Academic literature on the topic 'Local positioning systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Local positioning systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Local positioning systems"
Leser, Roland, Arnold Baca, and Georg Ogris. "Local Positioning Systems in (Game) Sports." Sensors 11, no. 10 (October 19, 2011): 9778–97. http://dx.doi.org/10.3390/s111009778.
Full textGuevara, J., A. R. Jiménez, J. C. Prieto, and F. Seco. "Auto-localization algorithm for local positioning systems." Ad Hoc Networks 10, no. 6 (August 2012): 1090–100. http://dx.doi.org/10.1016/j.adhoc.2012.02.003.
Full textWu, Lijun, and Fabio Casciati. "Local positioning systems versus structural monitoring: a review." Structural Control and Health Monitoring 21, no. 9 (January 19, 2014): 1209–21. http://dx.doi.org/10.1002/stc.1643.
Full textGao, Honghao, Shuoping Wang, and Hongquan Lu. "Local Positioning Systems for Mobile Devices based on Ontology." Information Technology Journal 10, no. 1 (December 15, 2010): 168–74. http://dx.doi.org/10.3923/itj.2011.168.174.
Full textBorodko, A. "LOCAL POSITIONING TECHNOLOGIES FOR IIoT DEVICES." Telecom IT 9, no. 2 (July 28, 2021): 21–29. http://dx.doi.org/10.31854/2307-1303-2021-9-2-21-29.
Full textAverin, D., V. Borovytsky, and S. Tuzhanskyi. "Local Positioning Systems for Drones without Usage of Digital Cameras." Optoelectronic Information-Power Technologies 42, no. 2 (October 24, 2022): 5–11. http://dx.doi.org/10.31649/1681-7893-2021-42-2-5-11.
Full textNowak, Thorsten, and Andreas Eidloth. "Dynamic multipath mitigation applying unscented Kalman filters in local positioning systems." International Journal of Microwave and Wireless Technologies 3, no. 3 (March 25, 2011): 365–72. http://dx.doi.org/10.1017/s1759078711000274.
Full textAguilera, Teodoro, Fernando J. Alvarez, David Gualda, Jose Manuel Villadangos, Alvaro Hernandez, and Jesus Urena. "Multipath Compensation Algorithm for TDMA-Based Ultrasonic Local Positioning Systems." IEEE Transactions on Instrumentation and Measurement 67, no. 5 (May 2018): 984–91. http://dx.doi.org/10.1109/tim.2018.2794939.
Full textAguilera, Teodoro, Fernando J. Álvarez, José A. Paredes, and José A. Moreno. "Doppler compensation algorithm for chirp-based acoustic local positioning systems." Digital Signal Processing 100 (May 2020): 102704. http://dx.doi.org/10.1016/j.dsp.2020.102704.
Full textRempel, Petr, and Alexey Borisov. "Local System of Positioning Using a Wifi Network." MATEC Web of Conferences 155 (2018): 01014. http://dx.doi.org/10.1051/matecconf/201815501014.
Full textDissertations / Theses on the topic "Local positioning systems"
Shum, Chin Yiu. "Detecting, locating, and tracking mobile user within a wireless local area network." HKBU Institutional Repository, 2013. http://repository.hkbu.edu.hk/etd_ra/1512.
Full textShetty, Ranjeet S. "A Real-Time Bi-Directional Differential Global Positioning System." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1175006976.
Full textWilcox, Martin Stuart. "Techniques for predicting the performance of time-of-flight based local positioning systems." Thesis, University College London (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429873.
Full textDickman, Jeffrey. "Multipath limiting antenna design considerations for ground based pseudolite ranging sources." Ohio : Ohio University, 2001. http://www.ohiolink.edu/etd/view.cgi?ohiou1173814251.
Full textMorris, Lance A. "Local Positioning System." Thesis, California State University, Long Beach, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1523236.
Full textIn Local Positioning System I explored urban areas on foot and displayed the results of my explorations in the Dutzi gallery. My primary impetus for this project was to gain a more complete understanding of my surroundings. In a Global Positioning System (GPS)-driven re-imagining of British artist Richard Long's walks, I tracked my wanderings using a smartphone and filtered the resulting data and imagery through mechanical methods of production such as laser cutting and screen-printing. I then incorporated this imagery into a much larger installation piece that led viewers through a scale model of my exploration, via a detailed path on the wall and illuminated light boxes on the floor to guide their path.
Annamraju, Venu, and Kurt Kosbar. "CONCEPTUAL DESIGN OF CENTIMETER ACCURACY LOCAL POSITIONING SYSTEM." International Foundation for Telemetering, 2001. http://hdl.handle.net/10150/607684.
Full textThis project investigates the feasibility of position detection in an office or industrial setting. The objective is to design a low-cost positioning system that uses the unlicensed 5.7 GHz ISM band, with centimeter accuracy and limited range. During the conceptual design phase of the system, indoor channel models will be investigated to determine which of a variety of architectures will be useful. For triangulating the position, an array of widely spaced stationary receivers and a mobile transmitter is proposed.
Joram, Niko. "Design of a Dual Band Local Positioning System." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-186495.
Full textDie vorliegende Arbeit befasst sich mit dem Entwurf eines robusten lokalen Positionierungssystems (LPS), welches in den lizenzfreien Frequenzbereichen für industrielle, wissenschaftliche und medizinische Zwecke (industrial, scientific, medical, ISM) bei 2,4GHz und 5,8GHz arbeitet. Die Positionsbestimmung beruht auf dem Prinzip des frequenzmodulierten Dauerstrichradars (frequency modulated continuous wave, FMCW-Radar), welches hochfrequente Rampensignale für Laufzeitmessungen und damit Abstandsmessungen benutzt. Im Gegensatz zu aktuellen Arbeiten auf diesem Gebiet benutzt das vorgestellte System Daten aus beiden Frequenzbändern zur Erhöhung der Genauigkeit und Präzision sowie Verbesserung der Robustheit. Ein Prototyp des kompletten Systems bestehend aus Basisstationen und mobilen Stationen wurde entworfen. Fast die gesamte analoge hochfrequente Signalverarbeitungskette wurde als anwendungsspezifische integrierte Schaltung realisiert. Verglichen mit Systemen aus Standardkomponenten erlaubt dieser Ansatz die Miniaturisierung der Systemkomponenten und die Einsparung von Leistung. Schlüsselkomponenten wurden mit Konzepten für mehrbandige oder breitbandige Schaltungen entworfen. Dabei wurden Sender und Empfänger bestehend aus rauscharmem Verstärker, Mischer und Frequenzsynthesizer mit breitbandiger Frequenzrampenfunktion implementiert. Außerdem wurde ein Leistungsverstärker für die gleichzeitige Nutzung der beiden definierten Frequenzbänder entworfen. Um Spezifikationen für den Schaltungsentwurf zu erhalten, wurden in der Fachliteratur vernachlässigte Nichtidealitäten von FMCW-Radarsystemen modelliert. Dazu gehören Signalverzerrungen durch Kompression oder Intermodulation, der Einfluss der automatischen Verstärkungseinstellung sowie schmalbandige Störer und Nebenschwingungen. Die Ergebnisse der Modellierung wurden benutzt, um eine Spezifikation für den Schaltungsentwurf zu erhalten. Die Schätzung der Position aus gemessenen Abständen wurde über eine erweiterte Version des Gittersuchalgorithmus erreicht. Dieser nutzt die Abstandsmessdaten aus beiden Frequenzbändern. Der Algorithmus ist so entworfen, dass er effizient in einem eingebetteten System implementiert werden kann. Messungen zeigen eine maximale Reichweite des Systems von mindestens 245m. Die Genauigkeit von Abstandsmessungen im Freiland beträgt 8,2cm. Positionsmessungen wurden unter Verwendung beider Einzelbänder durchgeführt und mit den Ergebnissen des Zweiband-Gittersuchalgorithmus verglichen. Damit konnte eine starke Verbesserung der Positionsgenauigkeit erreicht werden. Die Genauigkeit in einem Innenraum mit einer Grundfläche von 276m² kann verbessert werden von 1,27m bei 2,4GHz und 1,86m bei 5,8GHz zu nur 0,38m im Zweibandverfahren. Das entspricht einer Verbesserung um einen Faktor von mindestens 3,3. In einem größeren Außenszenario mit einer Fläche von 4,8 km² verbessert sich die Genauigkeit um einen Faktor von mindestens 2,8 von 1,88m bei 2,4GHz und 5,93m bei 5,8GHz auf 0,68m bei Nutzung von Daten aus beiden Frequenzbändern
Myhrberg, Pontus, Emil Åberg, and David Nyman. "LPS, Local Positioning System : Småskaligt positioneringssystem baserat på avståndsmätning med ultraljud." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353407.
Full textMurray, Kevin Hugh. "An Optical Resection Local Positioning System for an Autonomous Agriculture Vehicle." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/45150.
Full textMaster of Science
Bartone, Chris Gregory. "Ranging airport pseudolite for local area augmentation using the global positioning system." Ohio University / OhioLINK, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1175095346.
Full textBooks on the topic "Local positioning systems"
N, Plataniotis Konstantinos, and Venetsanopoulos, A. N. (Anastasios N.), 1941-, eds. WLAN positioning systems: Principles and applications in location-based services. Cambridge: Cambridge University Press, 2012.
Find full textSC-159, RTCA (Firm). Minimum operational performance standards for GPS local area augmentation system airborne equipment. Washington, DC: RTCA, 2008.
Find full textChen, Robert T. N. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1995.
Find full textChen, Robert T. N. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1995.
Find full textSC-159, RTCA (Firm). GNSS-based precision approach local area augmentation system (LAAS) signal-in-space interface control document (ICD). Washington, DC: RTCA, Inc., 2008.
Find full textAllen, Peyton M. Incorporation of a Differential Global Positioning System (DPGS) in the control of an unmanned aerial vehicle (UAV) for precise navigation in the Local Tangent Plane (LTP). Monterey, Calif: Naval Postgraduate School, 1997.
Find full textKolodziej, Krzysztof W., and Johan Hjelm. Local Positioning Systems: Lbs Applications and Services. Taylor & Francis Group, 2010.
Find full textKolodziej, Krzysztof W., and Johan Hjelm. Local Positioning Systems: LBS Applications and Services. Taylor & Francis Group, 2017.
Find full textBook chapters on the topic "Local positioning systems"
Clemente, Filipe Manuel, José Pino-Ortega, and Markel Rico-González. "Local Positioning Systems." In The Use of Applied Technology in Team Sport, 39–51. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003157007-5.
Full textCasciati, Fabio, and Li Jun Wu. "Positioning Systems: Global Versus Local." In Advanced Dynamics and Model-Based Control of Structures and Machines, 43–52. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0797-3_6.
Full textDíez-González, Javier, Rubén Álvarez, Paula Verde, Rubén Ferrero-Guillén, David González-Bárcena, and Hilde Pérez. "Stable Performance Under Sensor Failure of Local Positioning Systems." In Advances in Intelligent Systems and Computing, 499–508. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57802-2_48.
Full textMosshammer, Ralf, Ralf Eickhoff, Mario Huemer, and Robert Weigel. "Integrated System and Network Simulation of a 5.8GHz Local Positioning System." In Computer Aided Systems Theory - EUROCAST 2009, 461–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04772-5_60.
Full textAitenbichler, Erwin, Fernando Lyardet, Aristotelis Hadjakos, and Max Mühlhäuser. "Fine-Grained Evaluation of Local Positioning Systems for Specific Target Applications." In Ubiquitous Intelligence and Computing, 236–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02830-4_19.
Full textZekavat, Seyed A. Reza. "An Introduction to the Fundamentals and Implementation of Wireless Local Positioning Systems." In Handbook of Position Location, 1169–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118104750.ch34.
Full textLin, Chuan-Bi, Yung-Fa Huang, Long-Xin Chen, Yu-Chiang Chang, Z.-Ming Hong, and Jong-Shin Chen. "A Low-Costed Positioning System Based on Wearable Devices for Elders and Children in a Local Area." In Intelligent Information and Database Systems, 324–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75420-8_31.
Full textFerrero-Guillén, Rubén, Javier Díez-González, Rubén Álvarez, and Hilde Pérez. "Analysis of the Genetic Algorithm Operators for the Node Location Problem in Local Positioning Systems." In Lecture Notes in Computer Science, 273–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61705-9_23.
Full textKlein, Günter, and Gerd Boedecker. "GPS-Observations in a Local Network Covering Big Height Differences." In Global Positioning System: An Overview, 90–94. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4615-7111-7_8.
Full textSun, Peiliang. "Prison IOT Application—Local Area Positioning System." In Smart Prisons, 121–31. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9657-2_7.
Full textConference papers on the topic "Local positioning systems"
Kupiec, Stephen A., Wenjian Wang, and Tomasz P. Jannson. "WLAN encryption based on local positioning systems." In AeroSense 2002, edited by Edward M. Carapezza. SPIE, 2002. http://dx.doi.org/10.1117/12.479328.
Full textAl-Qudsi, B., E. Edwan, N. Joram, and F. Ellinger. "INS/FMCW radar integrated local positioning system." In 2014 DGON Inertial Sensors and Systems Symposium (ISS). IEEE, 2014. http://dx.doi.org/10.1109/inertialsensors.2014.7049478.
Full textAlvarez, Fernando J., and Roberto Lopez-Valcarce. "Multipath cancellation in broadband acoustic local positioning systems." In 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP). IEEE, 2015. http://dx.doi.org/10.1109/wisp.2015.7139174.
Full textKrcmar, Marko, Viswanathan Subramanian, and Georg Boeck. "High performance CMOS receiver for local positioning systems." In 2009 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2009. http://dx.doi.org/10.1109/rfic.2009.5135506.
Full textHehn, Markus, Martin Vossiek, Felix Dollinger, Karl Leo, Bahman Kheradmand-Boroujeni, and Frank Ellinger. "Optimized coil design for magnetic local positioning systems." In 2018 German Microwave Conference (GeMiC). IEEE, 2018. http://dx.doi.org/10.23919/gemic.2018.8335110.
Full textKim, Youngmin, Jae Hyun Seo, and Heung Mook Kim. "A local positioning system based on VHF band." In 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2016. http://dx.doi.org/10.1109/bmsb.2016.7521975.
Full textEickhoff, Ralf, Niko Joram, Jens Wagner, Axel Strobel, and Frank Ellinger. "Design space exploration and hardware aspects of local positioning systems." In 2011 8th Workshop on Positioning, Navigation and Communication (WPNC). IEEE, 2011. http://dx.doi.org/10.1109/wpnc.2011.5961029.
Full textPfeifer, T. "Secure cross-domain positioning architecture for autonomic systems." In The IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05)l. IEEE, 2005. http://dx.doi.org/10.1109/lcn.2005.121.
Full textTragas, Philippos, Antonis Kalis, Constantinos Papadias, Frank Ellinger, Ralf Eickhoff, Thomas Ussmuller, Ralf Mosshammer, et al. "RESOLUTION: Reconfigurable Systems for Mobile Local Communication and Positioning." In 2007 16th IST Mobile and Wireless Communications Summit. IEEE, 2007. http://dx.doi.org/10.1109/istmwc.2007.4299212.
Full textOtto, Philip, and Peter Gratzfeld. "Optimal Positioning of Wayside Energy Storage Systems in Local Transportation Networks." In 2021 Joint Rail Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/jrc2021-58018.
Full textReports on the topic "Local positioning systems"
Robert, J., and Michael Forte. Field evaluation of GNSS/GPS based RTK, RTN, and RTX correction systems. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41864.
Full textHui, H. A., N. K. Muetterties, and B. M. Wihl. Precision Local Positioning System. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1557043.
Full textWon, I. J. Local Positioning System for an Active UXO Sensor. Fort Belvoir, VA: Defense Technical Information Center, August 2009. http://dx.doi.org/10.21236/ada520500.
Full textFernandez-Stark, Karina. Innovation and Competitiveness in the Copper Mining Global Value Chain: Developing Local Suppliers in Peru. Inter-American Development Bank, December 2021. http://dx.doi.org/10.18235/0003814.
Full textPstuty, Norbert, Mark Duffy, Dennis Skidds, Tanya Silveira, Andrea Habeck, Katherine Ames, and Glenn Liu. Northeast Coastal and Barrier Network Geomorphological Monitoring Protocol: Part I—Ocean Shoreline Position, Version 2. National Park Service, June 2022. http://dx.doi.org/10.36967/2293713.
Full textEstimation of Vehicle Miles Traveled Based on Improved Ant Colony Algorithm. SAE International, December 2020. http://dx.doi.org/10.4271/2020-01-5195.
Full text