To see the other types of publications on this topic, follow the link: Local and $p$-adic fields.

Dissertations / Theses on the topic 'Local and $p$-adic fields'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 32 dissertations / theses for your research on the topic 'Local and $p$-adic fields.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Miller, Justin Thomson. "On p-adic Continued Fractions and Quadratic Irrationals." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/194074.

Full text
Abstract:
In this dissertation we investigate prior definitions for p-adic continued fractions and introduce some new definitions. We introduce a continued fraction algorithm for quadratic irrationals, prove periodicity for Q₂ and Q₃, and numerically observe periodicity for Q(p) when p < 37. Various observations and calculations regarding this algorithm are discussed, including a new type of symmetry observed in many of these periods, which is different from the palindromic symmetry observed for real continued fractions and some previously defined p-adic continued fractions. Other results are proved for p-adic continued fractions of various forms. Sufficient criteria are given for a class of p-adic continued fractions of rational numbers to be finite. An algorithm is given which results in a periodic continued fraction of period length one for √D ∈ Zˣ(p), D ∈ Z, D non-square; although, different D require different parameters to be used in the algorithm. And, a connection is made between continued fractions and de Weger’s approximation lattices, so that periodic continued fractions can be generated from a periodic sequence of approximation lattices, for square roots in Zˣ(p). For simple p-adic continued fractions with rational coefficients, we discuss observations and calculations related to Browkin’s continued fraction algorithms. In the last chapter, we apply some of the definitions and techniques developed in the earlier chapters for Q(p) and Z to the t-adic function field case F(q)((t)) and F(q)[t], respectively. We introduce a continued fraction algorithm for quadratic irrationals in F(q)((t)) that always produces periodic continued fractions.
APA, Harvard, Vancouver, ISO, and other styles
2

Chinner, Trinity. "Elliptic Tori in p-adic Orthogonal Groups." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42759.

Full text
Abstract:
In this thesis, we classify up to conjugacy the maximal elliptic toral subgroups of all special orthogonal groups SO(V), where (q,V) is a 4-dimensional quadratic space over a non-archimedean local field of odd residual characteristic. Our parameterization blends the abstract theory of Morris with a generalization of the practical work performed by Kim and Yu for Sp(4). Moreover, we compute an explicit Witt basis for each such torus, thereby enabling its concrete realization as a set of matrices embedded into the group. This work can be used explicitly to construct supercuspidal representations of SO(V).
APA, Harvard, Vancouver, ISO, and other styles
3

Jondreville, David. "Quantification de groupes p-adiques et applications aux algèbres d'opérateurs." Thesis, Reims, 2017. http://www.theses.fr/2017REIMS010.

Full text
Abstract:
Cette thèse est consacrée à l'étude des déformations des C*-algèbres munies d'une action de groupe, du point de vue de la quantification équivariante non-formelle, dans le cas non-archimédien. Nous construisons une théorie de déformation des C*-algèbres munies d'une action d'un espace vectoriel de dimension finie sur un corps local non-archimédien de caractéristique différente de 2 ainsi que pour des quotients du groupe affine d'un corps local dont le corps résiduel est de cardinal impair. Par ailleurs, nous construisons des familles de 2-cocycles unitaires afin de déformer des groupes quantiques localement compacts agissant sur ces C*-algèbres déformées
This thesis is devoted to the study of deformation of C*-algebras endowed with a group action, from the perspective of non-formal equivariant quantization, in the non-Archimedean setting. We construct a deformation theory of C*-algebras endowed with an action of a finite dimensional vector space over a non-Archimedean local field of characteristic different from 2 and for quotients of the affine group of a local field whose residue field has cardinality not divisible by 2. Moreover, we construct families of dual unitary 2-cocycles in order to deform locally compact quantum groups acting on these deformed C*-algebras
APA, Harvard, Vancouver, ISO, and other styles
4

Sordo, Vieira Luis A. "ON P-ADIC FIELDS AND P-GROUPS." UKnowledge, 2017. http://uknowledge.uky.edu/math_etds/43.

Full text
Abstract:
The dissertation is divided into two parts. The first part mainly treats a conjecture of Emil Artin from the 1930s. Namely, if f = a_1x_1^d + a_2x_2^d +...+ a_{d^2+1}x^d where the coefficients a_i lie in a finite unramified extension of a rational p-adic field, where p is an odd prime, then f is isotropic. We also deal with systems of quadratic forms over finite fields and study the isotropicity of the system relative to the number of variables. We also study a variant of the classical Davenport constant of finite abelian groups and relate it to the isotropicity of diagonal forms. The second part deals with the theory of finite groups. We treat computations of Chermak-Delgado lattices of p-groups. We compute the Chermak-Delgado lattices for all p-groups of order p^3 and p^4 and give results on p-groups of order p^5.
APA, Harvard, Vancouver, ISO, and other styles
5

Malon, Christopher D. "The p-adic local langlands conjecture." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33667.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.
Includes bibliographical references (leaves 46-47).
Let k be a p-adic field. Split reductive groups over k can be described up to k- isomorphism by a based root datum alone, but other groups, called rational forms of the split group, involve an action of the Galois group of k. The Galois action on the based root datum is shared by members of an inner class of k-groups, in which one k--isomorphism class is quasi-split. Other forms of the inner class can be called pure or impure, depending on the Galois action. Every form of an adjoint group is pure, but only the quasi-split forms of simply connected groups are pure. A p-adic Local Langlands correspondence would assign an L-packet, consisting of finitely many admissible representations of a p-adic group, to each Langlands parameter. To identify particular representations, data extending a Langlands parameter is needed to make "completed Langlands parameters." Data extending a Langlands parameter has been utilized by Lusztig and others to complete portions of a Langlands classification for pure forms of reductive p- adic groups, and in applications such as endoscopy and the trace formula, where an entire L-packet of representations contributes at once.
(cont.) We consider a candidate for completed Langlands parameters to classify representations of arbitrary rational forms, and use it to extend a classification of certain supercuspidal representations by DeBacker and Reeder to include the impure forms.
by Christopher D. Malon.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
6

Ramero, Lorenzo. "An ℓ-adic Fourier transform over local fields." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chojecki, Przemyslaw. "P-adic local Langlands correspondence and geometry." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066035/document.

Full text
Abstract:
Cette these concerne la geometrie de la correspondance de Langlands p-adique. On donne la formalisation des methodes de Emerton, qui permettrait d'etablir la conjecture de Fontaine-Mazur dans le cas general des groupes unitaires. Puis, on verifie que ce formalism est satisfait dans la cas de U(3) ou on utilise la construction de Breuil-Herzig pour la correspondence p-adique. De point de vue local, on commence l'etude de cohomologie modulo p et p-adiques de tour de Lubin-Tate pour GL_2(Q_p). En particulier, on demontre que on peut retrouver la correspondence de Langlands p-adique dans la cohomologie completee de tour de Lubin-Tate
This thesis concerns the geometry behind the p-adic local Langlands correspondence. We give a formalism of methods of Emerton, which would permit to establish the Fontaine-Mazur conjecture in the general case for unitary groups. Then, we verify that our formalism works well in the case of U(3) where we use the construction of Breuil-Herzig as the input for the p-adic correspondence.From the local viewpoint, we start a study of the modulo p and p-adic cohomology of the Lubin-Tate tower for GL_2(Q_p). In particular, we show that we can find the local p-adic Langlands correspondence in the completed cohomology of the Lubin-Tate tower
APA, Harvard, Vancouver, ISO, and other styles
8

Aubertin, Bruce Lyndon. "Algebraic numbers and harmonic analysis in the p-series case." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/30282.

Full text
Abstract:
For the case of compact groups G = Π∞ j=l Z(p)j which are direct products of countably many copies of a cyclic group of prime order p, links are established between the theories of uniqueness and spectral synthesis on the one hand, and the theory of algebraic numbers on the other, similar to the well-known results of Salem, Meyer et al on the circle. Let p ≥ 2 be a prime and let k{x⁻¹} denote the p-series field of formal Laurent series z = Σhj=₋∞ ajxj with coefficients in the field k = {0, 1,…, p-1} and the integer h arbitrary. Let L(z) = - ∞ if aj = 0 for all j; otherwise let L(z) be the largest index h for which ah ≠ 0. We examine compact sets of the form [Algebraic equation omitted] where θ ε k{x⁻¹}, L(θ) > 0, and I is a finite subset of k[x]. If θ is a Pisot or Salem element of k{x⁻¹}, then E(θ,I) is always a set of strong synthesis. In the case that θ is a Pisot element, more can be proved, including a version of Bochner's property leading to a sharper statement of synthesis, provided certain assumptions are made on I (e.g., I ⊃ {0,1,x,...,xL(θ)-1}). Let G be the compact subgroup of k{x⁻¹} given by G = {z: L(z) < 0}. Let θ ɛ k{x⁻¹}, L(θ) > 0, and suppose L(θ) > 1 if p = 3 and L(θ) > 2 if p = 2. Let I = {0,1,x,...,x²L(θ)-1}. Then E = θ⁻¹Ε(θ,I) is a perfect subset of G of Haar measure 0, and E is a set of uniqueness for G precisely when θ is a Pisot or Salem element. Some byways are explored along the way. The exact analogue of Rajchman's theorem on the circle, concerning the formal multiplication of series, is obtained; this is new, even for p = 2. Other examples are given of perfect sets of uniqueness, of sets satisfying the Herz criterion for synthesis, and sets of multiplicity, including a class of M-sets of measure 0 defined via Riesz products which are residual in G. In addition, a class of perfect M₀-sets of measure 0 is introduced with the purpose of settling a question left open by W.R. Wade and K. Yoneda, Uniqueness and quasi-measures on the group of integers of a p-series field, Proc. A.M.S. 84 (1982), 202-206. They showed that if S is a character series on G with the property that some subsequence {SpNj} of the pn-th partial sums is everywhere pointwise bounded on G, then S must be the zero series if SpNj → 0 a.e.. We obtain a strong complement to this result by establishing that series S on G exist for which Sn → 0 everywhere outside a perfect set of measure 0, and for which sup |SpN| becomes unbounded arbitrarily slowly.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Breuning, Manuel. "Equivariant epsilon constants for Galois extensions of number fields and P-adic fields." Thesis, King's College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Minardi, John. "Iwasawa modules for [p-adic]-extensions of algebraic number fields /." Thesis, Connect to this title online; UW restricted, 1986. http://hdl.handle.net/1773/5742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Qian, Zicheng. "p-adic and mod p local-global compatibility for GLn(ℚp)." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS137/document.

Full text
Abstract:
Cette thèse est consacrée à deux aspects du programme de Langlands local p-adique et de la compatibilité local-global p-adique.Dans la première partie, j'étudie la question de savoir comment extraire, d'un certain sous-espace Hecke-isotypique de formes automorphes modulo p, suffisament d'invariants d'une représentation galoisienne. Soient p un nombre premier, n>2 un entier, et F un corps à multiplication complexe dans lequel p est complètement décomposé. Supposons qu'une représentation galoisienne automorphe continue r-:Gal(Q-/F)→GLn(F-p) est triangulaire supérieure et suffisament générique ( dans un certain sens ) en une place w au-dessus de p. On montre, en admettant un résultat d'élimination de poids de Serre prouvé dans [LLMPQ], que la classe d'isomorphisme de r-|_Gal(Q-p/Fw) est déterminée par l'action de GLn(Fw) sur un espace de formes automorphes modulo p découpé par l'idéal maximal associée à r- dans une algèbre de Hecke. En particulier, on montre que la partie sauvagement ramifiée de r-|_Gal(Q-p/Fw) est déterminée par l'action de sommes de Jacobi ( vus comme éléments de Fp[GLn(Fp)] ) sur cet espace.La deuxième partie de ma thèse vise à établir une relation entre les résultats précédents de [Schr11], [Bre17] and [BD18]. Soient E une extension finie de Qp suffisamment grande et ρp: Gal(Q-p/Qp)→GL3(E) une représentation p-adique semi-stable telle que la représentation de Weil-Deligne WD(ρp) associée a un opérateur de monodromie N de rang 2 et que la filtration de Hodge associée est non-critique. On sait que la filtration de Hodge de ρp dépend de trois invariants dans E. On construit une famille de représentations localement analytiques Σ^min(λ, L1, L2, L3) qui dépend de trois invariants L1, L2, L3 dans E et telle que chaque représentation contient la représentation localement algébrique Algotimes Steinberg déterminée par ρp. Quand ρp provient, pour un groupe unitaire convenable G/Q, d'une représentation automorphe π de G(A_Q) avec un niveau fixé U^p premier avec p, on montre ( sous quelques hypothèses techniques ) qu'il existe une unique représentation localement analytique dans la famille ci-dessus qui est une sous-représentation du sous-espace Hecke-isotypique associé dans la cohomologie complétée de niveau U^p. On rappelle que [Bre17] a construit une famille de représentations localement analytiques qui dépend de quatre invariants (voir (4) dans [Bre17]) avec une propriété similaire. On donne un critère purement de théorie de représentation: si une représentation Π dans la famille de Breuil se plonge dans un certain sous-espace Hecke-isotypique de la cohomologie complétée, alors elle se plonge nécessairement dans une Σ^min(λ, L1, L2, L3) pour certains choix de L1, L2, L3 dans E qui sont déterminés explicitement par Π. De plus, certains sous-quotients naturels de Σ^min(λ, L1, L2, L3) permettent de construite un complexe de représentations localement analytiques qui "réalise" l'objet dérivé abstrait Σ(λ, underline{L}) defini dans [Schr11]
This thesis is devoted to two aspects of the p-adic local Langlands program and p-adic local-global compatibility.In the first part, I study the problem of how to capture enough invariants of a local Galois representation from a certain Hecke-isotypic subspace of mod p automorphic forms. Let p be a prime number, n>2 an integer, and F a CM field in which p splits completely. Assume that a continuous automorphic Galois representation r-:Gal(Q-/F)→GLn(F-p) is upper-triangular and satisfies certain genericity conditions at a place w above p, and that every subquotient of r-|_Gal(Q-p/Fw) of dimension >2 is Fontaine-Laffaille generic. We show that the isomorphism class of r-|_Gal(Q-p/Fw) is determined by GLn(Fw)-action on a space of mod p algebraic automorphic forms cut out by the maximal ideal of a Hecke algebra associated to r-, assuming a weight elimination result which is now a theorem to appear in [LLMPQ]. In particular, we show that the wildly ramified part of r-|_Gal(Q-p/Fw) is determined by the action of Jacobi sum operators ( seen as elements of Fp[GLn(Fp)] ) on this space.The second part of my thesis aims at clarifying the relation between previous results in [Schr11], [Bre17] and [BD18]. Let E be a sufficiently large finite extension of Qp and ρp be a p-adic semi-stable representation Gal(Q-p/Qp)→GL3(E) such that the Weil-Deligne representation WD(ρp) associated with it has rank two monodromy operator N and the Hodge filtration associated with it is non-critical. We know that the Hodge filtration of ρp depends on three invariants in E. We construct a family of locally analytic representations Σ^min(λ, L1, L2, L3) of GL3(Qp) depending on three invariants L1, L2, L3 in E with each of the representation containing the locally algebraic representation Algotimes Steinberg determined by ρp. When ρp comes from an automorphic representation π of G(A_Q) with a fixed level U^p prime to p for a suitable unitary group G/Q, we show ( under some technical assumption ) that there is a unique locally analytic representation in the above family that occurs as a subrepresentation of the associated Hecke-isotypic subspace in the completed cohomology with level U^p. We recall that [Bre17] constructed a family of locally analytic representations depending on four invariants ( cf. (4) in [Bre17] ) with a similar property. We give a purely representation theoretic criterion: if a representation Π in Breuil's family embeds into a certain Hecke-isotypic subspace of completed cohomology, then it must equally embed into Σ^min(λ, L1, L2, L3) for certain choices of L1, L2, L3 in E determined explicitly by Π. Moreover, certain natural subquotients of Σ^min(λ, L1, L2, L3) give a true complex of locally analytic representations that realizes the derived object Σ(λ, underline{L}) [Schr11]. Consequently, the family of locally analytic representations Σ^min(λ, L1, L2, L3) give a relation between the higher L-invariants studied in [Bre17] as well as [BD18] and the p-adic dilogarithm function which appears in the construction of Σ^min(λ, L1, L2, L3) in [Schr11]
APA, Harvard, Vancouver, ISO, and other styles
12

Ethier, Dillon. "Sum-product estimates and finite point configurations over p-adic fields." Thesis, University of Rochester, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10237020.

Full text
Abstract:

We examine Erd\"{o}s-Falconer type problems in the setting of $p$-adic numbers, and establish bounds on the size of a set $E$ in $\Q_p

d$ that will guarantee $E\cdot E+E\cdot E+\ldots+E\cdot E$ has positive Haar measure. Under a mild regularity assumption, we establish a lower bound on the dimension of a set that determines a set of simplices of positive measure, which reduces to an analogue of the distance problem when $1$-simplices are considered. Using the Mattila integral, we establish a different bound that improves upon the first bound when the dimension of the simplices is close to the ambient dimension.

APA, Harvard, Vancouver, ISO, and other styles
13

Nilsson, Marcus. "Monomial Dynamical Systems in the Fields of p-adic Numbers and Their Finite Extensions." Doctoral thesis, Växjö universitet, Matematiska och systemtekniska institutionen, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ma, Li. "P-adic Gross-Zagier formula for Heegner points on Shimura curves over totally real fields." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066277.

Full text
Abstract:
Le résultat principal de ce texte est une généralisation de la formule de Gross-Zagier p-adique de Perrin-Riou au cas de courbes de Shimura sur les corps totalement réels. Soit F un corps totalement réel. Soit f une forme modulaire de Hilbert sur F de poids parallel 2, qui est une forme nouvelle et est ordinaire en p. Soit E est une extension quadratique totalement imaginaire de F de discriminant premier à p et au conducteur de f. On peut construire une fonction L p-adique qui interpole valeurs spéciales de la fonction L complexe associée à f, E et caractères de Hecke d'ordre fini de E. La formule p-adique de Gross-Zagier relie la dérivée centrale de cette fonction L p-adique à la hauteur d'un divisor de Heegner sur une certaine courbe de Shimura. La stratégie de la preuve est proche de celle du travail original de Perrin-Riou. Dans la partie analytique, on construit le noyau analytique par calculs adéliques; dans la partie géométrique, on décompose le noyau géométrique en deux parties: places hors de p et places divisant p. Pour les places hors de p, les hauteurs p-adiques sont essentiellement des nombres d'intersection et sont calculées dans les travaux de S. Zhang, et il s'avère que cette partie est bien liée au noyau analytique. Pour les places divisant p, on utilise la méthode dans le travail de J. Nekovar pour montrer que la contribution de cette partie est nulle
The main result of this text is a generalization of Perrin-Riou's p-adic Gross-Zagier formula to the case of Shimura curves over totally real fields. Let F be a totally real field. Let f be a Hilbert modular form over F of parallel weight 2, which is a new form and is ordinary at p. Let E be a totally imaginary quadratic extension of F of discriminant prime to p and to the conductor of f. We may construct a p-adic L function that interpolates special values of the complex L functions associated to f, E and finite order Hecke characters of E. The p-adic Gross-Zagier formula relates the central derivative of this p-adic L function to the p-adic height of a Heegner divisor on a certain Shimura curve. The strategy of the proof is close to that of the original work of Perrin-Riou. In the analytic part, we construct the analytic kernel via adelic computations, in the geometric part, we decompose the geometric kernel into two parts: places outside p and places dividing p. For places outside p, the p-adic heights are essentially intersection numbers and are computed in works of S. Zhang, and it turns out that this part is closely related to the analytic kernel. For places dividing p, we use the method in the work of J. Nekovar to show that the contribution of this part is zero
APA, Harvard, Vancouver, ISO, and other styles
15

Meir, Ivan Daniel. "Simultaneous solutions to diagonal equations over the p-adic numbers and finite fields, and some connections with combinatorics." Thesis, University of Sheffield, 1997. http://etheses.whiterose.ac.uk/14742/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Amorós, Carafí Laia. "Images of Galois representations and p-adic models of Shimura curves." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/471452.

Full text
Abstract:
The Langlands program is a vast and unifying network of conjectures that connect the world of automorphic representations of reductive algebraic groups and the world of Galois representations. These conjectures associate an automorphic representation of a reductive algebraic group to every n-dimensional representation of a Galois group, and the other way around: they attach a Galois representation to any automorphic representation of a reductive algebraic group. Moreover, these correspondences are done in such a way that the automorphic L-functions attached to the two objects coincide. The theory of modular forms is a field of complex analysis whose main importance lies on its connections and applications to number theory. We will make use, on the one hand, of the arithmetic properties of modular forms to study certain Galois representations and their number theoretic meaning. On the other hand, we will use the geometric meaning of these complex analytic functions to study a natural generalization of modular curves. A modular curve is a geometric object that parametrizes isomorphism classes of elliptic curves together with some additional structure depending on some modular subgroup. The generalization that we will be interested in are the so called Shimura curves. We will be particularly interested in their p-adic models. In this thesis, we treat two different topics, one in each side of the Langlands program. In the Galois representations' side, we are interested in Galois representations that take values in local Hecke algebras attached to modular forms over finite fields. In the automorphic forms' side, we are interested in Shimura curves: we develop some arithmetic results in definite quaternion algebras and give some results about Mumford curves covering p-adic Shimura curves.
APA, Harvard, Vancouver, ISO, and other styles
17

Santana, Luiz Fernando Rodrigues. "Números p-ádicos e formas quadráticas." Universidade Federal de Goiás, 2018. http://repositorio.bc.ufg.br/tede/handle/tede/8988.

Full text
Abstract:
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-10-22T13:10:57Z No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-22T13:16:35Z (GMT) No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-10-22T13:16:35Z (GMT). No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-10-10
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This text presents the properties and definitions of p-adic numbers linked to the definition of quadratic forms. Hasse's theorem: “Every quadratic form, with 5 variables or more, has non-trivial p-adic zeros” exemplifies the Local- Global Principle, which in turn ensures that if a polynomial equation has non-trivial rational zeros if, and only if, It has non-trivial zeros over R and about Qp, p prime.
Este texto apresenta as propriedades e as definições de números p-ádicos atreladas à definição de formas quadráticas. O teorema de Hasse: “Toda forma quadrática, com 5 variáveis ou mais, possui zeros p-ádicos não triviais” exemplifia o Princípio Local Global, que por sua vez garante que se uma equação polinomial possui zeros racionais não triviais se, e somente se, possui zeros não triviais sobre R e sobre Qp, p primo.
APA, Harvard, Vancouver, ISO, and other styles
18

Ding, Yiwen. "Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112035/document.

Full text
Abstract:
Cette thèse s'inscrit dans le cadre du programme de Langlands local p-adique. Soient L une extension finie de Q_p, \rho_L une représentation p-adique de dimension 2 du groupe de Galois Gal(\overline{Q_p}/L) de L, lorsque \rho_L provient d'une représentation \rho globale et modulaire (i.e. \rho apparaît dans la cohomologie étale des courbes de Shimura), on sait associer à \rho une représentation de Banach admissible de \GL_2(L), notée \widehat{\Pi}(\rho), en utilisant la théorie de la cohomologie étale complétée d'Emerton. Localement, lorsque \rho_L est cristalline (et assez générique), d'après Breuil, on sait associer à \rho_L une représentation localement analytique de \GL_2(L), notée \Pi(\rho_L). Dans cette thèse, on montre divers résultats sur la compatibilité entre les représentations \widehat{\Pi}(\rho) et \Pi(\rho_L), qui s'appelle la compatibilité local-global, dans la cas des courbes de Shimura unitaires. Par la théorie des représentations localement analytiques de \GL_2(L), le problème de compatibilité local-global se ramène à l'étude des variétés de Hecke X construites à partir du H^1-complété des courbes de Shimura unitaires. On montre des résultats sur la compatibilité local-global dans le cas non-critique en utilisant la théorie de la triangulation globale. On étudie ainsi les formes modulaires p-adiques sur les courbes de Shimura unitaires, à partir desquelles on peut construire des sous-espaces rigides de X à la manière de Coleman-Mazur. On montre l'existence des formes compagnons surconvergentes sur les courbes de Shimura unitaires en utilisant les théorèmes de comparaison p-adique, d'où on déduit des résultats sur la compatibilité local-global dans le cas critique
The subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galois representation \rho (i.e. \rho appears in the étale cohomology of Shimura curves), one can associate to \rho an admissible Banach representation \widehat{\Pi}(\rho) of \GL_2(L) by using Emerton's completed cohomology theory. Locally, if \rho_L is crystalline (and sufficiently generic), following Breuil, one can associate to \rho_L a locally analytic representation \Pi(\rho_L) of \GL_2(L). In this thesis, we prove results on the compatibility of \widehat{\Pi}(\rho) and \Pi(\rho_L), called local-global compatibility, in the unitary Shimura curves case. By locally analytic representations theory (for \GL_2(L)), the problem of local-global compatibility can be reduced to the study of eigenvarieties X constructed from the completed H^1 of unitary Shimura curves. We prove results on local-global compatibility in non-critical case by using global triangulation theory. We also study the p-adic modular forms over unitary Shimura curves, from which we construct some closed rigid subspaces of X by Coleman-Mazur's method. We prove the existence of overconvergent companion forms (over unitary Shimura curves) by using p-adic comparison theorems, from which we deduce some results on local-global compatibility in critical case
APA, Harvard, Vancouver, ISO, and other styles
19

Nyqvist, Robert. "Algebraic Dynamical Systems, Analytical Results and Numerical Simulations." Doctoral thesis, Växjö : Växjö University Press, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Campana, Camilo. "Campos hipoelíticos no plano." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032013-094256/.

Full text
Abstract:
Seja L um campo vetorial complexo não singular definido em um aberto do plano. Treves provou que se L é localmente resolúvel então L é localmente integrável. Para campos planares hipoelíticos, vale uma propriedade adicional, a saber, toda integral primeira (restrita a um aberto suficientemente pequeno) é uma aplicação injetiva (e aberta); isto, por sua vez, implica que toda solução da equação homogênea Lu = 0 é localmente da forma u = h 0 Z, com h holomorfa, sendo Z uma integral primeira do campo. O problema central de interesse desta dissertação é a questão global correspondente, ou seja, a exisatência de integrais primeiras globais injetoras e a representação dde soluções globais por composições da integral primeira com uma função holomorfa
Let L be a nonsingular complex vector field defined on an open subset of the plane. Treves proved that if L is locally solvable then L is locally integrable. For hypoelliptic planar vector fields an additional property holds, namely, every first integral (restricted to a sufficiently small open set) is an injective (and open) mapping; this, on its turn, implies that each solution of the homogeneous equation Lu = 0 is locally of the form u = h Z, where h is holomorphic and Z is a first integral of the vector eld. The central problem of interest in this work is the corresponding global question, that is, the existence of global, injective first integrals and the representation of global solutions as compositions of the first integral with a holomorphic function
APA, Harvard, Vancouver, ISO, and other styles
21

Wirl, Ernst Ludwig. "Mikroprimstellen für p-adische Zahlkörper." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2011. http://dx.doi.org/10.18452/16271.

Full text
Abstract:
Mikroprimstellen wurden eingeführt von J. Neukirch im Rahmen der abstrakten Klassenkörpertheorie. Eine Verallgemeinerung der Zerlegungsgruppen von Primstellen globaler Körper motivierte die rein gruppentheoretische Definition der Mikroprimstellen als gewisse Äquivalenzklassen von Frobeniuselementen. Auf den Fall der Galoisgruppen lokaler oder globaler Körper angewendet, ergibt diese Theorie eine Beschreibung spezieller Konjugationsklassen. Die Hauptaufgabe von J. Neukirch ist, die zahlentheoretische Bedeutung der Mikroprimstellen zu verstehen, das heißt, sie in Termen des Grundkörpers anzugeben. J. Mehlig und E.-W. Zink fanden eine Bijektion zwischen Mikroprimstellen und normverträglichen Folgen von Primelementen in Körpertürmen. Diese Türme entstehen durch die Fixkörper der abgeleiteten Untergruppen der Trägheitsgruppe. Auf diese Weise betrachtet man Mikroprimstellen für die entsprechenden Faktorgruppen der absoluten Galoisgruppe, um dann einen projektive Limes zu bilden. Im ersten Schritt ist eine Bijektion zwischen relativen Mikroprimstellen und Konjugationsklassen von Primelementen gezeigt worden. Das Hauptergebnis dieser Arbeit ist eine vollständige Antwort auf die Frage von J. Neukirch im zweiten Schritt. Es wird eine Normabbildung für Lubin-Tate-Potenzreihen verschiedener Höhe angegeben und der projektive Limes bezüglich dieser Normabbildungen gebildet. Dazu werden Ergebnisse der Klassenkörpertheorie auf einen ''''fastabelschen'''' Fall übertragen. Schließlich können die Mikroprimstellen als Galoisorbits von normverträglichen Abfolgen normischer Lubin-Tate-Potenzreihen beschrieben werden. Die Koeffizienten aller dieser Lubin-Tate-Potenzreihen sind in einer endlichen unverzweigten Erweiterung des Grundkörpers. Also kann man zu einer gegebenen normverträglichen Abfolge normischer Lubin-Tate-Potenzreihen den Koeffizientenkörper definieren. Der Grad dieses Körpers bzw. die Länge des Galoisorbits entspricht dem Grad der zugehörigen Mikroprimstelle.
Micro primes were introduced by J. Neukirch in the context of abstract class field theory. A generalization of decomposition groups of primes of global fields led him to a purely group theoretical definition of micro primes as certain equivalence classes of Frobenius elements. Applied to the case of Galois groups of local or global fields this theory yields a description of special conjugacy classes. The main problem already posed by J. Neukirch is to understand the number theoretical meaning of micro primes, that is to describe them in terms of the base field. J. Mehlig and E.-W. Zink established a bijection between micro primes and norm compatible sequences of prime elements in field towers. These towers arise as fixed point fields for the sequence of derived subgroups of the inertia group. So one has to study micro primes for the corresponding factor groups of the absolute Galois group and then to form a projective limit. In the first step, a bijection between relative micro primes and conjugacy classes of prime elements has been obtained. The main result of this project is a complete answer to the problem of J. Neukirch for the second step. One has to introduce norm maps between Lubin-Tate power series of different height and the projective limit has to be taken with respect to these norm maps. For this purpose results from class field theory are transferred to an ''''almost abelian'''' case. In the end micro primes can be described as Galois orbits of norm compatible sequences of normic Lubin-Tate power series. The coefficients of all the Lubin-Tate power series are in finite unramified extensions of the base field. Therefore one can define a field of coefficients for a given norm compatible sequence of normic Lubin-Tate power series. The degree of that field respectively the length of the Galois orbit is at the same time the degree of the corresponding micro prime.
APA, Harvard, Vancouver, ISO, and other styles
22

Lanard, Thomas. "Sur les l-blocs de niveau zéro des groupes p-adiques." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS084.

Full text
Abstract:
Soit G un groupe p-adique se déployant sur une extension non-ramifiée. Nous décomposons Rep0 Λ(G), la catégorie abélienne des représentations lisses de G de niveau 0 àc oefficients dans Λ = Q` ou Z`, en un produit de sous-catégories. Ces dernières sont construites à partir de systèmes d’idempotents sur l’immeuble de Bruhat-Tits et de la théorie de Deligne-Lusztig. Une première décomposition est obtenue à partir des paramètres inertiels à valeurs dans le dual de Langlands. Nous étudions ensuite la plus fine décomposition de Rep0 Λ(G) que l’on puisse obtenir par cette méthode. Nous en donnons deux descriptions, une première du côté du groupe à la Deligne-Lusztig, puis une deuxième du côté dual à la Langlands. Nous prouvons plusieurs propriétés fondamentales comme la compatibilité à l’induction et la restriction parabolique ou à la correspondance de Langlands locale. Les facteurs de cette décomposition ne sont pas des blocs, mais on montre comment les regrouper pour obtenir les blocs "stables". Certains de ces résultats corroborent une conjecture énoncée par Dat dans [Dat17]. Nous montrons également que toutes ces catégories sont équivalentes à des catégories obtenues à partir de systèmes de coefficients sur l’immeuble. Enfin, nous obtenons la décomposition en `-blocs dans certains cas particuliers
Let G be a p-adic group that splits over an unramified extension. We decompose Rep0 Λ(G), the abelian category of smooth level 0 representations of G with coefficients in Λ = Q` or Z`, into a product of subcategories. These categories are constructed via systems of idempotents on the Bruhat-Tits building and Deligne-Lusztig theory. A first decomposition is indexed by inertial Langlands parameters. We study the finest decomposition of Rep0 Λ(G) that can be obtained by this method. We give two descriptions of it, a first one on the group side à la Deligne-Lusztig, and a second one on the dual side à la Langlands. We prove several fundamental properties, like for example the compatibility to parabolic induction and restriction or the compatibility to the local Langlands correspondence. The factors of this decomposition are not blocks, but we show how to group them to obtain "stable" blocks. Some of these results support a conjecture given by Dat in [Dat17]. We also show that these categories are equivalent to categories obtained by systems of coefficient on the Bruhat-Tits building. Finally, we get `-blocks decompositions in some particular cases
APA, Harvard, Vancouver, ISO, and other styles
23

Ye, Shuyang. "On G-(phi,nabla)-modules over the Robba ring." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20359.

Full text
Abstract:
Sei $K$ eine endliche Erweiterung von $QQ_p $ und sei $R$ der Robba-Ring mit Koeffizienten in $K$ sein, die mit einem absoluten Frobenius-Lift $phi$ ausgestattet sind. Sei $F$ der Fixköper von $K$ unter $phi $ und sei $G$ eine verbundene reduktive Gruppe über $F$. Diese Arbeit untersucht $G$-$ (phi,nabla)$-Module über $R$, nämlich $(phi,nabla)$-Module über $R$ mit einer zusätzlicher $G$-Struktur. In Kapitel 3 konstruieren wir einen gefilterten Faserfunktor aus der Darstellungskategorie von $G$ auf endlich-dimensionalen $F$-Vektorräumenbis zur Kategorie von $QQ$-gefilterten Modulen über $R$, und beweisen, dass dieser Funktor spaltbar ist. In Kapitel 4 beweisen wir eine $G$-Version des $p$-adischen lokalen Monodromie-Satzes. In Kapitel 5 beweisen wir eine $G$-Version des logarithmischen lokalen Monodromie-Satzes unter bestimmten Annahmen. Als Anwendung fügen wir jedem $G$-$(phi,nabla)$-Modul eine Weil-Deligne-Darstellung der Weil-Gruppe $W_{kk((t))} $ in $G(K^{nr})$ an, wobei $kk$ der Restklassenkörper von $K$, und $K^{nr}$ die maximal unverzweigte Erweiterung von $K$ ist.
Let $K$ be a finite extension of $QQ_p$ and let $R$ be the Robba ring with coefficients in $K$, equipped with an absolute Frobenius lift $phi$. Let $F$ be the fixed field of $K$ under $phi$ and let $G$ be a connected reductive group over $F$. This thesis investigates $G$-$(phi,nabla)$-modules over $R$, namely $(phi,nabla)$-modules over $R$ with an additional $G$-structure. In Chapter 3, we construct a filtered fiber functor from the category of representations of $G$ on finite-dimensional $F$-vector spaces to the category of $QQ$-filtered modules over $R$, and prove that this functor is splittable. In Chapter 4, we prove a $G$-version of the $p$-adic local monodromy theorem. In Chapter 5, we prove a $G$-version of the logarithmic $p$-adic local monodromy theorem under certain assumptions. As an application, we attach to each $G$-$(phi,nabla)$-module a Weil-Deligne representation of the Weil group $W_{kk((t))}$ into $G(K^{nr})$, where $kk$ is the residue field of $K$, and $K^{nr}$ is the maximal unramified extension of $K$.
APA, Harvard, Vancouver, ISO, and other styles
24

Trias, Justin. "Correspondance thêta locale ℓ-modulaire." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS380.

Full text
Abstract:
Soit F un corps local non archimédien de caractéristique différente de 2 et de caractéristique résiduelle p. La correspondance thêta locale sur F établit une bijection entre des sous-ensembles de représentations lisses irréductibles complexes d’un premier groupe réductif H et d’un second groupe réductif H0, où (H,H0) forme une paire duale dans un groupe symplectique. Soit R un corps de caractéristique ℓ positive différente de p. Dans ce travail, on donne des conditions minimales sur R pour généraliser le théorème de Stone-von Neumann au cas des représentations modulaires i.e. à coefficients dans R. Cela permet ensuite de construire la représentation de Weil modulaire qui vérifie des propriétés analogues au cas complexe [MVW87]. Quand R est algébriquement clos, on généralise la preuve de la correspondance classique pour les paires duales non quaternioniques [GT16] sous deux hypothèses. La première est que ℓ soit suffisamment grand vis-à-vis d’une borne explicite dépendant des pro-ordres H1 et H2. La seconde est une hypothèse qui résulterait d’une meilleure connaissance de la théorie des opérateurs d’entrelacement dans le cas modulaire
Let F be a local non archimedean field of characteristic not 2 and residual characteristic p. The local theta correspondence over F gives a bijection between some subsets of irreductible smooth complex reprensentations of a first reductive group H and a second reductive group H0, where (H,H0) is a dual pair in a symplectic group. Let R be a field of characteristic ℓ different from p. In this thesis, we give minimal conditions on R so thatStone-von Neumann’s theorem can be generalised in the setting of modular representation theory, which means when the coefficient field is R. This generalisation enables to define a modular Weil representation which verifies analogous properties to that of the complex case [MVW87]. When R is algebraically closed, we generalise the proof of the classical correspondence for non quaternionic dual pairs [GT16] under two assumptions. Firstly,the characteristic ℓ has to be greater than a certain explicit bound which depends on the pro-orders of H1 and H2. The second hypothesis have a deep connection to the theory of intertwining and would result from a better understanding of that theory in the modular setting
APA, Harvard, Vancouver, ISO, and other styles
25

Elbée, Christian d'. "Expansions et néostabilité en théorie des modèles." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1076/document.

Full text
Abstract:
Cette thèse est consacrée à l’étude d’expansions de certaines structures algébriques et leur place dans la classification modèle-théorique des structures, initiée par Shelah. La première partie aborde de manière abstraite l’expansion d’une théorie par un prédicat aléatoire –ou générique– pour une sous-structure modèle d’un réduit de la théorie. Nous éla- borons un critère pour l’existence d’une telle expansion, qui est vérifié pour certaines théories de structures algébriques. En particulier, nous montrons l’existence de sous-groupes additifs génériques pour certaines théories de corps, ainsi que de sous-groupes multiplicatifs génériques pour les corps algébriquement clos en toute caractéristique. Nous étudions aussi la conservation de diverses notions de néostabilité, en particulier nous montrons que cette expansion préserve la propriété NSOP 1 , mais en général ne préserve pas la simplicité. Nous produisons par cette construction de nouveaux exemples de structures NSOP 1 non simples, et faisons une étude toute particulière de l’une d’entre elles : l’expansion d’un corps algébriquement clos de caractéristique positive par un sous-groupe additif générique. La deuxième partie étudie les expansions du groupe des entiers par des valuations p-adiques. Nous montrons l’élimination des quantificateurs dans un langage naturel et calculons le dp-rang d’une telle expansion : il est égal au nombre de valuations considérées. L’expansion du groupe des entiers par une seule valuation p-adique est donc une nouvelle expansion dp-minimale du groupe des entiers. Enfin, nous montrons que cette dernière n’admet pas de structures intermédiaires : tout ensemble définissable dans l’expansion est soit définissable dans le groupe des entiers, soit capable de “reconstruire” la valuation en utilisant seulement la structure additive
This thesis is concerned with the expansions of some algebraic structures and their fit in Shelah’s classification landscape. The first part deals with the expansion of a theory by a random –or generic– predicate for a substructure model of a reduct of the theory. We describe a setup allowing such an expansion to exist, which is suitable for several algebraic structures. In particular, we obtain the existence of additive generic subgroups of some theories of fields and multiplicative generic subgroups of algebraically closed fields in all characteristic. We also study the preservation of certain neostability notions, for instance, the NSOP 1 property is preserved but the simplicity is not in general. Thus, this construction produces new examples of NSOP 1 not simple theories, and we study in depth a particular example: the expansion of an algebraically closed field of positive characteristic by a generic additive subgroup. The second part studies expansions of the groups of integers by p-adic valuations. We prove quantifier elimination in a natural language and compute the dp-rank of these expansions: it equals the number of distinct p-adic valuations considered. Thus, the expansion of the integers by one p-adic valuation is a new dp-minimal expansion of the group of integers. Finally, we prove that the latter expansion does not admit intermediate structures: any definable set in the expansion is either definable in the group structure or is able to "reconstruct" the valuation using only the group operation
APA, Harvard, Vancouver, ISO, and other styles
26

Heyer, Claudius. "Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomials." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20137.

Full text
Abstract:
Im ersten Teil wird eine neue Konstruktion der parabolischen Induktion für pro-p Iwahori-Heckemoduln gegeben. Dabei taucht eine neue Klasse von Algebren auf, die in gewisser Weise als Interpolation zwischen der pro-p Iwahori-Heckealgebra einer p-adischen reduktiven Gruppe $G$ und derjenigen einer Leviuntergruppe $M$ von $G$ gedacht werden kann. Für diese Algebren wird ein Induktionsfunktor definiert und eine Transitivitätseigenschaft bewiesen. Dies liefert einen neuen Beweis für die Transitivität der parabolischen Induktion für Moduln über der pro-p Iwahori-Heckealgebra. Ferner wird eine Funktion auf einer parabolischen Untergruppe untersucht, die als Werte nur p-Potenzen annimmt. Es wird gezeigt, dass sie eine Funktion auf der (pro-p) Iwahori-Weylgruppe von $M$ definiert, und dass die so definierte Funktion monoton steigend bzgl. der Bruhat-Ordnung ist und einen Vergleich der Längenfunktionen zwischen der Iwahori-Weylgruppe von $M$ und derjenigen der Iwahori-Weylgruppe von $G$ erlaubt. Im zweiten Teil wird ein allgemeiner Zerlegungssatz für Polynome über der sphärischen (parahorischen) Heckealgebra einer p-adischen reduktiven Gruppe $G$ bewiesen. Diese Zerlegung findet über einer parabolischen Heckealgebra statt, die die Heckealgebra von $G$ enthält. Für den Beweis des Zerlegungssatzes wird vorausgesetzt, dass die gewählte parabolische Untergruppe in einer nichtstumpfen enthalten ist. Des Weiteren werden die nichtstumpfen parabolischen Untergruppen von $G$ klassifiziert.
The first part deals with a new construction of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. This construction exhibits a new class of algebras that can be thought of as an interpolation between the pro-p Iwahori-Hecke algebra of a p-adic reductive group $G$ and the corresponding algebra of a Levi subgroup $M$ of $G$. For these algebras we define a new induction functor and prove a transitivity property. This gives a new proof of the transitivity of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. Further, a function on a parabolic subgroup with p-power values is studied. We show that it induces a function on the (pro-p) Iwahori-Weyl group of $M$, that it is monotonically increasing with respect to the Bruhat order, and that it allows to compare the length function on the Iwahori-Weyl group of $M$ with the one on the Iwahori-Weyl group of $G$. In the second part a general decomposition theorem for polynomials over the spherical (parahoric) Hecke algebra of a p-adic reductive group $G$ is proved. The proof requires that the chosen parabolic subgroup is contained in a non-obtuse one. Moreover, we give a classification of non-obtuse parabolic subgroups of $G$.
APA, Harvard, Vancouver, ISO, and other styles
27

Wu, Yi-Tao. "One the P-Adic Local Invariant Cycle Theorem." Thesis, 2012. https://thesis.library.caltech.edu/7090/1/Thesis.pdf.

Full text
Abstract:

The aim of this paper is to consider the $p$-adic local invariant cycle theorem in the mixed characteristic case.

In the first part of the paper, via case-by-case discussion, we construct the $p$-adic specialization map, and then write out the complete conjecture in $p$-adic case. We proved the theorem in good reduction and semistable reduction cases.

In the second part of the paper, by using Berthelot, Esnault and R\"{u}lling's trace morphisms in [BER], we first prove the case of coherent cohomology, then we extend it to the Witt vector cohomology, and we then get a result on the Frobenius-stable part of the Witt vector cohomology, which corresponds the slope 0 part of the rigid cohomology, we then get the general $p$-adic local invariant cycle theorem.

We also give another approach in the $H^0$ and $H^1$ cases in the general case.

In the last part of the paper, based on Flach and Morin's work on the weight filtration in the $l$-adic case, we consider the $p$-adic analogous result (which, together with the $l$-adic's result, serves as a part to prove the compatibility of the Weil-etale cohomology with the Tamagawa number conjecture). This is a direct corollary of the local invariant cycle theorem by taking the weight filtration. And we also consider some typical examples that the weight filtration statement could be verified by direct computations.

APA, Harvard, Vancouver, ISO, and other styles
28

Veres, Olga Erzsébet. "On the complexity of polynomial factorization over P-adic fields." Thesis, 2009. http://spectrum.library.concordia.ca/976383/1/NR63368.pdf.

Full text
Abstract:
Let p be a rational prime and Z( x ) be a monic irreducible polynomial in Z p [ x ]. Based on the work of Ore on Newton polygons (Ore, 1928) and MacLane's characterization of polynomial valuations (MacLane, 1936), Montes described an algorithm for the decomposition of the ideal [Special characters omitted.] over an algebraic number field (Montes, 1999). We give a simplified version of the Montes algorithm with a full MAPLE implementation which tests the irreducibility of Z( x ) over Q p . We derive an estimate of the complexity of this simplified algorithm in the worst case, when Z( x ) is irreducible over Q p . We show that in this case the algorithm terminates in at most[Special characters omitted.] bit operations. Lastly, we compare the "one-element" and "two-element" variations of the Zassenhaus "Round Four" algorithm with the Montes algorithm
APA, Harvard, Vancouver, ISO, and other styles
29

Lee, Pak Hin. "p-adic L-functions for non-critical adjoint L-values." Thesis, 2019. https://doi.org/10.7916/d8-rvn9-r814.

Full text
Abstract:
Let K be an imaginary quadratic field, with associated quadratic character α. We construct an analytic p-adic L-function interpolating the special values L(1, ad(f) ⊗ α) as f varies in a Hida family; these values are non-critical in the sense of Deligne. Our approach is based on Greenberg--Stevens' idea of Λ-adic modular symbols. By considering cohomology with values in a space of p-adic measures, we construct a Λ-adic evaluation map that interpolates Hida's integral expression as the weight varies. The p-adic L-function is obtained by applying this map to a cohomology class corresponding to the given Hida family.
APA, Harvard, Vancouver, ISO, and other styles
30

(11186268), Razan Taha. "p-adic Measures for Reciprocals of L-functions of Totally Real Number Fields." Thesis, 2021.

Find full text
Abstract:
We generalize the work of Gelbart, Miller, Pantchichkine, and Shahidi on constructing p-adic measures to the case of totally real fields K. This measure is the Mellin transform of the reciprocal of the p-adic L-function which interpolates the special values at negative integers of the Hecke L-function of K. To define this measure as a distribution, we study the non-constant terms in the Fourier expansion of a particular Eisenstein series of the Hilbert modular group of K. Proving the distribution is a measure requires studying the structure of the Iwasawa algebra.
APA, Harvard, Vancouver, ISO, and other styles
31

Vourdas, Apostolos. "Quantum mechanics on profinite groups and partial order." 2013. http://hdl.handle.net/10454/9748.

Full text
Abstract:
no
Inverse limits and profinite groups are used in a quantum mechanical context. Two cases are considered: a quantum system with positions in the profinite group Z(p) and momenta in the group Q(p)/Z(p), and a quantum system with positions in the profinite group (Z) over cap and momenta in the group Q/Z. The corresponding Schwatz-Bruhat spaces of wavefunctions and the Heisenberg-Weyl groups are discussed. The sets of subsystems of these systems are studied from the point of view of partial order theory. It is shown that they are directed-complete partial orders. It is also shown that they are topological spaces with T-0-topologies, and this is used to define continuity of various physical quantities. The physical meaning of profinite groups, non-Archimedean metrics, partial orders and T-0-topologies, in a quantum mechanical context, is discussed.
APA, Harvard, Vancouver, ISO, and other styles
32

Grande, Vincent. "Exakte Moduln über dem von Manuel Köhler beschriebenen Ring." Masterarbeit, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E4FD-D.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography