Academic literature on the topic 'Load strength of brick masonry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Load strength of brick masonry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Load strength of brick masonry"
Maroušková, Aneta, and Jan Kubát. "SOLID BURNT BRICKS’ TENSILE STRENGTH." Acta Polytechnica CTU Proceedings 13 (November 13, 2017): 75. http://dx.doi.org/10.14311/app.2017.13.0075.
Full textLuo, Lie, Ming Zhao, and Ying Liu. "Mortar Replacement Reinforcement Method for Existing Masonry Structures." Advanced Materials Research 133-134 (October 2010): 977–81. http://dx.doi.org/10.4028/www.scientific.net/amr.133-134.977.
Full textZhang, Zhong Ji. "Experimental Study on Fundamental Mechanical Properties of Autoclaved Sand-lime Brick Masonr." Advanced Materials Research 168-170 (December 2010): 345–50. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.345.
Full textPruthvi Raj, G., Mehar B. Ravula, and Kolluru V. L. Subramaniam. "Failure in Clay Brick Masonry with Soft Brick under Compression: Experimental Investigation and Numerical Simulation." Key Engineering Materials 747 (July 2017): 472–79. http://dx.doi.org/10.4028/www.scientific.net/kem.747.472.
Full textGu, Song, Guo Ping Chen, and Shui Wen Zhu. "Mechanical Analysis of the Recycled Concrete Brick Masonry Wall under In-Plane Load." Advanced Materials Research 250-253 (May 2011): 278–82. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.278.
Full textLü, Wei Rong, Meng Wang, and Xi Jun Liu. "Numerical Analysis of Masonry under Compression via Micro-Model." Advanced Materials Research 243-249 (May 2011): 1360–65. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.1360.
Full textKamaruddin, Kartini, and Siti Hawa Hamzah. "Optimisation of Calcium Silicate and Sand Cement Bricks in Masonary Bearing Walls." Scientific Research Journal 3, no. 2 (December 31, 2006): 45. http://dx.doi.org/10.24191/srj.v3i2.5669.
Full textFoti, Dora, Michela Lerna, and Vitantonio Vacca. "Experimental Characterization of Traditional Mortars and Polyurethane Foams in Masonry Wall." Advances in Materials Science and Engineering 2018 (August 19, 2018): 1–13. http://dx.doi.org/10.1155/2018/8640351.
Full textHan, Lim Chung, Abdul Karim Bin Mirasa, Ismail Saad, Nurmin Bt. Bolong, Nurul Shahadahtul Afizah Bt. Asman, Hidayati Bte Asrah, and Eddy Syaizul Rizam Bin Abdullah. "Use of Compressed Earth Bricks/Blocks in Load-Bearing Masonry Structural Systems: A Review." Materials Science Forum 997 (June 2020): 9–19. http://dx.doi.org/10.4028/www.scientific.net/msf.997.9.
Full textZhou, Xiao Jie, Jin Ke Song, Xu Liang Jiang, and Dan Dan Xu. "Experimental Study on Compressive Mechanical Performance of Fly-Ash Thermal Insulation Hollow Block Masonry." Applied Mechanics and Materials 488-489 (January 2014): 643–46. http://dx.doi.org/10.4028/www.scientific.net/amm.488-489.643.
Full textDissertations / Theses on the topic "Load strength of brick masonry"
Malek, M. H. "Compressive strength of brickwork masonry with special reference to concentrated load." Thesis, University of Edinburgh, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380450.
Full textGhazali, M. Z. B. M. "Shear strength of brick masonry joints." Thesis, University of Sussex, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377057.
Full textBernat, Masó Ernest. "Analysis of unreinforced and TRM-strengthened brick masonry walls subjected to eccentric axial load." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/145389.
Full textUn nombre significant d'edificis estan suportats per murs de càrrega d'obra de fàbrica. La preservació d’aquestes estructures que s’utilitzen arreu del món is una alternativa sostenible. No obstant això, hi ha molt poca recerca en relació a la resposta estructural d’aquests elements particulars si es compara amb altres com les estructures porticades d’acer o formigó. Per tant, és necessari un major estudi dels murs de càrrega d’obra de fàbrica com a punt de partida de les actuacions de preservació. Normalment, els murs de càrrega estan subjectes a patrons de càrrega vertical excèntrica, cosa que està relacionada amb la seva resposta estructural complexa. Aquesta resposta es caracteritza pels efectes de flexió de segon ordre degut a l’excentricitat de la càrrega, per la resposta no linear a compressió de l’obra de fàbrica i per la seva, pràcticament negligible, resistència a tracció. Per tant, el reforç d’aquests murs, per tal d’augmentar-ne la seva capacitat resistent is una alternativa de millora interessant per allargar la seva vida útil. En aquesta tesi s’ha dut a terme una campanya experimental. Aquesta ha consistit en centenars d’assaigs de caracterització de les propietats mecàniques dels materials components utilitzats per construir vint-i-nou murs. Nou d’aquests es van reforçar amb Textile Reinforced Mortar, TRM, i els altres vint van ser assajats sense reforç. Tots van ser sotmesos a compressió excèntrica. L’estudi dels murs reforçats ha permès analitzar la influència del tipus de morter de reforç, l’efecte de disposar ancoratges o la dependència de la capacitat resistent en el tipus de malla de fibra utilitzada. S’ha implementat un micromodel simplificat bidimensional (2D) per analitzar els casos estructurals proposats. Aquesta eina numèrica ha estat validada utilitzant les dades de la campanya experimental. Finalment, s’han proposat mètodes analítics per calcular la capacitat portant dels murs sense reforç i dels reforçats amb TRM. De forma semblant, s’han aplicat dos normes actuals, l’Eurocodi-6 i l’ACI-530, als casos d’estudi per tal de comparar-ne els resultats amb els experimentals. Els resultats mostren que el TRM aporta un augment de la capacitat resistent de més del 100% i homogeneïtza la resposta estructural que esdevé més rígida. En relació a les simulacions, el model numèric proposat obté resultats acurats, els quals són millors pels casos de major esveltesa o més excentricitat de la càrrega. Per acabar, els mètodes analítics que es proposen aporten resultats acceptables, els quals s’ajusten millor als experimentals que els obtinguts aplicant les formulacions de les normatives.
Basoenondo, Essy Arijoeni. "Lateral load response of Cikarang brick wall structures : an experimental study." Queensland University of Technology, 2008. http://eprints.qut.edu.au/16685/.
Full textMarziale, Stephen. "Analysis of Brick Veneer on Concrete Masonry Wall Subjected to In-plane Loads." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1407153177.
Full textAkhi, Taohida Parvin. "Experimental investigation of effective modulus of elasticity and shear modulus of brick masonry wall under lateral load." ISIS Canada Research Network, 2011. http://hdl.handle.net/1993/5304.
Full textLindell, Oscar, and Johan Olsson. "Calculating the dead load distribution in a cavity wall." Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20730.
Full textThroughout Sweden’s history several distinct types of masonry constructions have been used. In the late 1950s the most common masonry construction that dominates today’s market was developed. A study has been conducted in an attempt to better understand how masonry constructions are to be designed. Commercial calculation methods applied for sizing cavity walls today results in oversized constructions that are reinforced with expensive consoles. The consoles are placed in the cavity wall for supporting the masonry were it would otherwise break. A new calculation method could prove these consoles to be an unnecessary expense. A cavity wall is by principal only exposed by its own dead-load and is therefor the main load when sizing the wall. The purpose of this study is to develop a more accurate method of calculating the spread of the deadload in the cavity walls masonry. This could prove that the weaker points in the wall is not in need of reinforcement by consoles. This study will investigate the possibility to use the finite element method for the calculation of the deadloads spread inside a cavity wall. Commercial calculation methods that are used today does not use the finite element method and the differences in these two initial states are unknown.
Lau, J. C. K. "The strength of masonry walls and columns of geometric cross section subjected to axial load and bending." Thesis, University of Manchester, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.705159.
Full textSánchez, Tizapa Sulpicio. "Experimental and numerical study of confined masonry walls under in-plane loads : case : guerrero State (Mexico)." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00537380.
Full textKopecký, Martin. "Průzkum a hodnocení zděné budovy zámečku." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265736.
Full textBook chapters on the topic "Load strength of brick masonry"
Madhavi, K., M. V. Renuka Devi, K. S. Jagadish, and S. M. Basutkar. "Shear Bond Strength of Brick Masonry." In Lecture Notes in Civil Engineering, 583–90. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6969-6_50.
Full textGraziotti, Francesco, Gabriele Guerrini, Andrea Rossi, Guido Andreotti, and Guido Magenes. "Proposal for an Improved Procedure and Interpretation of ASTM C1531 for the In Situ Determination of Brick-Masonry Shear Strength." In Masonry 2018, 13–33. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2018. http://dx.doi.org/10.1520/stp161220170181.
Full textSahu, Santosini, Peri Raghava Ravi Teja, Pradip Sarkar, and Robin Davis. "Correlation Establishment of Compressive Strength and Bond Strength of Fly Ash Brick Masonry." In Lecture Notes in Civil Engineering, 841–50. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5644-9_67.
Full textKumar, B. M. Vinay, and B. V. Surendra. "Strength and Water Absorption Characteristics of Cement Stabilized Masonry Blocks Using Brick Masonry Waste." In Advances in Sustainable Construction Materials, 131–43. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3361-7_10.
Full textCostigan, Adrian, and Sara Pavía. "Influence of the Mechanical Properties of Lime Mortar on the Strength of Brick Masonry." In Historic Mortars, 359–72. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4635-0_28.
Full textVenkatarama Reddy, B. V., V. Nikhil, and M. Nikhilash. "Moisture Transport in Cement Stabilised Soil Brick-Mortar Interface and Implications on Masonry Bond Strength." In Earthen Dwellings and Structures, 27–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5883-8_3.
Full textCoccia, S., F. Di Carlo, and G. Forino. "Strength of cracked masonry buttresses under horizontal loads." In Brick and Block Masonry, 155–64. CRC Press, 2016. http://dx.doi.org/10.1201/b21889-17.
Full textEixenberger, J. G., and F. S. Fonseca. "Shear strength of dry-stack masonry walls." In Brick and Block Masonry, 1539–44. CRC Press, 2016. http://dx.doi.org/10.1201/b21889-191.
Full textPérez Gavilán E., J. J., and A. I. Cruz O. "Shear strength of confined masonry walls with transverse reinforcement." In Brick and Block Masonry, 2335–44. CRC Press, 2016. http://dx.doi.org/10.1201/b21889-289.
Full textParisi, F., C. Balestrieri, and D. Asprone. "Out-of-plane blast capacity of load-bearing masonry walls." In Brick and Block Masonry, 991–98. CRC Press, 2016. http://dx.doi.org/10.1201/b21889-124.
Full textConference papers on the topic "Load strength of brick masonry"
Fíla, Jiří, Martina Eliášová, and Zdeněk Sokol. "Mechanical properties of solid glass bricks." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.033.
Full textYuen, C. G., and S. L. Lissel. "Flexural bond strength of clay brick masonry." In MATERIALS CHARACTERISATION 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/mc070251.
Full textWoen, Ean Lee, Marlinda Abdul Malek, Bashar S. Mohammed, Tang Chao-Wei, and Muhammad Thaqif Tamunif. "Experimental study on compressive strength of sediment brick masonry." In INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (IntCET 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5022911.
Full text"Investigation of Eco – Friendly Interlocking Masonry Units." In Recent Advancements in Geotechnical Engineering. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901618-20.
Full textLi, Hong-Nan, Jing-Wei Zhang, and Li Liu. "Seismic Behavior of Insulated Hollow-Brick Cavity Walls Using Quasi-Static Experimentation." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-2099.
Full textFriedman, Donald, and Mona Abdelfatah. "Hidden Strength in Historic Buildings." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.2479.
Full textPong, Wenshen, Mumtaz A. Nazir, and Murat Bozkurt. "Case Study: Seismic Rehabilitation of a Historical Building Using CUBC 97 Guidelines." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71149.
Full textMashal, Mustafa, Karma Gurung, and Mahesh Acharya. "Full-scale experimental testing of Structural Concrete Insulated Panels (SCIPs)." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0833.
Full textRudolph, Jürgen, Guy Baylac, Paul Wilhelm, John Wintle, and Emilie Buennagel. "Recent Amendments of EN13445-3, Clause 18 and Related Annexes: Detailed Assessment of Fatigue Life." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28129.
Full textJirasko, Jakub, Antonin Max, and Radek Kottner. "A Coupled Temperature-Displacement Numerical Analysis of Hydraulic Press Workspace." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65480.
Full text