Academic literature on the topic 'Load induced Anisotropy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Load induced Anisotropy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Load induced Anisotropy"
Dmowski, Wojtek, and Takeshi Egami. "Observation of structural anisotropy in metallic glasses induced by mechanical deformation." Journal of Materials Research 22, no. 2 (February 2007): 412–18. http://dx.doi.org/10.1557/jmr.2007.0043.
Full textKahraman, Hasan, and Edmund Haberstroh. "DIRECTION-DEPENDENT AND MULTIAXIAL STRESS-SOFTENING BEHAVIOR OF CARBON BLACK–FILLED RUBBER." Rubber Chemistry and Technology 87, no. 1 (March 1, 2014): 139–51. http://dx.doi.org/10.5254/rct.13.87910.
Full textLitewka, A. "Load-induced oriented damage and anisotropy of rock-like materials." International Journal of Plasticity 19, no. 12 (December 2003): 2171–91. http://dx.doi.org/10.1016/s0749-6419(03)00064-0.
Full textKarasahin, Mustafa. "An anisotropic model of unbound granular material under repeated loading." Thermal Science 23, Suppl. 1 (2019): 295–302. http://dx.doi.org/10.2298/tsci181021043k.
Full textDe Marchi, Nico, WaiChing Sun, and Valentina Salomoni. "Shear Wave Splitting and Polarization in Anisotropic Fluid-Infiltrating Porous Media: A Numerical Study." Materials 13, no. 21 (November 5, 2020): 4988. http://dx.doi.org/10.3390/ma13214988.
Full textThomopoulos, Stavros, Gregory M. Fomovsky, Preethi L. Chandran, and Jeffrey W. Holmes. "Collagen Fiber Alignment Does Not Explain Mechanical Anisotropy in Fibroblast Populated Collagen Gels." Journal of Biomechanical Engineering 129, no. 5 (February 15, 2007): 642–50. http://dx.doi.org/10.1115/1.2768104.
Full textBarret, C., and S. Baste. "Effective Elastic Stiffnesses of an Anisotropic Medium Permeated by Tilted Cracks." Journal of Applied Mechanics 66, no. 3 (September 1, 1999): 680–86. http://dx.doi.org/10.1115/1.2791562.
Full textPrioul, Romain, Andrey Bakulin, and Victor Bakulin. "Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic formations: Theory and laboratory verification." GEOPHYSICS 69, no. 2 (March 2004): 415–25. http://dx.doi.org/10.1190/1.1707061.
Full textYeh, Wei-Ching, Chia-Dou Ho, and Wen-Fung Pan. "An endochronic theory accounting for deformation induced anisotropy of metals under biaxial load." International Journal of Plasticity 12, no. 8 (January 1996): 987–1004. http://dx.doi.org/10.1016/s0749-6419(96)00038-1.
Full textNiazi, M. S., V. Timo Meinders, H. H. Wisselink, C. H. L. J. ten Horn, Gerrit Klaseboer, and A. H. van den Boogaard. "A Plasticity Induced Anisotropic Damage Model for Sheet Forming Processes." Key Engineering Materials 554-557 (June 2013): 1245–51. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1245.
Full textDissertations / Theses on the topic "Load induced Anisotropy"
Speck, Kerstin. "Beton unter mehraxialer Beanspruchung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1216628091575-43714.
Full textSpeck, Kerstin. "Beton unter mehraxialer Beanspruchung: Ein Materialgesetz für Hochleistungsbetone unter Kurzzeitbelastung." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23705.
Full textCosta, Luís António Veiga da. "Fendas de secagem em vigas de madeira: causas, efeitos na capacidade resistente e métodos de reparação." Master's thesis, 2015. http://hdl.handle.net/1822/40597.
Full textA madeira é um material higroscópico, e por isso, está em constante troca com o ambiente circundante. Sob condições de humidade relativa e temperatura constantes, a madeira tende a atingir um teor em água de equilíbrio constante. Além de higroscópica, a madeira é heterogénea, anisotrópica e retrátil. No entanto, o comportamento retrátil da madeira só se verifica, quando esta varia de teor em água para patamares inferiores ao seu ponto de saturação das fibras, ponto a partir do qual a madeira começa a perder água higroscópica contida nas paredes celulares. A heterogeneidade e a anisotropia da madeira, fazem com que a retração da madeira seja distinta para as três direções fundamentais de crescimento. A retração tangencial é cerca de 1.5 a 2 vezes superior à radial. Este diferencial nas retrações transversais da madeira, são a principal causa da ocorrência de fendas longitudinais às fibras da madeira. Estas ocorrem normalmente devido a processos de secagem não controlados, que resultam em tensões de tração internas transversais às fibras superiores às resistentes, sendo esta uma das propriedades fracas do material lenhoso. Estas fendas desenvolvem-se segundo planos radiais. Uma madeira com um coeficiente de anisotropia (relação entre a retração tangencial e radial) próximo da unidade, considera-se como sendo estável dimensionalmente, e menos propensa ao surgimento de fendas e empenos. No entanto, as condições higrotérmicas do ambiente circundante de uma peça de madeira não são constantes, fazendo com que a madeira perca e ganhe humidade em função da variação do clima circundante, sempre em busca do teor em água de equilibro. Como o transporte de humidade no interior da madeira é lento, as camadas externas de uma dada secção atingem mais rapidamente o teor em água de equilibro que as camadas internas. Esta diferente entre teores em água entre camadas adjacentes, designado como gradiente de humidade, resulta num diferencial de extensões de retração, e por conseguinte em tensões internas, que quando ultrapassam a capacidade resistente à tração transversal às fibras se libertam em forma de fenda. São vários os fatores que estão na génese do aparecimento de fendas e do modo como estas afetam a resistência dos elementos estruturais de madeira. Contudo existem métodos e técnicas de reparação especialmente desenvolvidos, para minimizar ou anular o seu efeito negativo na capacidade portante dos elementos estruturais de madeira.
Wood is a hygroscopic material, and therefore, is in continuous exchange with the surrounding environment. Under conditions of relative humidity and constant temperature, the wood tends to reach a constant water content. In addition to the hygroscopic nature, wood is heterogeneous, and anisotropic retractable. However, the behavior of wood retractable only occurs, when their water content change in a range below fibers saturation point, from which the wood begins to lose hygroscopic water contained in cell walls. The heterogeneity and anisotropy of timber, make retraction of the timber be different for the three fundamental directions. The tangential shrinkage is about 1.5 to 2 times the radial direction. This difference in transverse retraction of the timber, are the primary cause of the occurrence of longitudinal cracks on wood fibers. Is typically occurs because of uncontrolled drying processes which result in transverse internal tensile stresses higher than the resistant fibers, this being a poor property of timber. These cracks develop radial planes. With a coefficient of anisotropy (the ratio between tangential and radial shrinkage) close to the unit, is considered to be dimensionally stable, and less likely to cracks and warp. However, the hygrothermal conditions of the surrounding environment of a piece of wood are not constant, causing losses and gains of wood moisture content in function of the variation in humidity of the surrounding atmosphere, always seeking the equilibrium water content. As the moisture transport within timber is slow, the outer layers of a given section quickly reach the equilibrium water content of the outer layers. This different between water contents between adjacent layers, referred to as moisture gradient, giving rise differential shrinkage extensions, and therefore in internal stresses, which when exceed the load bearing capacity transversal to the fibers are released in the form of cracks. There are several factors that are at the origin of cracks and how these affect the resistance of structural elements of wood. However there are methods and repair techniques specifically designed to minimize or cancel its negative effect on the bearing capacity of the structural elements of wood.
Ho, Chia-Dou, and 何加道. "Experimental Verification of An Endochronic Theory Accounted for Deformation Induced Anisotropy under Biaxial Loads." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/29418589288218875645.
Full textConference papers on the topic "Load induced Anisotropy"
Yoo, Jin-Hyeong, James B. Restorff, Marilyn Wun-Fogle, and Alison B. Flatau. "Induced Magnetic Anisotropy in Stress-Annealed Galfenol Laminated Rods." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-636.
Full textNagel, Thomas, and Daniel J. Kelly. "Compaction and Anisotropy Induced by Remodeling of the Collagen Network’s State of Tension-Compression Transition." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53399.
Full textCornejo, S. L., J. F. Rodriguez, A. A. Valencia, A. M. Guzman, and E. A. Finol. "Flow-Induced Wall Mechanics of Patient-Specific Aneurysmal Cerebral Arteries: Nonlinear Isotropic vs. Anisotropic Wall Stress." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192626.
Full textHart, James D., Nasir Zulfiqar, and Joe Zhou. "Evaluation of Anisotropic Pipe Steel Stress-Strain Relationships Influence on Strain Demand." In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90495.
Full textZhang, C. L., P. F. Feng, and D. Wang. "The Effect of Crystallographic Orientation on Material Removal Behavior of (001) Plane KDP Crystal in Nano-Scratch Test." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85869.
Full textNeupane, Sunil, Samer Adeeb, Roger Cheng, and Joe Zhou. "Modeling Approaches for Anisotropic Material Properties of High Strength Steel Pipelines and the Effect on Differential Settlement." In 2010 8th International Pipeline Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ipc2010-31206.
Full textSwan, Colby C., and Hyung-Joo Kim. "Multi-Scale Micro-Mechanical Poroelastic Modeling of Fluid Flow in Cortical Bone." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61002.
Full textBarber, Ramona B., Craig S. Hill, Pavel F. Babuska, Alberto Aliseda, Richard Wiebe, and Michael R. Motley. "Adaptive Composites for Load Control in Marine Turbine Blades." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-62068.
Full textAshrafizadeh, Hossein, Ryan Schultz, Bo Xu, and Pierre Mertiny. "Development of a Novel Technique Using Finite Element Method to Simulate Creep in Thermoplastic Fiber Reinforced Polymer Composite Pipe Structures." In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21529.
Full textAziz, Saad, John Gale, Arya Ebrahimpour, and Marco P. Schoen. "Passive Control of a Wind Turbine Blade Using Composite Material." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63899.
Full text