Academic literature on the topic 'Load-transfer curves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Load-transfer curves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Load-transfer curves"

1

Bohn, Cécilia, Alexandre Lopes dos Santos, and Roger Frank. "Development of Axial Pile Load Transfer Curves Based on Instrumented Load Tests." Journal of Geotechnical and Geoenvironmental Engineering 143, no. 1 (January 2017): 04016081. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0001579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nanda, S., and N. R. Patra. "Theoretical Load-Transfer Curves along Piles Considering Soil Nonlinearity." Journal of Geotechnical and Geoenvironmental Engineering 140, no. 1 (January 2014): 91–101. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0000997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Hong, and Ming-Fang Chang. "Load Transfer Curves along Bored Piles Considering Modulus Degradation." Journal of Geotechnical and Geoenvironmental Engineering 128, no. 9 (September 2002): 764–74. http://dx.doi.org/10.1061/(asce)1090-0241(2002)128:9(764).

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kataoka, L. T., and T. N. Bittencourt. "Numerical and experimental analysis of time-dependent load transfer in reinforced concrete columns." Revista IBRACON de Estruturas e Materiais 7, no. 5 (October 2014): 747–74. http://dx.doi.org/10.1590/s1983-41952014000500003.

Full text
Abstract:
A study was conducted to assess the influence of the steel reinforcement ratio in concrete columns on their properties of creep and shrinkage. Experimental tests and three-dimensional finite element-based simulations of the experimental curves from plain concrete cylinders and plain concrete columns derived by curve fitting were performed using the ACI 209 model available in DIANA 9.3. Columns with longitudinal reinforcement ratios of 0%, 1.4% and 2.8%, loaded to 30% and 40% of their 7-day compressive strength, were investigated. The results indicated that numerical simulation does not predict experimental data for a long period. However, simulations fitted with experimental curves derived from plain concrete columns presented values close to those of experimental data for 91 days.
APA, Harvard, Vancouver, ISO, and other styles
5

Pereira Fernandes, David Jorge, and
António Viana da Fonseca. "Definition of load transfer curves of piles in granitic residual soil." Geotecnia 130 (March 2014): 79–99. http://dx.doi.org/10.24849/j.geot.2014.130.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, Ying Jie, Xue Dai, and Lian Xiang Li. "Analysis of an O-Cell Pile Test in Jinan with FEM." Applied Mechanics and Materials 170-173 (May 2012): 33–36. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.33.

Full text
Abstract:
In order to promote the experience of applying O-cell pile test to determine the behaviors of integral pile in Jinan, a case of O-cell pile test in Jinan was analyzed with proposed approach. The pile-soil system was simulated with FEM. The resistance parameters of piles, the load-displacement curves and the ultimate bearing capacity of integral pile were determined. Comparing with results obtained from load transfer method, it is found that the p-s curve of integral pile obtained from load transfer method is conservative.
APA, Harvard, Vancouver, ISO, and other styles
7

Mostafa, Yasser E., and M. Hesham El Naggar. "Dynamic analysis of laterally loaded pile groups in sand and clay." Canadian Geotechnical Journal 39, no. 6 (December 1, 2002): 1358–83. http://dx.doi.org/10.1139/t02-102.

Full text
Abstract:
Pile foundations supporting bridge piers, offshore platforms, and marine structures are required to resist not only static loading but also lateral dynamic loading. The static p–y curves are widely used to relate pile deflections to nonlinear soil reactions. The p-multiplier concept is used to account for the group effect by relating the load transfer curves of a pile in a group to the load transfer curves of a single pile. Some studies have examined the validity of the p-multiplier concept for the static and cyclic loading cases. However, the concept of the p-multiplier has not yet been considered for the dynamic loading case, and hence it is undertaken in the current study. An analysis of the dynamic lateral response of pile groups is described. The proposed analysis incorporates the static p–y curve approach and the plane strain assumptions to represent the soil reactions within the framework of a Winkler model. The model accounts for the nonlinear behaviour of the soil, the energy dissipation through the soil, and the pile group effect. The model was validated by analyzing the response of pile groups subjected to lateral Statnamic loading and comparing the results with field measured values. An intensive parametric study was performed employing the proposed analysis, and the results were used to establish dynamic soil reactions for single piles and pile groups for different types of sand and clay under harmonic loading with varying frequencies applied at the pile head. "Dynamic" p-multipliers were established to relate the dynamic load transfer curves of a pile in a group to the dynamic load transfer curves for a single pile. The dynamic p-multipliers were found to vary with the spacing between piles, soil type, peak amplitude of loading, and the angle between the line connecting any two piles and the direction of loading. The study indicated the effect of pile material and geometry, pile installation method, and pile head conditions on the p-multipliers. The calculated p-multipliers compared well with p-multipliers back-calculated from full scale field tests.Key words: lateral, transient loading, nonlinear, pile–soil–pile interaction, p–y curves, Statnamic.
APA, Harvard, Vancouver, ISO, and other styles
8

Tak Kim, Byung, Nak-Kyung Kim, Woo Jin Lee, and Young Su Kim. "Experimental Load–Transfer Curves of Laterally Loaded Piles in Nak-Dong River Sand." Journal of Geotechnical and Geoenvironmental Engineering 130, no. 4 (April 2004): 416–25. http://dx.doi.org/10.1061/(asce)1090-0241(2004)130:4(416).

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Hyeong Joo, Jose Leo C. Mission, and Il Sang Park. "Analysis of static axial load capacity of single piles and large diameter shafts using nonlinear load transfer curves." KSCE Journal of Civil Engineering 11, no. 6 (November 2007): 285–92. http://dx.doi.org/10.1007/bf02885899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kwon, Oh Sung, Yongkyu Choi, Ohkyun Kwon, and Myoung Mo Kim. "Comparison of the Bidirectional Load Test with the Top-Down Load Test." Transportation Research Record: Journal of the Transportation Research Board 1936, no. 1 (January 2005): 108–16. http://dx.doi.org/10.1177/0361198105193600113.

Full text
Abstract:
For the past decade, the Osterberg testing method (O-cell test) has been proved advantageous over the conventional pile load testing method in many aspects. However, because the O-cell test uses a loading mechanism entirely different from that of the conventional pile loading testing method, many investigators and practicing engineers have been concerned that the O-cell test would give inaccurate results, especially about the pile head settlement behavior. Therefore, a bidirectional load test using the Osterberg method and the conventional top-down load test were executed on 1.5-m diameter cast-in-place concrete piles at the same time and site. Strain gauges were placed on the piles. The two tests gave similar load transfer curves at various depth of piles. However, the top-down equivalent curve constructed from the bidirectional load test results predicted the pile head settlement under the pile design load to be approximately one half of that predicted by the conventional top-down load test. To improve the prediction accuracy of the top-down equivalent curve, a simple method that accounts for the pile compression was proposed. It was also shown that the strain gauge measurement data from the bidirectional load test could reproduce almost the same top-down curve.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Load-transfer curves"

1

Lawson, Edward. "ANALYSIS OF THE PILE LOAD TESTS AT THE US 68/KY 80 BRIDGE OVER KENTUCKY LAKE." UKnowledge, 2019. https://uknowledge.uky.edu/ce_etds/86.

Full text
Abstract:
Large diameter piles are widely used as foundations to support buildings, bridges, and other structures. As a result, it is critical for the field to have an optimized approach for quality control and efficiency purposes to measure the suggested number of load tests and the required measured capacities driven piles. In this thesis, an analysis of a load test program designed for proposed bridge replacements at Kentucky Lake is performed. It includes a detailed site exploration study with in-situ and laboratory testing. The pile load test program included monitoring of a steel H-pile and steel open ended pipe pile during driving and static loading. The pile load test program included static and dynamic testing at both pile testing locations. Predictions of both pile capacities were estimated using commonly applied failure criterion, and a load transfer analysis was carried out on the dynamic and static test data for both piles. The dynamic tests were then compared to the measured data from the static test to examine the accuracy. This thesis concludes by constructing t-z and q-z curves and comparing the load transfer analyses of the static and dynamic tests.
APA, Harvard, Vancouver, ISO, and other styles
2

Leo, Riccardo. "The axial response of offshore piles in sand from large scale tests." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
This thesis focuses on deep foundations used in offshore environment, in particular for offshore wind turbines. Piles are necessary when the bearing capacity of the shallow soil layers is not enough to ensure stability. Piles can work on both axial and lateral response. In the thesis only axially loaded piles will be considered. The analysis of the axial behavior of piles should be considered in terms of ultimate capacity as well as the load transfer mechanism between the pile and the soil. The technical aim of this thesis concerns the understanding of the load transfer curves, their extrapolation and the exploration of load distribution along the pile during a given load. To achieve this, a thorough study of literature on current design methods is carried out and two instrumented piles will be analysed in order to understand how the load is distributed along the pile shaft and how experimental load transfer curves can be extrapolated. The more general aim of this work is to optimize design procedures and try to reduce the cost related piles and their installation in offshore environment, since it is quite known to be higher than onshore fields, as it will be explained in the first chapter of this thesis. A geotechnical software IGtH Pile developed by the Institute of geotechnical Engineering (IGtH), Leibniz Universität Hannover will be used in the evaluation of the ultimate capacity and the results will be compared with a Matlab code developed at the IWES research institute.
APA, Harvard, Vancouver, ISO, and other styles
3

Forni, Fabio. "Investigating the axial response of pile foundations for offshore wind turbines." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
I crescenti problemi legati ai cambiamenti climatici rendono l'impiego delle energie rinnovabili sempre più interessante. In questa ottica, in Germania si sta pianificando di aumentare la produzione di energia pulita attraverso lo sfruttamento dell’energia eolica. Nuovi impianti di turbine eoliche sono previsti nel Mare del Nord in acque medio profonde (25-45m) dove la parte immersa della struttura della turbina eolica (chiamata sottostruttura) è spesso costituita da una struttura jacket (traliccio) o tripod (a treppiedi). Questo tipo di sottostrutture trasmettono principalmente carichi assiali alle fondazioni (in genere fondazioni su palo), e il carico a trazione è la forza che maggiormente ne influenza il dimensionamento. Molte compagnie energetiche tedesche sono interessate a migliorare l’efficienza e i costi dei loro impianti eolici e, per questo, incaricano università ed istituti di ricerca (come il Fraunhofer IWES) per indagarne gli aspetti, come ad esempio il comportamento delle fondazioni offshore. All’autore di questa tesi è stata data l’opportunità di studiare e lavorare al Fraunhofer IWES e perciò questa tesi tratterà del compramento di pali caricati assialmente e staticamente pensati per sottostrutture jacket o tripod per turbine eoliche. Nello studio effettuato per questa tesi, i dati seprimentali, ottenuti da una campagna sperimentale condotta (in larga scala 1:10 1:5) su pali infissi in terreno sabbioso, sono confrontati attraverso l’impiego delle load-transfer curves (funzioni che descrivono il comportamento d’interfaccia palosuolo) usando sia un’approccio classico (fornito dal metodo di calcolo API Main Text) sia approcci più recenti (dati dai metodi di calcolo CPT). Uno script Matlab creato appositamente dall’autore di questa tesi riesce ad implementare 11 diversi tipi di load-transfer curves. Il lavoro di tesi si conclude con un esempio pratico in grado di fornire un’idea di come questo script può essere usato nella progettazione.
APA, Harvard, Vancouver, ISO, and other styles
4

Čechová, Simona. "Vyhodnocení zatěžovacích zkoušek pilot z tryskové injektáže." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2021. http://www.nusl.cz/ntk/nusl-433418.

Full text
Abstract:
The master thesis consists of a theoretical part and a practical part. In the theoretical part jet-grouting technology is described briefly. Mechanical properties of jet-grouted piles were characterized. Various estimation methods of ultimate pile bearing capacity are described in this thesis – analytical calculation of ultimate bearing capacity for bored piles and estimation of ultimate pile bearing capacity by analysis of load-displacement curve defined by CHIN (1970; 1972). Load transfer method for piles and hyperbolic load-transfer curve are introduced. As a part of the load-trasfer method analysis, a method of estimating ultimate pile shaft friction called beta method is defined. In the practical part were evaluated several static load tests of jet-grouted piles and were constructed their load-displacemnt curves. Then reverse analysis of the results from static load tests was performed using load-transfer method. Then ultimate pile bearing capacity was estimated using analytical calculation of pile bearing capacity for bored piles and using analysis of load-displacement curve with method by CHIN (1970; 1972). By evaluation of load transfer method and beta method ultimate shaft resistence for each pile was estimated. Results and load-displacement curves were compared.
APA, Harvard, Vancouver, ISO, and other styles
5

Stoklasová, Andrea. "Silové a deformační chování duktilních mikropilot v soudržných zeminách." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409752.

Full text
Abstract:
This thesis is focused on creation of mobilization curves, based on data, obtained from standard and detailed monitoring of the load test. The load test was performed on the 9 meters long ductile micropile. The first part of the thesis explains the methods and principles, which was used to construct the mobilization curves. Next there is description of the technologies of ductile micropiles and the load test. In the next part of the thesis is generally explained process, which was applied to the evaluated data. For evaluation was used spreadsheet Microsoft Excel and programming language Matlab, with Kernel Smoothing extension. In the last chapter of the thesis there are interpreted the load transfer function together with skin friction and micropile displacement.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Load-transfer curves"

1

Pelecanos, L., and K. Soga. "Development of load-transfer curves for axially-loaded piles using fibre-optic strain data, finite element analysis and optimisation." In Numerical Methods in Geotechnical Engineering IX, 1025–30. CRC Press, 2018. http://dx.doi.org/10.1201/9781351003629-129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Chang Dae. "Compression Molding of Thermoset/Fiber Composites." In Rheology and Processing of Polymeric Materials: Volume 2: Polymer Processing. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195187830.003.0019.

Full text
Abstract:
Glass-fiber-reinforced thermoset composites have long been used by the plastics industry. Two primary reasons for using glass fibers as reinforcement of thermosets are: (1) to improve the mechanical/physical properties (e.g., tensile modulus, dimensional stability, fatigue endurance, deformation under load, hardness, or abrasion resistance) of the thermosets, and (2) to reduce the cost of production by replacing expensive resins with inexpensive glass fibers. In place of metals, the automotive industry uses glassfiber- reinforced unsaturated polyester composites. One reason for this substitution is that the weight per unit volume of composite materials is quite low compared with that of metals. This has allowed for considerable reductions in the fuel consumption of automobiles. Another reason is that composite materials are less expensive than metals. The unsaturated polyester premix molding compounds in commercial use are supplied as sheet molding compound (SMC), bulk molding compound (BMC), or thick molding compound (TMC) (Bruins 1976; Parkyn et al. 1967). These molding compounds can be molded in standard compression or transfer molds. The basic challenge in molding unsaturated polyester premix compounds is to get a uniform layer of glass reinforcement in place in the die cavity while the resin fills the cavity and reaches its gel stage during cure. Temperature, mold closing speed, pressure, and cure time are all functions of the design of the part being produced. The flow of the mixture through the gate(s) can result in variations in strength across the part due to fiber orientation during the flow. The precise end-use properties depend on the fiber orientation, fiber distribution, and fiber content in the premix compounds, which are greatly influenced by the processing conditions. Since the mechanical properties of the molded articles depend strongly upon the orientation of the glass fibers, it is important to understand how to control fiber orientation during molding. Unsaturated polyester accounts for the greater part of all thermosets used in glass-fiber-reinforced plastics. Glass-fiber-reinforced unsaturated polyesters offer the advantages of a balance of good mechanical, chemical, and electrical properties. Depending upon the application, a number of additives are employed to provide specific products or end-use properties.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Load-transfer curves"

1

Bradshaw, Aaron S., Stefanie Haffke, and Christopher D. P. Baxter. "Load Transfer Curves from a Large-Diameter Pipe Pile in Silty Soil." In GeoCongress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412084.0041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ismail, Abdussamad. "Self-Learning Framework for Estimating Load Transfer Curves from Uninstrumented Pile Loading Tests." In Geo-Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413272.177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Corradi, Roberto, Alan Facchinetti, and Giovanni Sempio. "Numerical Investigation on Load Transfer Effects in Bogies of Urban Rail Vehicles." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95539.

Full text
Abstract:
Urban rail vehicles can present many types of architecture, definitely different from those of traditional rail vehicles. When dealing with long articulated tramcars, complex coupling effects between the vertical and lateral dynamics may arise. Making reference to a modern tramcar, the coupling phenomena are investigated in detail by means of numerical simulation, considering the dynamic behaviour during the negotiation of curves with or without superelevation.
APA, Harvard, Vancouver, ISO, and other styles
4

Xiao, Suguang, and Muhannad T. Suleiman. "Investigation of Thermo-Mechanical Load Transfer (t-z Curves) Behavior of Soil-Energy Pile Interface Using Modified Borehole Shear Tests." In IFCEE 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479087.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Zhansheng, Kefeng Yang, and Zhenping Feng. "Aero-Thermal Coupled Design Optimization of a Turbine Vane and the Effect on Heat Load of Endwall." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15992.

Full text
Abstract:
Abstract The 3D aerodynamic design optimization has been applied in the generation of modern turbine blade profile. However, the traditional design method paid little attention to the decrease of heat transfer coefficients on the blade external surface. In the present work, a typical high load turbine vane, VKI LS89 cascade, was optimized with the decrease of aerodynamic loss and heat load chosen as the optimization objective functions. Numerical simulation methods were validated by the experiment data, and simulations results agreed well with the measured values. Both 2D profiles and stagger curves of the vane were parameterized by no-uniform B-Spline. There were totally seven movable control points for the 2D profiles, and four movable control points for the corresponding stagger curves. And the locations of the B-Spline control points and stagger angles were taken as the design variables. Multi-objective genetic algorithm coupled with surrogate model was adopted to acquire the optimal cases with better aero-thermal performance. The profiles of the vane were firstly optimized in a linear cascade model, and then the stagger curves and sections stagger angle were modified for better overall performance. Mass flow rate of the mainstream and exit flow angle at outlet were constrained by the comprehensive objective functions during the 3D optimization process. The results showed that profiles with high aerodynamic efficiency and low heat load can be obtained by the 2D profiles optimization design. Additionally, the heat load could be decreased by the 3D optimization design. Furthermore, the effects of optimization on the heat load distributions of the endwall were studied, and it can be observed that the 3D optimization obviously modified the heat transfer patterns of the endwall.
APA, Harvard, Vancouver, ISO, and other styles
6

Griffin, Aaron A., and Timothy J. Jacobs. "Combustion Characteristics of a 2-Stroke Large Bore Natural Gas Spark-Ignited Engine." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1010.

Full text
Abstract:
Naturally, there are complex interactions among internal combustion engine parameters such as in-cylinder pressure, emissions, speed, and load. These basic relationships are studied in a naturally aspirated, spark-ignited, two-stroke large bore natural gas engine. The typical application for such an engine is in the oil and gas industry, operating heavy machinery such as large compressors and oil field pump jacks. Cylinder pressure measurements averaged over 300 cycles are captured for speeds of 350 and 525 RPM and load ratings of 50%, 75%, and 100% of rated torque at each respective speed. Non-sequential individual cycle pressure curves are also captured to depict cycle-to-cycle variation within the engine at each operating point. Emissions data are captured and presented for each operating point. At another 8 test conditions, pressure measurements averaged from 100 cycles are taken to specifically investigate disagreement among compression pressure curves; these conditions include 350, 400, 440, and 470 RPM at 50% and 85% of the rated load. It is found that low load cycle-to-cycle variation is extreme, having COV of IMEP values over 30%. Such engines are not designed to operate at low-load conditions. Cyclic variation is shown to decrease with increasing load and decreasing speed. As expected, peak pressures increase with increasing load and decrease with increasing speed. Emissions of THC and CO decrease with increasing load, while emissions of NO are highest at low speed and high load. It is also shown that compression pressure behavior after exhaust port closure but before ignition is different among different speeds and loads. This may be characteristic of scavenging and heat transfer behavior.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Peikun, Li Wang, Yuzhi Cheng, Zhengqiang Li, Yuan Gao, and Ding Wang. "Regeneration Strategies of Air-Purification TSA Process for Cryogenic Air Distillation Plant." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90330.

Full text
Abstract:
Since the regeneration step in the Temperature Swing Adsorption (TSA) process requires time enough to heat and cool the bed, it is often the time-limiting step in the TSA cycle and it consumes a huge amount of energy for regeneration. Therefore, a valid management of the regeneration process can minimize the energy consumption of the TSA process which is involved with regeneration time, purge gas requirements, and heat load. Simulation software was developed for industrial scale bed of TSA. A new isotherm equation which performs well in predicting experiment data was extended to multi-component form and then used to interpret the adsorption equilibria of water vapor and carbon dioxide on adsorbents. Preliminary linear drive force mass transfer coefficients and the heat transfer coefficients were calculated by empirical equations and then refined by matching breakthrough curves obtained from industrial field process monitoring to theoretical curves. Under a wide range of regeneration conditions, the temperature effluence and breakthrough were drawn and studied. With the application of this simulation software, the performance and operation data of the TSA beds under various conditions can be obtained conveniently. This enables the manager to minimize their TSA’s heat consumption.
APA, Harvard, Vancouver, ISO, and other styles
8

Hisamatsu, Rikito, Sooyoul Kim, and Shigeru Tabeta. "Estimation of Expected Loss by Storm Surges Along Tokyo Bay Coast." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95336.

Full text
Abstract:
Abstract In Japan, the fundamental disaster management plan was modified after a heavy rainfall event in 2015. According to the updated plan, the transfer of flood disaster risk to non-life insurance is promoted by the Japanese government. Thus, the importance of flood risk modeling for the insurance industry has increased. Winds are expected to become even stronger, resulting in higher storm surges, when the central pressure of the typhoon is intensified. Furthermore, it is possible for an insurance system to experience peak risk when such damage occurs simultaneously. Hence, refining the assessment method of storm surge risk is very important. An insurance company to which storm surge risk is transferred needs to assess not only the infrequent risks, for managing the risk of the company, but also the expected value of the estimated loss, for evaluating the insurance premium. However, only a few studies have assessed storm surges by stochastic approaches. In this study, storm surge losses along the coast of Tokyo Bay are predicted using the output of a stochastic typhoon model for 10,000 years. Storm surge losses due to 600 typhoons potentially causing storm surge damage for 10,000 years are calculated. Exceedance probability curves (EP curves) of estimated storm surge loss for each asset are created. Expected loss and the loss of representative return periods are evaluated based on these EP curves. We successfully determined the expected loss with a small calculation load.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Zhansheng, Xing Yang, Chun Gao, Zhao Liu, and Zhenping Feng. "Aero-Thermal Coupled Design Optimization of the Non-Axisymmetric Endwall for a Gas Turbine Blade." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76594.

Full text
Abstract:
Modern gas turbine endwall is operating in harsher conditions for the application of low NOx combustor. Non-axisymmetric endwall has been extensively studied for aerodynamic performance improvement, because endwall contouring can decrease the pressure gradient between the pressure side (PS) and the suction side (SS) in the blade passage. In addition to the influence of pressure gradient on aerodynamic losses, the vortical structures induced by pressure gradient are also the sources of high heat transfer regions in the passage. Consequently, thermal loads might be reduced by decreasing the pressure gradient thus weakening the strength of the secondary flows. In terms of engineering applications, distribution of thermal load is very important for the design of endwall cooling scheme, and it is necessary to take both aerodynamic and heat transfer performances into consideration for the endwall profile design. In this work, aero-thermal coupled design optimization of a turbine blade endwall was carried out. The endwall contour was obtained by multiplying heights of two curves in the streamwise and pitchwise directions. The streamwise curve was controlled by non-uniform B-spline (NUBS) and the pitchwise one was obtained by employing the sinusoidal function. The optimization method adopted in this research was the multi-objective genetic algorithm (MOGA) coupled with Kriging (KRG) model, which has been validated by benchmark functions. Numerical validation shows that static pressure coefficients on the blade surfaces and the Nusselt number (Nu) on the endwall agree well with the experimental results. The design variables were the endwall profile parameters, and the objective functions were maximizing total pressure recovery coefficient (ξ) at the blade outlet and minimizing the Nu on the endwall. Two optimal cases were selected from the Pareto front and analyzed in detail. It is indicated that the turbine blade aerodynamic performance can be improved while the heat transfer is restrained simultaneously. For the optimal Case I, mass flow-averaged ξ increases by 0.88%, and for Case II, area-averaged Nu reduces by about 7.78%.
APA, Harvard, Vancouver, ISO, and other styles
10

White, Maurice F. "An Investigation of Component Deterioration in Gas Turbines Using Transient Performance Simulation." In ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1988. http://dx.doi.org/10.1115/88-gt-258.

Full text
Abstract:
This paper discusses a program which has been developed for the prediction of steady state and transient performance of a gas turbine driven generator. The gas turbine plant was modelled using the component model principle and is based on the method for continuity of mass flow. The model requires the use of compressor and turbine characteristics together with curves for combustion efficiency. A number of simplifications are made in connecion with transient calculations. The influence of the machines physical volume on continuity of mass flow and effects of heat transfer between the gas and structural components are neglected. The model was used to investigate how component deterioration affects the important condition parameters during load transients and during rapid acceleration or deceleration. Fault conditions were simulated by manipulating the various efficiencies and loss factors for the different components in the machine. Many of the condition parameters that were investigated showed changes during acceleration which were considerably different from comparable changes in a fault free gas turbine.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Load-transfer curves"

1

Han, Fei, Monica Prezzi, Rodrigo Salgado, Mehdi Marashi, Timothy Wells, and Mir Zaheer. Verification of Bridge Foundation Design Assumptions and Calculations. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317084.

Full text
Abstract:
The Sagamore Parkway Bridge consists of twin parallel bridges over the Wabash River in Lafayette, IN. The old steel-truss eastbound bridge was demolished in November 2016 and replaced by a new seven-span concrete bridge. The new bridge consists of two end-bents (bent 1 and bent 8) and six interior piers (pier 2 to pier 7) that are founded on closed-ended and open-ended driven pipe piles, respectively. During bridge construction, one of the bridge piers (pier 7) and its foundation elements were selected for instrumentation for monitoring the long-term response of the bridge to dead and live loads. The main goals of the project were (1) to compare the design bridge loads (dead and live loads) with the actual measured loads and (2) to study the transfer of the superstructure loads to the foundation and the load distribution among the piles in the group. This report presents in detail the site investigation data, the instrumentation schemes used for load and settlement measurements, and the response of the bridge pier and its foundation to dead and live loads at different stages during and after bridge construction. The measurement results include the load-settlement curves of the bridge pier and the piles supporting it, the load transferred from the bridge pier to its foundation, the bearing capacity of the pile cap, the load eccentricity, and the distribution of loads within the pier’s cross section and among the individual piles in the group. The measured dead and live loads are compared with those estimated in bridge design.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography