Academic literature on the topic 'Local 378 (B.C. Hydro)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Local 378 (B.C. Hydro).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Local 378 (B.C. Hydro)"

1

Chen, Yuanying, Guillaume Vigouroux, Arvid Bring, Vladimir Cvetkovic, and Georgia Destouni. "Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands." Water 11, no. 3 (March 17, 2019): 552. http://dx.doi.org/10.3390/w11030552.

Full text
Abstract:
For the large-scale coastal wetland system of the Baltic Sea, this study develops a methodology for investigating if and to what degree the variability and changes in certain hydro-climatic drivers control key coastal–marine physical conditions. The studied physical conditions include: (a) water temperature, (b) water salinity, and (c) flow structures (magnitudes and directions of flows between marine basins and the associated coastal zones and wetlands). We use numerical simulations of three hydro-climatically distinct cases to investigate the variations in hydro-climatic drivers and the resulting physical conditions (a–c) among the cases. The studied hydro-climatic forcing variables are: net surface heat flux, wind conditions, saltwater influx from the North Sea, and freshwater runoff from land. For these variables, the available observation-based data show that the total runoff from land is significantly and positively correlated with precipitation on the sea itself, and negatively correlated with saltwater influx from the North Sea to the Baltic Sea. Overall, the physical condition (a–c) variability in the Baltic Sea and its coastal zones is found to be pairwise well-explained by simulation case differences as follows: (a) Net heat flux is a main control of sea water temperature. (b) Runoff from land, along with the correlated salt water influx from the North Sea, controls average sea salinity; with the variability of local river discharges shifting some coastal zones to deviate from the average sea condition. (c) Wind variability and change control the Baltic Sea flow structure, primarily in terms of flow magnitude and less so in terms of flow direction. For specific coastal wetland zones, considerable salinity differences from average Baltic Sea conditions (due to variability in local river discharges) are found for the coasts of Finland and Estonia, while the coastal wetland zones of south-eastern Sweden, and of Estonia and Latvia, emerge as particularly sensitive to wind shifts.
APA, Harvard, Vancouver, ISO, and other styles
2

Roushangar, Kiyoumars, Samira Akhgar, Ali Erfan, and Jalal Shiri. "Modeling scour depth downstream of grade-control structures using data driven and empirical approaches." Journal of Hydroinformatics 18, no. 6 (July 15, 2016): 946–60. http://dx.doi.org/10.2166/hydro.2016.242.

Full text
Abstract:
Local scour occurs in the immediate vicinity of structures as a result of impinging on a bed with a high velocity flow. Prediction of scour depth has an important role in control structure management and water resource engineering issues, so a study of new heuristic expressions governing it is necessary. The present study aims to investigate different methods' capabilities to estimate scour depth downstream of grade-control structures using field measurements from the literature. Accordingly, data driven feed forward neural network and gene expression programming techniques were selected for the investigation. Additionally, the optimum data driven based scour depth models were compared with the corresponding physical–empirical based formulas. Three data categories corresponding to (a) scouring downstream of a ski-jump bucket, (b) a sharp-crested weir, and (c) an inclined slope controlled structure (as grade-control structures) were applied as reference patterns for developing and validating the applied models. A sensitivity analysis was also performed to identify the most influential parameters on scouring. The obtained results indicated that the applied methods have promising performance in estimating the scour depth downstream of spillways and control structures. Nevertheless, the applied data driven approaches show higher accuracy than the corresponding traditional formulas.
APA, Harvard, Vancouver, ISO, and other styles
3

De Souza, Ludmila Pochmann, Rita de Cássia Marques Alves, and Gabriel Bonow Munchow. "AVALIAÇÃO DA PREVISIBILIDADE DO MODELO WRF-HYDRO EM MODELAGENS HIDROMETEOROLÓGICAS COM DIFERENTES RESOLUÇÕES NA BACIA DO TAQUARI-ANTAS." Revista Brasileira de Geografia Física 12, no. 5 (December 6, 2019): 1872. http://dx.doi.org/10.26848/rbgf.v12.5.p1872-1890.

Full text
Abstract:
O presente estudo avalia o modelo WRF-Hydro uma ferramenta de previsão acoplada chuva/solo/vazão, buscando aperfeiçoar o grau de agilidade e confiabilidade das previsões na região considerada de grande vulnerabilidade, a bacia hidrográfica do Taquari-Antas/RS, localizada na região Sul do Brasil. A avaliação consistiu em analisar os resultados e a previsibilidade do modelo com diferentes resoluções espaciais na simulação de evento extremo ocorrido em janeiro de 2010. A primeira simulação foi realizada com duas grades do modelo meteorológico com 50 e 10 km e com a rede de canais com resolução de 1000 m. E a outra com três grades de 25, 5 e 1 km para meteorologia e rede de canais com 250 m. Avaliadas usando comparações da magnitude e da variabilidade dos fluxos da superfície da bacia, como precipitação e vazão do modelo com dados observados. Os resultados seguem as observações locais e apresentam bons resultados para servir como ferramenta em sistemas de alerta contra cheias nesta e em outras regiões. Predictability of the Wrf-Hydro Model in Hydrometeorological Modeling with Different Resolutions in the Taquari-Antas Basin A B S T R A C TThe present study evaluates the WRF-Hydro model, a rainfall/soil/flow coupled forecasting tool, aiming to improve the agility and reliability of the predictions in the region considered to be of great vulnerability, the Taquari-Antas/RS basin located in the region South of Brazil. The evaluation consisted of analyzing the results and predictability of the model with different spatial resolutions in the extreme event simulation that occurred in January 2010. The first simulation was performed with two grids of the 50 and 10 km meteorological model and with the channel network with resolution of 1000 m. And the other with three grids of 25, 5 and 1 km for meteorology and network of channels with 250 m. Evaluated using comparisons of magnitude and variability of basin surface fluxes, such as precipitation and flow of the model with observed data. The results follow local observations and present good results to serve as a tool in flood warning systems in this and other regions.Keywords: numerical forecasting, extreme events, WRF-Hydro, hydrological basin monitoring and hydro-meteorological modeling.
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Bin, Guitao Zeng, Bo Qian, Peng Wu, Peili Shi, and Dongqing Qian. "Pressure Fluctuation Reduction of a Centrifugal Pump by Blade Trailing Edge Modification." Processes 9, no. 8 (August 15, 2021): 1408. http://dx.doi.org/10.3390/pr9081408.

Full text
Abstract:
The pressure fluctuation inside centrifugal pumps is one of the main causes of hydro-induced vibration, especially at the blade-passing frequency and its harmonics. This paper investigates the feature of blade-passing frequency excitation in a low-specific-speed centrifugal pump in the perspective of local Euler head distribution based on CFD analysis. Meanwhile, the relation between local Euler head distribution and pressure fluctuation amplitude is observed and used to explain the mechanism of intensive pressure fluctuation. The impeller blade with ordinary trailing edge profile, which is the prototype impeller in this study, usually induces wake shedding near the impeller outlet, making the energy distribution less uniform. Because of this, the method of reducing pressure fluctuation by means of improving Euler head distribution uniformity by modifying the impeller blade trailing edge profile is proposed. The impeller blade trailing edges are trimmed in different scales, which are marked as model A, B, and C. As a result of trailing edge trimming, the impeller outlet angles at the pressure side of the prototype of model A, B, and C are 21, 18, 15, and 12 degrees, respectively. The differences in Euler head distribution and pressure fluctuation between the model impellers at nominal flow rate are investigated and analyzed. Experimental verification is also conducted to validate the CFD results. The results show that the blade trailing edge profiling on the pressure side can help reduce pressure fluctuation. The uniformity of Euler head circumferential distribution, which is directly related to the intensity of pressure fluctuation, is improved because the impeller blade outlet angle on the pressure side decreases and thus the velocity components are adjusted when the blade trailing edge profile is modified. The results of the investigation demonstrate that blade trailing edge profiling can be used in the vibration reduction of low specific impellers and in the engineering design of centrifugal pumps.
APA, Harvard, Vancouver, ISO, and other styles
5

Duarte Dutra, Maria Tereza, Juliana Lemos Da Silva, Cláudia Ricardo Oliveira, Marília Regina Costa Castro Lyra, and Suzana Maria Gico Lima Montenegro. "Relações entre Condições Ambientais e Doenças de Veiculação Hídrica em Áreas do Assentamento Rural Serra Grande, Vitória de Santo Antão, PE, Brasil (Relationships between environmental conditions and hydro term placement diseases in Rural Settlement ...)." Revista Brasileira de Geografia Física 9, no. 6 (September 12, 2016): 1677. http://dx.doi.org/10.26848/rbgf.v9.6.p1677-1689.

Full text
Abstract:
A má qualidade dos corpos de água exerce influência direta sobre a saúde da sociedade, podendo causar doenças de veiculação hídrica, que levam a morte milhões de pessoas no mundo. Neste cenário, o presente estudo objetivou identificar as relações existentes entre condições ambientais e doenças de veiculação hídrica no Assentamento Rural Serra Grande, situado na sub bacia hidrográfica do Riacho Natuba, no município de Vitória de Santo Antão, em Pernambuco. Foram escolhidas seis nascentes, fazendo-se medições de parâmetros de qualidade de água, comparando-se os resultados das análises com os padrões estabelecidos pela Resolução Conama Nº 357/05 e Portaria do Ministério da Saúde Nº 2914/11. Para identificar a ocorrência de doenças de veiculação hídrica no assentamento procedeu-se a aplicação de questionários junto à comunidade local, representantes do Posto de Saúde e da Secretaria de Saúde Municipal, abordando aspectos sobre a incidência dessas doenças e respectivos programas de saúde implementados. Os resultados obtidos mostraram que as nascentes representavam a principal fonte de água para o consumo doméstico, a irrigação e a dessedentação animal. No entanto, as análises de qualidade de água apontaram que a mesma não apresentava condições apropriadas ao consumo humano direto, requerendo prévio tratamento. Em relação ao perfil de ocorrência das doenças de veiculação hídrica, constatou-se que as verminoses e protozooses são as doenças que mais acometem a população. A B S T R A C T The poor quality of water bodies shall exercise direct influence on the health of society, causing hydro term placement diseases leading to death millions of people worldwide. In this scenario, the present study aimed to identify the relationship between environmental conditions and hydro term placement diseases in the Rural Settlement Serra Grande, located in the Sub-basin of the Natuba rivulet, in the municipality of Vitória de Santo Antão, Pernmbuco State, Brazil. Six springs were chosen for sample collections and determination of water quality parameters, comparing the results with the quality standards established by CONAMA ( Brazilian National Environmental Council) Resolution Nº 357/05 and Ordinance of the Ministry of Health (Brazil) No. 2914/11. Questionnaires were applied to local social actors: community, health and Municipal Health Secretariat, addressing aspects of water diseases and health programs implemented. The results obtained showed that the springs were the main source of water for domestic consumption, irrigation and animal watering in the studied area. However, the water quality analyses showed that these springs do not show appropriate sanitary conditions to direct human consumption, requiring treatment. In relation to the profile of hydro term placement diseases occurrence, it was observed that the worms and protozooses are the diseases that most affected the local population. Keywords: Management of water resources, quality of the water, health and environment.
APA, Harvard, Vancouver, ISO, and other styles
6

Tilander, Jeremias, Matthew Patey, and Spyros Hirdaris. "Springing Analysis of a Passenger Ship in Waves." Journal of Marine Science and Engineering 8, no. 7 (July 5, 2020): 492. http://dx.doi.org/10.3390/jmse8070492.

Full text
Abstract:
Traditionally, the evaluation of global loads experienced by passenger ships has been based on closed-form Classification Society Rule formulae or quasi direct analysis procedures. These approaches do not account for the combined influence of hull flexibility, slenderness, and environmental actions on global dynamic response. This paper presents a procedure for the prediction of the global wave-induced loads of a medium-size passenger ship using a potential flow Flexible Fluid Structure Interaction (FFSI) model. The study compares results from direct long-term hydro-structural computations against Classification Society Rules. It is demonstrated that for the specific vessel under consideration: (a) the elastic contributions of the responses on loads are negligible as springing effects occur outside of the wave energy spectrum, (b) deviations of the order of 28% arise by way of amidships when comparing direct hydrodynamic analysis predictions encompassing IACS UR S11A hog/sag nonlinear correction factors and the longitudinal strength standard, and (c) the interpretation of the wave scatter diagram influences predictions by approximately 20%. Based on these indications, it is recommended that further parametric studies over a range of passenger ship designs could help draw unified conclusions on the total influence of global and local hydrodynamic actions on passenger ship loads and dynamic response.
APA, Harvard, Vancouver, ISO, and other styles
7

Bîrluţiu, Victoria, Ofelia Criştiu, Marius Baicu, and Rareş Mircea Bîrluţiu. "The Management of Staphylococcal Toxic Shock Syndrome. A Case Report." Journal of Critical Care Medicine 2, no. 2 (April 1, 2016): 85–88. http://dx.doi.org/10.1515/jccm-2016-0011.

Full text
Abstract:
Abstract Staphylococcal toxic shock syndrome (TSS) is most frequently produced by TSS toxin-1 (TSST-1) and Staphylococcal enterotoxin B (SEB), and only rarely by enterotoxins A, C, D, E, and H. Various clinical pictures can occur depending on severity, patient age and immune status of the host. Severe forms, complicated by sepsis, are associated with a death rate of 50-60%. The case of a Caucasian female infant, aged seven weeks, hospitalized with a diffuse skin rash, characterized as allergodermia, who initially developed TSS with axillary intertrigo, is reported. TSS was confirmed according to 2011 CDC criteria, and blood cultures positive for Methicillin-sensitive Staphylococcus aureus (MSSA). Severe development occurred initial, including acidosis, consumption coagulopathy, multiple organ failures (MOF), including impaired liver and kidney function. Central nervous system damage was manifest by seizures. Clinical management included medical supervision by a multidisciplinary team of infectious diseases specialist and intensive care specialist, as well as the initiation of a complex treatment plan to correct hydro electrolytic imbalances and acidosis. This treatment included antibiotic and antifungal therapy, diuretic therapy, immunoglobulins, and local treatment similar to a patient with burns to prevent superinfection of skin and mucous membranes lesions. There was a favourable response to the treatment with resolution of the illness.
APA, Harvard, Vancouver, ISO, and other styles
8

Yamashita, Seigo, Masateru Takigawa, Arnaud Denis, Nicolas Derval, Yuichiro Sakamoto, Masaharu Masuda, Kohki Nakamura, et al. "Pulmonary vein-gap re-entrant atrial tachycardia following atrial fibrillation ablation: an electrophysiological insight with high-resolution mapping." EP Europace 21, no. 7 (March 19, 2019): 1039–47. http://dx.doi.org/10.1093/europace/euz034.

Full text
Abstract:
Aims The circuit of pulmonary vein-gap re-entrant atrial tachycardia (PV-gap RAT) after atrial fibrillation ablation is sometimes difficult to identify by conventional mapping. We analysed the detailed circuit and electrophysiological features of PV-gap RATs using a novel high-resolution mapping system. Methods and results This multicentre study investigated 27 (7%) PV-gap RATs in 26 patients among 378 atrial tachycardias (ATs) mapped with Rhythmia™ system in 281 patients. The tachycardia cycle length (TCL) was 258 ± 52 ms with P-wave duration of 116 ± 28 ms. Three types of PV-gap RAT circuits were identified: (A) two gaps in one pulmonary vein (PV) (unilateral circuit) (n = 17); (B) two gaps in the ipsilateral superior and inferior PVs (unilateral circuit) (n = 6); and (C) two gaps in one PV with a large circuit around contralateral PVs (bilateral circuit) (n = 4). Rhythmia™ mapping demonstrated two distinctive entrance and exit gaps of 7.6 ± 2.5 and 7.9 ± 4.1 mm in width, respectively, the local signals of which showed slow conduction (0.14 ± 0.18 and 0.11 ± 0.10m/s) with fragmentation (duration 86 ± 27 and 78 ± 23 ms) and low-voltage (0.17 ± 0.13 and 0.17 ± 0.21 mV). Twenty-two ATs were terminated (mechanical bump in one) and five were changed by the first radiofrequency application at the entrance or exit gap. Moreover, the conduction time inside the PVs (entrance-to-exit) was 138 ± 60 ms (54 ± 22% of TCL); in all cases, this resulted in demonstrating P-wave with an isoelectric line in all leads. Conclusion This is the first report to demonstrate the detailed mechanisms of PV-gap re-entry that showed evident entrance and exit gaps using a high-resolution mapping system. The circuits were variable and Rhythmia™-guided ablation targeting the PV-gap can be curative.
APA, Harvard, Vancouver, ISO, and other styles
9

Krutskii, Yu L., K. D. Dyukova, R. I. Kuz’min, O. V. Netskina, and A. E. Iorkh. "Synthesis of finely dispersed chromium diboride from nanofibrous carbon." Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy 61, no. 10 (November 14, 2018): 800–806. http://dx.doi.org/10.17073/0368-0797-2018-10-800-806.

Full text
Abstract:
The paper presents experimental data on synthesis of finely dispersed powder of chromium diboride. Chromium diboride was prepared by reduction of chromium oxide Cr2O3 with nanofibrous carbon (NFC) and boron carbide in the induction furnace under argon atmosphere. NFC is a product of catalytic decomposition of light hydro carbons. The main characteristic of a NFC is high specific surface area (~150,000 m2/kg), which is significantly higher than that of soot (~50,000 m2/kg). The content of impurities in NFC is about 1 wt %. Boron carbide used as a reagent is characterized by high dispersity (at the level of ~2 μm) and insignificant content of impurities – no more than 1.5 wt %. Based on analysis of state diagram of the Cr – B system, composition of the charge and upper temperature limit of diboride formation reaction were determined for obtaining chromium diboride in powder state. According to the results of thermodynamic analysis, the temperature of beginning of reaction for chromium oxide Cr2O3 reduction by carbon and boron carbide was determined at various CO pressures. Composition and characteristics of chromium diboride were studied using X-ray phase analysis, inductively coupled plasma atomic emission spectrometry (AES-ISP), scanning electron microscopy using local energy-dispersive X-ray microanalysis (EDX), low-temperature adsorption of nitrogen, followed by determination of specific surface area by BET method, sedi mentation analysis, synchronous thermogravimetry and differential scanning calorimetry (TG/DSC). The material obtained at optimal parameters is represented by a single phase – chromium diboride CrB2 . The content of impurities in chromium diboride does not exceed 2.5 wt %. The powder particles were predominantly aggregated. The average size of the particles and aggregates is equal to 7.95 μm within a wide range of size distribution. The specific surface area of a single-phase sample is 3600 m2/kg. Oxidation of chromium diboride begins at a temperature of 430 °C and when the temperature reaches 1000 °C, the degree of oxidation is approximately 25 %. Optimum synthesis parameters are the ratio of reagents according to stoichiometry to obtain chromium diboride at a temperature of 1700 °C and holding time of 20 min. It is shown that for this process nanofibrous carbon is an effective reducing agent and that chromium oxide Cr2O3 is almost completely reduced to diboride CrB2 .
APA, Harvard, Vancouver, ISO, and other styles
10

Hens, Luc, Nguyen An Thinh, Tran Hong Hanh, Ngo Sy Cuong, Tran Dinh Lan, Nguyen Van Thanh, and Dang Thanh Le. "Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 2 (January 19, 2018): 127–53. http://dx.doi.org/10.15625/0866-7187/40/2/11107.

Full text
Abstract:
Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167. Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems: A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746. Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise: Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography