Uppsala universitet, Elektricitetslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-181017.

Full text
Abstract:
The number of integrated wind farms into the power system is increasing as well as the total installed wind power capacity, which may cause voltage stability concerns. Additionally, there are European Transmission System Operators (TSOs) that do notinvolve wind farms in contributing to the voltage control in any significant extent. In the on-going project by the European Network of Transmission System Operators for Electricity (ENTSO-E), to update the European grid requirements, this will probably be changed. The aim of this Master thesis is to demonstrate the voltage variations in the high voltage grid during different operational conditions. Thereafter, clarify when high voltages may occur at the connection point of the studied wind farm. Furthermore, it is investigated whether the wind farm is able to regulate the voltage in the cases when high voltages occur. The load flow and switching studies are performed with the software tool Power System Simulator for Engineering (PSS/E) version 32.1.1. The grid model represents a part of the Swedish high voltage grid. Since voltage stability often is a local issue, special modelling aspects has been performed at the hydropower generators in the close-located area of the wind farm. The main conclusions of this Master thesis are that high voltages is associated with low load situations, i.e., mostly during summer nights. Furthermore, the studied close-located reactor is not able to keep the voltage within desired level by itself. Finally, it has been shown that the wind farm is technically able to contribute to the voltage stability in the close-located area. But since wind power is an intermittent power source it makes the voltage regulating capacity less reliable compared to hydropower. The results and conclusions given in this Master thesis have also been summarized in a conference paper for The 11th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, see Lidström et al [35].
APA, Harvard, Vancouver, ISO, and other styles
2

Borquez, Caballero Rodrigo Edgardo. "Calculating the Distance to the Saddle-Node Bifurcation Set." Thesis, KTH, Elektriska energisystem, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119236.

Full text
Abstract:
A power system will experience voltage collapse when the loads increase up to a certain critical limit, where the system physically cannot support the amount of connected load. This point identified as a Saddle- Node Bifurcation (SNB), corresponds to a generic instability of parameterized differential equation models and represents the intersection point where different branches of equilibria meet. At this point the jacobian matrix of the system is singular and the system loses stability bringing the typical scenario of voltage collapse. To prevent voltage instability and collapse, the computation of the closest distance from a present operating point to the saddle-node bifurcation set can be used as a loadability index useful in power system operation and planning. The power margin is determined by applying the iterative or direct method described in [16]. Numerical examples of both methods applied to IEEE 9-bus system and IEEE 39-bus system shows that the iterative method is more reliable although it requires a longer computation time. The stability of the system is negatively affected in two ways when generators reach their reactive power limits: the voltage stability margin is deteriorated, or immediate voltage instability and collapse is produced.
APA, Harvard, Vancouver, ISO, and other styles
3

Guilmineau, Justine Valérie Magali. "Study of a generation capacity expansion on an island." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287354.

Full text
Abstract:
The study carried out in this master thesis is part of a larger project led by Energynautics GmbH focusing on renewable energy development in the Caribbean. One of the Caribbean states, consisting of multiple islands, has set a target of 30 % of renewable energy in the power sector by 2030. The first objective of the thesis is to develop optimal generation capacity expansion plans for two different islands of this country, utilizing solar PV generation, which is the only available renewable energy resource. To achieve this objective, three main tasks are identified. The first is the development of an optimal generation capacity expansion plan for the next three years using the optimization tool HOMER Energy. At the beginning only diesel generation is present on the islands. For each study case year, the installed capacity of PV and BESS is optimized and enabling technologies such as curtailment (controllability of PV) and grid-forming inverters are deployed. The second task focuses on the development of a new dispatch strategy, improving on the black box dispatch algorithms built into HOMER. The dispatch strategy minimises the cost of electricity generation and is based on a rolling 48 hours forecasts of the load and PV. It is implemented in MATLAB and linked to HOMER via the built-in MATLAB interface. As HOMER is focused on generation expansion and dispatch and inherently neglects the grid, a grid study is required to assess the stability of the network. This study is the last task of the thesis and is limited to determined steady-state voltage and the asset loading on one of the studied islands through load flow simulations in DIgSILENT PowerFactory. It is shown that there are no major issues even at high PV shares, however, grid performance can be improved if the PV unit is equipped with reactive power capability to control the voltage. A study on the impact of the Q(U)- control and the PQ-capability of the PV and BESS inverters is performed.
Studien som genomförts i detta examensarbete är en del av ett större projekt vilket leds av Energynautics GmbH med fokus på utveckling av förnybar energi i Karibien. En av de Karibiska staterna, bestående av flera öar, har ett mål på 30 % förnybar energi i elkraftssektorn innan 2030. Första syftet med examensarbetet är att utveckla optimala utbyggnadsplaner för produktionskapaciteten för två olika öar i detta land, med användning av solcellsproduktion, vilket är den enda tillgängliga förnybara energikällan. Den första uppgiften är utvecklingen av en optimal utbyggnadsplan för produktionskapaciteten för de kommande tre åren med optimeringsverktyget HOMER Energy. Från början fanns det bara dieselgeneratorer på öarna. För varje studerat år optimeras den installerade kapaciteten av PV och BESS samt aktivering av möjliggörande teknologier som begränsning av PV-produktion och grid-forming växelriktare. Den andra uppgiften fokuserar på utvecklingen av en ny driftsstrategi, förbättring av den basala driftsalgoritm som är inbyggd i HOMER. Driftsstrategin minimerar kostnaden av elproduktionen och är baserad på en 48 timmars prognos av laster och PV. Den är implementerad i MATLAB och kopplad till HOMER via det inbyggda MATLABgränssnittet. Eftersom HOMER fokuserar på produktionsutbyggnad och drift och i praktiken försummar elnätet, krävs en studie av elnätet för att utvärdera stabiliteten av elnätet. Studien av denna sista uppgift i examensarbetet är begränsad till att bestämma spänningen vid jämnviktsläge och den utvärderade lasten på en av de studerade öarna genom belastningsfördelningsberäkning i DIgSILENT PowerFactory. Det visade sig att det inte fanns några stora problem även med stora andelar PV, men elnätets prestanda kan förbättras om PV-omriktarna är utrustade med reaktiv effektstyrning som kontrollerar spänningen. En studie avinverkan från Q(U)-styrning och PQ-kapacitet av PV- och BESS-växelriktare har utförts.
APA, Harvard, Vancouver, ISO, and other styles
4

Hallqvist, Karl. "Högtempererat borrhålslager för fjärrvärme." Thesis, Uppsala universitet, Naturresurser och hållbar utveckling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-231586.

Full text
Abstract:
The district heating load is seasonally dependent, with a low load during periods of high ambient temperature. Thermal energy storage (TES) has the potential to shift heating loads from winter to summer, thus reducing cost and environmental impact of District Heat production. In this study, a concept of high temperature borehole thermal energy storage (HT-BTES) together with a pellet heating plant for temperature boost, is presented and evaluated by its technical limitations, its ability to supply heat, its function within the district heating system, as well as its environmental impact and economic viability in Gothenburg, Sweden, a city with access to high quantities of waste heat. The concept has proven potentially environmentally friendly and potentially profitable if its design is balanced to achieve a good enough supply temperature from the HT-BTES. The size of the heat storage, the distance between boreholes and low borehole thermal resistance are key parameters to achieve high temperature. Profitability increases if a location with lower temperature demand, as well as risk of future shortage of supply, can be met. Feasibility also increases if existing pellet heating plant and district heating connection can be used and if lower rate of return on investment can be accepted. Access to HT-BTES in the district heating network enables greater flexibility and availability of production of District Heating, thereby facilitating readjustments to different strategies and policies. However, concerns for the durability of feasible borehole heat exchangers (BHE) exist in high temperature application.
Värmebehovet är starkt säsongsberoende, med låg last under perioder av högre omgivningstemperatur och hög last under perioder av lägre omgivningstemperaturer. I Göteborg finns en stor mängd spillvärme tillgängligt för fjärrvärmeproduktion sommartid när behovet av värme är lågt. Tillgång till säsongsvärmelager möjliggör att fjärrvärmeproduktion flyttas från vinterhalvår till sommarhalvår, vilket kan ge såväl lönsamhet som miljönytta. Borrhålsvärmelager är ett förhållandevis billigt sätt att lagra värme, och innebär att berggrunden värms upp under sommaren genom att varmt vatten flödar i borrhål, för att under vinterhalvåret användas genom att låta kallt vatten flöda i borrhålen och värmas upp. I traditionella borrhålsvärmelager används ofta värmepump för att höja värmelagrets urladdade temperatur, men på grund av höga temperaturkrav för fjärrvärme kan kostnaden för värmepump bli hög. I denna rapport föreslås ett system för att klara av att nå höga temperaturer till en lägre kostnad. Systemet består av ett borrhålsvärmelager anpassat för högre temperaturer (HT-BTES) samt pelletspannor för att spetsa lagrets utgående fluid för att nå hög temperatur. Syftet med rapporten är att undersöka potentialen för detta HT-BTES-system med avseende på dess tekniska begränsningar, förmåga till fjärrvärmeleverans, konsekvenser för fjärrvärmesystemet, samt lönsamhet och miljöpåverkan. För att garantera att inlagringen av värme inte är så stor att priset för inlagrad värme ökar väsentligt, utgår inlagringen från hur mycket värme som kyls bort i fjärrvärmenätet sommartid. I verkligheten finns betydligt mer värme tillgänglig till låg kostnad. När HT-BTES-systemet producerar fjärrvärme, ersätts fjärrvärmeproduktion från andra produktionsenheter, förutsatt att HT-BTES-systemets rörliga kostnader är lägre. I Göteborg ersätts främst naturgas från kraftvärme, men också en del flis. Kostnadsbesparingen beror på differensen för total fjärrvärmeproduktionskostnad med och utan HT-BTES-systemet. Undersökningen visar att besparingen är större om HT-BTES-systemet placeras i ett område där det är möjligt att mata ut fjärrvärme med lägre temperatur. Om urladdning från HT-BTES kan ske med hög temperatur ökar också besparingen. Detta sker om lagrets volym ökar, om avståndet mellan borrhål minskar eller om värmeöverföringen mellan det flödande vattnet i borrhålen och berggrunden ökar. Dessa egenskaper för lagret leder också till minskade koldioxidutsläpp. Storleken på besparingen beror dock i hög grad på hur bränslepriser utvecklas i framtiden. Strategiska fördelar med HT-BTES-systemet inkluderar; minskad miljöpåverkan, robust system med lång teknisk livslängd (för delar av HT-BTES-systemet), samt att inlagring av värme kan ske från många olika produktionsenheter. Dessutom kan positiva bieffekter identifieras. Undersökningen visar att HT-BTES-systemet har god potential att ge lönsamhet och minskad miljöpåverkan, och att anläggning och drift av lagret kan ske utan omfattande lokal miljöpåverkan. Det har också visats att de geologiska förutsättningarna för HT-BTES är goda på många platser i Göteborg, även om lokala förhållanden kan skilja sig åt. För att nå lönsamhet för HT-BTES-systemet krävs en avvägning på utformning av lagret för att nå hög urladdad temperatur utan att investeringskostnaden blir för stor. Undersökningen visar att om anslutning av HT-BTES-systemet kan ske mot befintlig anslutningspunkt eller till befintlig värmepanna kan investeringskostnaden minska och därmed lönsamheten öka. Placering av HT-BTES-systemet i områden med risk för överföringsbegränsningar kan också minska behovet av att förstärka fjärrvärmenätet, och således bidra till att minska de kostnader som förstärkning av nätet innebär. Betydelsefulla parametrar för att nå lönsamhet för HT-BTES-system inkluderar dessutom kostnaden för inlagrad värme liksom vilket vinstkrav som kan accepteras. Tillgång till HT-BTES möjliggör ökad nyttjandegrad och flexibilitet för fjärrvärmeproduktionsenheter, och därmed ökad anpassningsmöjlighet till förändrade förutsättningar på värmemarknaden. Dock återstår att visa att komponenter som klarar de höga temperaturkraven kan tillverkas till acceptabel kostnad.
APA, Harvard, Vancouver, ISO, and other styles
5

YANG, XIANG-MIN, and 楊翔閔. "Load Flow Calculation for an Industrial Network Example." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/4ypau3.

Full text
Abstract:
碩士
崑山科技大學
光電工程研究所
107
Industrial Network is an industrial grid model whose systems and parameters are provided by DIgSILENT. The system consists of 41 buses, 44 lines, 2 generators, 27 motors, and 17 transformers. What is discussed in this paper is to observe whether the standard value of the relevant equipment is still in the rated range based on the power current calculation of the accident. Divided into several different accidents, there are generators, external power grids, line single-line disconnect, line double-line disconnect. The accident resulted in power failure, when you perform support power, observe the normal operation of the power grid, will there be any line overload problem, can it be controlled in rated range, line current < 0.90 pu, transformer power < 0.90 pu, whether the bus voltage is larger than 1.05 Pu or less than 0.95 pu.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Load-flow calculations"

1

Henze, Janosch, Tanja Kneiske, Martin Braun, and Bernhard Sick. "Identifying Representative Load Time Series for Load Flow Calculations." In Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy, 83–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71643-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Henze, Janosch, Stephan Kutzner, and Bernhard Sick. "Sampling Strategies for Representative Time Series in Load Flow Calculations." In Data Analytics for Renewable Energy Integration. Technologies, Systems and Society, 27–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04303-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qin, Nan. "Load Flow Calculation." In Voltage Control in the Future Power Transmission Systems, 13–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69886-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raza, Muhammad. "Load Flow Calculation and Its Application." In PowerFactory Applications for Power System Analysis, 1–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12958-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Su, Xiangjing, Xianlin Liu, Ziqi Wang, and Yuanshan Guo. "A Study of Improvements on the Performances of Load Flow Calculation in Newton Method." In Lecture Notes in Electrical Engineering, 485–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21697-8_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Xue, Jianxia Pei, and Dajun Du. "A Combined Iteration Method for Probabilistic Load Flow Calculation Applied to Grid-Connected Induction Wind Power System." In Lecture Notes in Computer Science, 290–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15621-2_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Load Flow Calculations." In Power Systems and Restructuring, 223–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118558300.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Load-Flow and Short-Circuit Current Calculation." In Power System Engineering, 181–211. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527679065.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Load-Flow and Short-Circuit Current Calculation." In Power System Engineering, 173–203. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. http://dx.doi.org/10.1002/9783527622795.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Macangus-Gerrard, Geoff. "Feeder Protection, Conductor Sizing, Load Flow and Fault Calculation." In Offshore Electrical Engineering Manual, 227–35. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-385499-5.00025-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Load-flow calculations"

1

Neisius, H. T., I. Dzafic, S. Henselmeyer, D. Ablakovic, and N. Lecek. "Modeling of auto-transformers for load flow calculations." In 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). IEEE, 2012. http://dx.doi.org/10.1109/isgteurope.2012.6465850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peiyuan Chen, Zhe Chen, and Birgitte Bak-Jensen. "Comparison of steady-state SVC models in load flow calculations." In 2008 43rd International Universities Power Engineering Conference (UPEC). IEEE, 2008. http://dx.doi.org/10.1109/upec.2008.4651502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martinez, Juan A., and Jacinto Martin-Arnedo. "Distribution load flow calculations using time driven and probabilistic approaches." In 2011 IEEE Power & Energy Society General Meeting. IEEE, 2011. http://dx.doi.org/10.1109/pes.2011.6039171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Malan, Arnaud G. "A Kriging Based Corrected Potential Flow ROM for Gust Load Calculations." In 2018 Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martinez, Juan A., and Jean Mahseredjian. "Load flow calculations in distribution systems with distributed resources. A review." In 2011 IEEE Power & Energy Society General Meeting. IEEE, 2011. http://dx.doi.org/10.1109/pes.2011.6039172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cicoria, R. "Load flow calculations on distribution networks by using a statistical approach." In 14th International Conference and Exhibition on Electricity Distribution (CIRED 1997 - Distributing Power for the Millennium). IEE, 1997. http://dx.doi.org/10.1049/cp:19970627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hoogsteen, Gerwin, Albert Molderink, Vincent Bakker, and Gerard J. M. Smit. "Integrating LV network models and load-flow calculations into smart grid planning." In 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE). IEEE, 2013. http://dx.doi.org/10.1109/isgteurope.2013.6695427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mousavizadeh, S., and M. R. Haghifam. "Load flow calculations in ac/dc distribution network including weakly mesh, distributed generation and energy storage units." In 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.1053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Petrovic, Milan V., and Walter Riess. "Off-Design Flow Analysis and Performance Prediction of Axial Turbines." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-055.

Full text
Abstract:
Through-flow methods for calculations in axial flow turbines are limited by two facts: they cannot handle local flow reversal, and loss prediction at off-design operating conditions is not sufficiently accurate. An attempt to overcome these limitations is presented in this paper. The developed calculation method is based on the through-flow theory and the finite element solution procedure, but it also includes extensions and improvements. Consequently, the method may be used to predict the flow field and the turbine performance at the design load as well as for wide range of part loads. The code is able to calculate flow in axial turbines at subsonic and transonic conditions. The reliability of the method is verified by calculations for several gas and steam turbines. Results of flow calculation and performance prediction of 4-stage experimental air turbine and LP steam turbine are also presented herein. Low load operation with flow reversal in the hub region behind the last rotor blade row and loads, at which part of blading operates with power consumption, are especially analyzed. All numerical results are compared to the results of extensive experimental investigations. The correspondence, even for low loads, is very good.
APA, Harvard, Vancouver, ISO, and other styles
10

Weber, Gerald, and Michael C. Catapano. "Replacement Feedwater Heater Performance Modeling and Rating Calculations." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88172.

Full text
Abstract:
It is not uncommon to expect that feedwater heaters will require replacement over their Unit’s service life. In some cases, Unit upgrades, changes in the full range of operation, and the absence of root cause failure analysis can lead to unsuitable replacements. Neglecting these considerations can result in the continuance of similar failures as heaters are either replaced in-kind or not to the extent necessary as dictated by the changes in load and/or how they are operated. The heater technical specification must not only address the obvious issues related to changes in tube material, quality control, and references to the current state-of-the-art heater standards, but also the full range of current and projected modes of operation. An important factor in obtaining a heater that will last reliably for many years is to specify one that will be versatile enough to handle not only the normal base load operation, but will also safely withstand higher loads, higher heat inputs, and other modes of operation reasonably expected. The replacement heater specification must define the full range of projected load impositions to allow the Vendor to consider and adapt his internal layouts and physical geometries to accommodate them safely and conservatively. This paper shall illustrate how performance modeling and predictive rating calculations can be valuable tools in helping to identify the full range of conditions to be considered by the Vendor so as to optimize the specification of the new heater. A variety of hypothetical cases can be examined in order to help determine the optimal design and its effects on the entire heater system as well as projected resultant differences in Unit load and heat rate or efficiency. Constructing a performance mode model, such as the PEPSE example utilized herein, for single heater analysis is quick and relatively easy. The feedwater and drain inlet conditions (temperature, pressure and flow), the heater shell pressure, and the required Terminal Temperature Difference (TTD) and Drains Cooler Approach (DCA) are inputs to the model which then calculates the required steam flow demand and the heater outlet conditions. Using this tool, the initial design, current minimum and full load (from plant historical data or PI data), future full load, abnormal/overload conditions and any other pertinent analysis may be accomplished. The key output data delivered by the model is the required steam and drain flows obtained by the energy balance. This information is then specified to the heater Vendors as it applies to the rating and physical sizing of the replacement. This information can be crucial to ensure that the replacement heater(s) will be capable of providing long, reliable life for even the worst load potentials.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography